Swati Gangwar | Chemical Engineering | Women Researcher Award

Ms. Swati Gangwar | Chemical Engineering | Women Researcher Award

Research scholar from Indian institute of Technology, India

Swati Gangwar is a dedicated research scholar currently pursuing her PhD in Chemical Engineering at the Indian Institute of Technology (IIT), Jammu. With a strong academic foundation marked by a first-class chemical engineering degree from AITH Kanpur and a Master’s degree from Harcourt Butler Technical University (HBTU), Kanpur, she has steadily advanced her expertise in thermal hydraulics and fluid flow. Under the mentorship of P.K. Vijayan, a distinguished expert with extensive experience at BARC, Swati has focused on natural circulation systems, which are critical in energy-efficient and safe passive heat transfer technologies. Her research contributions include experimental, numerical, and analytical studies of thermosyphon heat transport devices, indoor solar cooktops, and passive cooling systems applicable to renewable energy and nuclear safety sectors. Swati’s work has been published in prestigious international journals such as Nuclear Engineering and Design and IEEE Electrification Magazine, demonstrating her ability to contribute novel insights to her field. With ongoing projects and collaborative efforts, she continues to advance research that bridges theoretical understanding and practical innovation in heat transfer mechanisms, positioning herself as a promising leader in chemical engineering research.

Professional Profile

Education

Swati Gangwar completed her Bachelor of Technology (B.Tech) degree in Chemical Engineering from AITH Kanpur in 2016, graduating with first-class honors. She pursued her Master of Technology (M.Tech) in Chemical Engineering at Harcourt Butler Technical University (HBTU), Kanpur, completing it in 2019. Her graduate studies laid a solid foundation in core chemical engineering principles, with a growing interest in thermal systems and fluid mechanics. Currently, she is enrolled in a PhD program at the Indian Institute of Technology Jammu, focusing on heat transfer and fluid flow under the guidance of Professor P.K. Vijayan. The doctoral program enables her to engage deeply in research related to natural circulation loops, thermosyphon heat transport devices, and their applications in sustainable energy systems and nuclear safety. Her education trajectory reflects a consistent focus on advancing her expertise in thermal hydraulics and related engineering challenges, supported by rigorous academic training and research exposure at premier Indian institutions.

Professional Experience

Swati’s professional experience is primarily academic and research-oriented, centered on her PhD studies at IIT Jammu. She has actively contributed to research projects involving thermosyphon heat transport devices and natural circulation systems, focusing on experimental design, numerical modeling, and performance analysis. Her collaboration with her supervisor, Prof. P.K. Vijayan, who has a rich background in nuclear thermal hydraulics and reactor engineering, has enriched her exposure to practical challenges in energy systems design and safety. Swati has also worked on projects related to solar indoor cooktops, a novel application of thermosyphon technology, reflecting her ability to translate research into practical innovations. She has been involved in publishing several peer-reviewed papers in high-impact journals and presenting findings at scientific forums, contributing to the academic community. Although her experience is mainly research-focused, it reflects strong technical skills, teamwork in collaborative environments, and dedication to advancing applied thermal engineering solutions.

Research Interests

Swati’s research interests lie in the field of heat transfer, fluid dynamics, and passive cooling systems. Specifically, she focuses on natural circulation loops (NCLs) and thermosyphon heat transport devices (THTDs), which utilize buoyancy-driven flow to enable efficient heat transfer without mechanical pumps. Her work encompasses both single-phase and two-phase natural circulation systems, with a strong emphasis on stability analysis and flow instabilities. She is particularly interested in developing innovative applications of these passive heat transfer technologies, such as solar indoor cooking devices, passive fuel cooling systems in small modular reactors (SMRs), and sustainable energy solutions like solar space heating. Swati’s research aims to address critical challenges in renewable energy and nuclear safety by optimizing thermal-hydraulic performance and enhancing system stability. Her work bridges theoretical modeling, numerical simulations, and experimental validations to provide comprehensive insights into these systems’ behavior under various boundary conditions, contributing to safer and more efficient energy technologies.

Research Skills

Swati possesses a robust set of research skills combining experimental, analytical, and computational techniques. She is proficient in designing and conducting experiments related to thermosyphon heat transport devices and natural circulation loops, including setup fabrication, instrumentation, and data acquisition. Her skills include numerical modeling and simulation using system codes to predict thermo-hydraulic behavior and flow stability. She has experience in analytical methods for stability criteria development and performance analysis under varying operating conditions. Swati’s ability to integrate experimental data with numerical models allows her to validate and refine theoretical predictions effectively. Additionally, she has strong scientific writing skills, demonstrated through multiple publications in reputed journals. Her research also involves using computational fluid dynamics (CFD) tools for detailed flow analysis. Collaborating with multidisciplinary teams and managing complex research projects further highlights her organizational and teamwork capabilities. Overall, Swati’s research skills position her to make meaningful contributions to passive cooling and heat transfer technologies.

Awards and Honors

Swati Gangwar’s recognition primarily stems from her academic excellence and research contributions during her ongoing PhD. While specific external awards or honors were not explicitly mentioned, her work’s acceptance and publication in high-impact, peer-reviewed journals such as Nuclear Engineering and Design and IEEE Electrification Magazine are significant markers of her research quality and impact. Being mentored by a leading expert in the field, Prof. P.K. Vijayan, also adds to her academic prestige. Her participation in advanced research projects and collaborations, coupled with acceptance of her work in reputed journals, reflects peer recognition within the scientific community. Future recognition may include awards related to innovations in renewable energy or nuclear safety, given the societal relevance of her research areas. Encouragingly, her trajectory and ongoing scholarly output suggest a promising career with potential for further accolades and honors as she continues to contribute to her field.

Conclusion

Swati Gangwar exemplifies a promising young researcher with strong academic foundations, relevant professional experience, and a clear focus on impactful research in thermal hydraulics and fluid flow. Her work on natural circulation loops and thermosyphon devices addresses important challenges in renewable energy and nuclear safety, combining theoretical, numerical, and experimental approaches. With multiple high-quality journal publications and ongoing innovative projects, she is steadily establishing herself as a capable and impactful researcher. To strengthen her profile further, opportunities to demonstrate leadership in research projects, increase engagement with the wider scientific community through conferences, and pursue external funding or patents would be beneficial. Overall, Swati’s dedication and contributions position her well as a deserving candidate for the Women Researcher Award, highlighting her potential as a future leader in engineering research.

Publications Top Notes

  1. Title: Insight on the steady-state performance of single-phase Natural circulation loops
    Year: 2025
    Authors: Swati Gangwar, P. K. Vijayan, Goutam Dutta
    Journal: Nuclear Engineering and Design, Volume 440, 114128

  2. Title: Insights on the instability and stabilizing techniques for natural circulation loops
    Year: 2025
    Authors: P. K. Vijayan, Swati Gangwar, Dev Banitia, U. C. Arunachala, S. Nakul, D. N. Elton, K. Varun
    Journal: Nuclear Engineering and Design, Volume 438, 114017

  3. Title: Intrinsically Safe Thermohydraulic Designs for SMRs: Design advantages and challenges
    Year: 2024
    Authors: P. K. Vijayan, Swati Gangwar
    Journal: IEEE Electrification Magazine, Volume 12, Issue 4, pp. 75–83
    DOI: 10.1109/MELE.2024.3473332

  4. Title: CFD analysis of the steady-state performance of a cooktop integrated Thermosyphon heat transport device with two bends
    Year: 2025
    Authors: Sonu Kumar, Pallippattu Krishnan Vijayan, Swati Gangwar, Satya Sekhar Bhogilla
    Journal: Heat Transfer Engineering Journal (Accepted for publication)

  5. Title: Experimental performance of a novel solar indoor cooktop using THTD
    Year: 2024
    Authors: Swati Gangwar, A. Budakoti, S. S. Bhogilla, G. Dutta, P. K. Vijayan
    Journal: ASTFE Digital Library, Begell House Inc.

Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Prof. Dr. Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Professor from Sreenidhi Institute of Science and Technology, India

Dr. E. Laxminarayana is a distinguished academician and researcher specializing in Organic Chemistry. With over two decades of teaching experience and 14 years dedicated to research, he has made significant contributions to the field. Currently serving as an Associate Professor at Sreenidhi Institute of Science and Technology, Dr. Laxminarayana has been instrumental in mentoring students and advancing research initiatives within the department. His scholarly work is reflected in his impressive portfolio of 165 publications in both national and international journals. Beyond teaching, he has guided five Ph.D. scholars from Jawaharlal Nehru Technological University Hyderabad, focusing on innovative synthetic methodologies and computational studies. His commitment to excellence in education and research has been recognized through various awards, including the Best Teacher and Best Researcher accolades. Dr. Laxminarayana’s expertise and dedication continue to inspire students and colleagues alike, solidifying his reputation as a leading figure in the field of Organic Chemistry.

Professional Profile

Education

Dr. E. Laxminarayana’s academic journey is rooted in Kakatiya University, where he pursued all his higher education degrees. He completed his Bachelor of Science (B.Sc.) in 1999, laying a strong foundation in the sciences. His passion for chemistry led him to undertake a Master of Science (M.Sc.) in Organic Chemistry, which he completed in 2002. Driven by a quest for deeper knowledge and research, he pursued a Doctor of Philosophy (Ph.D.) in Organic Chemistry, culminating in 2009. His doctoral research focused on the development of novel synthetic methodologies, contributing valuable insights to the field. Throughout his academic pursuits, Dr. Laxminarayana demonstrated a consistent commitment to excellence, which has been the cornerstone of his subsequent teaching and research career.

Professional Experience

With over 20 years of teaching experience, Dr. E. Laxminarayana has been a pivotal figure in shaping the academic landscape at Sreenidhi Institute of Science and Technology. As an Associate Professor in the Department of Chemistry, he has been instrumental in delivering comprehensive education in subjects like Engineering Chemistry and Environmental Science. His pedagogical approach combines theoretical knowledge with practical applications, fostering a conducive learning environment for students. Beyond classroom teaching, Dr. Laxminarayana has actively engaged in curriculum development, research mentorship, and departmental administration. His leadership has been crucial in initiating co-curricular and extracurricular activities, enhancing the holistic development of students. His dedication to education and research has not only elevated the department’s stature but also contributed significantly to the institution’s academic excellence.

Research Interests

Dr. E. Laxminarayana’s research interests are primarily centered around Organic Synthesis and Computational Studies. His work in Organic Synthesis involves developing innovative methodologies for constructing complex organic molecules, which has significant implications in pharmaceuticals and material science. In the realm of Computational Studies, he employs computational chemistry techniques to model and predict the behavior of organic compounds, facilitating a deeper understanding of reaction mechanisms and molecular properties. This interdisciplinary approach allows for the integration of theoretical and practical aspects of chemistry, leading to more efficient and sustainable chemical processes. His research has not only contributed to academic knowledge but also holds potential for real-world applications in drug development and industrial chemistry.

Research Skills

Dr. E. Laxminarayana possesses a robust set of research skills that underpin his contributions to Organic Chemistry. His expertise in Organic Synthesis enables him to design and execute complex chemical reactions, leading to the creation of novel compounds with potential therapeutic applications. He is proficient in various spectroscopic and chromatographic techniques, essential for the characterization and analysis of chemical substances. In Computational Chemistry, he utilizes advanced software tools to simulate molecular structures and predict chemical behaviors, aiding in the rational design of experiments. His ability to integrate computational insights with experimental data enhances the efficiency and accuracy of his research. Additionally, his experience in guiding Ph.D. students reflects his mentorship skills and commitment to fostering new talent in the field.

Awards and Honors

Dr. E. Laxminarayana’s dedication to teaching and research has been recognized through several prestigious awards. He has been honored with the Best Teacher Award, acknowledging his exceptional contributions to education and student development. His research excellence has earned him the Best Researcher Award, reflecting the impact and quality of his scholarly work. Furthermore, he has received the Best Citizens of India award from the Indian Institute of Financial Studies (IIFS), New Delhi, highlighting his contributions to the nation through education and research. These accolades underscore his commitment to academic excellence and his influence as a thought leader in the field of Organic Chemistry.

Conclusion

In summary, Dr. E. Laxminarayana stands out as a dedicated educator and a prolific researcher in Organic Chemistry. His extensive teaching experience, coupled with a strong research portfolio, has significantly contributed to the academic community. His work in Organic Synthesis and Computational Studies not only advances scientific understanding but also has practical implications in various industries. The recognition he has received through multiple awards attests to his excellence and influence in the field. As he continues to mentor students and pursue innovative research, Dr. Laxminarayana remains a vital asset to Sreenidhi Institute of Science and Technology and the broader scientific community.

Publications Top Notes

  • Title: Design, synthesis, in silico ADME, toxicity prediction, molecular docking studies of 1,2,4-oxadiazole incorporated indolizine-thiadiazole derivatives and their biological evaluation as anticancer agents
    Authors: Ketha, Swarupa; Chithaluri, Sudhakar; Kethireddy, Shashikala; Eppakayala, Laxminarayana; Asiri, Yahya I.
    Journal: Tetrahedron
    Year: 2025

  • Title: Synthesis and biological evaluation of thiazolo[3,2-b][1,2,4]triazole substituted 1,3,4-oxadiazole and pyridine derivatives as anticancer agents
    Authors: Alkhathami, Ali Gaithan; Tasqeeruddin, Syed; Sultana, Shaheen; Eppakayala, Laxminarayana; Somaiah, Nalla
    Journal: Tetrahedron
    Year: 2025

  • Title: In silico and antibacterial studies of Thiadiazole and Triazole linked 1,8-Napthyridine derivatives
    Authors: Lakshmi, Bhargavi J.; Pittala, Bhaskar; Eppakayala, Laxminarayana; Donta, Paramesh; Reddy, Chittireddy Venkata Ramana
    Journal: Research Journal of Chemistry and Environment
    Year: 2025

  • Title: Synthesis and biological evaluation of aryl derivatives of indole-1,3,4-thiadiazole as anticancer agents
    Authors: Kalagara, Sudhakar; Baddam, Sudhakar Reddy; Ganta, Srinivas; Damarancha, Anil; Eppakayala, Laxminarayana
    Journal: Synthetic Communications
    Year: 2025

  • Title: Synthesis and molecular docking studies of some new 2-N-acylaminobenzothiazole derivatives
    Authors: Pittala, Bhaskar; Bireddy, Srinivasa Reddy; Eppakayala, Laxminarayana; Chittireddy, Venkata Ramana Reddy
    Journal: Indian Journal of Heterocyclic Chemistry
    Year: 2025

  • Title: Highly Efficient Synthesis of 1,3,5-Oxadiazinan-4-one and 5-Methyl-1,3,5-triazinan-2-one Derivatives of Benzimidazolyl Pyrimidine and Their Activity Analysis through Docking Studies
    Authors: Patolla, S.; Kethireddy, Shashikala; Pittala, Bhaskar; Eppakayala, Laxminarayana; Bireddy, Srinivasa Reddy
    Journal: Russian Journal of Organic Chemistry
    Year: 2024

Luciano Benedini | Chemistry | Best Researcher Award

Dr. Luciano Benedini | Chemistry | Best Researcher Award

Researcher/Professor from INQUISUR-CONICET/UNS, Argentina

Luciano Alejandro Benedini is an accomplished Argentine researcher specializing in pharmaceutical nanotechnology, biomaterials, and drug delivery systems. With a Ph.D. in Chemistry from Universidad Nacional del Sur (UNS), his academic journey reflects a strong foundation in pharmaceutical sciences. Benedini has held the position of Adjunct Researcher at INQUISUR-CONICET/UNS since 2015 and has been an Assistant Professor at UNS since 2001. His research portfolio includes over 20 peer-reviewed journal articles and multiple book chapters, focusing on colloidal systems, lipid-based nanocarriers, and bone tissue engineering. Benedini’s work is characterized by interdisciplinary collaboration and a commitment to addressing real-world medical challenges. His contributions have earned him several prestigious awards, including the “INNOVAR 2023” distinction from the Ministry of Science and Innovation. Benedini’s expertise and dedication position him as a leading figure in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Luciano Alejandro Benedini’s educational background is rooted in pharmaceutical sciences and chemistry. He earned his degree in Pharmacy from Universidad Nacional del Sur (UNS) in 2003, providing a solid foundation in pharmaceutical principles. Pursuing further specialization, he completed his Ph.D. in Chemistry at UNS between 2008 and 2012. His doctoral thesis, titled “Interaction between a biocompatible surfactant with pharmacological interest structures,” delved into the interactions of biocompatible surfactants with pharmacologically relevant structures, highlighting his early interest in drug delivery systems and nanotechnology. This academic progression equipped Benedini with the knowledge and skills necessary for his subsequent research endeavors in pharmaceutical nanotechnology and biomaterials.

Professional Experience

Luciano Alejandro Benedini has amassed extensive professional experience in both academic and research settings. Since 2015, he has served as an Adjunct Researcher at INQUISUR-CONICET/UNS, where he has been involved in cutting-edge research on nanomaterials and drug delivery systems. Concurrently, he has held the position of Assistant Professor at the Department of Biology, Biochemistry, and Pharmacy at UNS since 2001, contributing to the education and mentorship of students in pharmaceutical sciences. Benedini’s professional journey also includes postdoctoral fellowships at prestigious institutions such as Universidad de Santiago de Compostela and Bielefeld University, where he collaborated with international experts in the field. His dual roles in academia and research underscore his commitment to advancing pharmaceutical sciences through both education and innovation.

Research Interests

Luciano Alejandro Benedini’s research interests are centered around pharmaceutical nanotechnology, biomaterials, and drug delivery systems. He focuses on the design and characterization of lipid-based nanocarriers, such as liposomes and nanoemulsions, for targeted drug delivery. Benedini is also interested in the development of bioactive scaffolds for bone tissue engineering, utilizing materials like hydroxyapatite and alginate composites. His work often explores the physicochemical properties of colloidal systems and their interactions with biological membranes, aiming to enhance the efficacy and safety of therapeutic agents. Additionally, Benedini investigates stimuli-responsive drug delivery systems that can adapt to physiological conditions, offering controlled release profiles. His interdisciplinary approach combines principles of chemistry, biology, and materials science to address complex challenges in medicine.

Research Skills

Luciano Alejandro Benedini possesses a diverse set of research skills that enable him to conduct comprehensive studies in pharmaceutical sciences. He is proficient in various analytical techniques, including spectroscopy, chromatography, and electron microscopy, which are essential for characterizing nanomaterials and assessing their interactions with biological systems. Benedini has expertise in formulating and evaluating lipid-based drug delivery systems, focusing on parameters like encapsulation efficiency, release kinetics, and stability. His skills extend to the development of biomimetic scaffolds for tissue engineering applications, where he assesses biocompatibility, mechanical properties, and bioactivity. Benedini’s ability to integrate experimental data with theoretical models allows him to optimize formulations and predict their behavior in physiological environments. His methodological rigor and technical proficiency contribute significantly to the advancement of pharmaceutical nanotechnology.

Awards and Honors

Luciano Alejandro Benedini’s contributions to pharmaceutical sciences have been recognized through several awards and honors. Notably, he received the “INNOVAR 2023” distinction from the Ministry of Science and Innovation in the Applied Research category for his project on NanoA, highlighting his impact on translational research. He was also awarded the Aaron and Fanny Fidelef de Nijamkim’s Award for Best Ph.D. in Chemistry in 2012 by Universidad Nacional del Sur, acknowledging his academic excellence. Benedini has secured multiple postdoctoral fellowships, including those granted by Fundación Carolina and CONICET, facilitating international research collaborations. His selection as an Associated Researcher by CONICET in 2018 further underscores his standing in the scientific community. These accolades reflect Benedini’s dedication to research excellence and innovation.

Conclusion

Luciano Alejandro Benedini’s extensive academic background, professional experience, and research achievements position him as a leading figure in pharmaceutical nanotechnology and biomaterials. His interdisciplinary approach, combining chemistry, biology, and materials science, has led to significant advancements in drug delivery systems and tissue engineering. Benedini’s commitment to addressing real-world medical challenges through innovative research is evident in his numerous publications, collaborations, and accolades. His role as an educator further amplifies his impact, as he mentors the next generation of scientists. Considering his substantial contributions to science and his ongoing pursuit of excellence, Benedini is a highly suitable candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity
    Authors: L. Benedini, J. Laiuppa, G. Santillán, M. Baldini, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 115, Article 111101
    Year: 2020
    Citations: 82

  2. Title: Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods
    Authors: L. Benedini, D. Placente, J. Ruso, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 99, pp. 180–190
    Year: 2019
    Citations: 56

  3. Title: The ascorbyl palmitate-water system: Phase diagram and state of water
    Authors: L. Benedini, E.P. Schulz, P.V. Messina, S.D. Palma, D.A. Allemandi, P.C. Schulz
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 375 (1–3)
    Year: 2011
    Citations: 50

  4. Title: Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations
    Authors: D. Placente, L.A. Benedini, M. Baldini, J.A. Laiuppa, G.E. Santillán, …
    Journal: International Journal of Pharmaceutics, Vol. 548 (1), pp. 559–570
    Year: 2018
    Citations: 42

  5. Title: Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities
    Authors: J. Sartuqui, A.N. Gravina, R. Rial, L.A. Benedini, L.H. Yahia, J.M. Ruso, …
    Journal: Colloids and Surfaces B: Biointerfaces, Vol. 145, pp. 382–391
    Year: 2016
    Citations: 39

  6. Title: Self-assembly of 33-mer gliadin peptide oligomers
    Authors: M.G. Herrera, L.A. Benedini, C. Lonez, P.L. Schilardi, T. Hellweg, …
    Journal: Soft Matter, Vol. 11 (44), pp. 8648–8660
    Year: 2015
    Citations: 36

  7. Title: Colloidal properties of amiodarone in water at low concentration
    Authors: L. Benedini, P.V. Messina, R.H. Manzo, D.A. Allemandi, S.D. Palma, E.P. Schulz, …
    Journal: Journal of Colloid and Interface Science, Vol. 342 (2), pp. 407–414
    Year: 2010
    Citations: 35

  8. Title: Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy
    Authors: M. Mottola, N. Wilke, L. Benedini, R.G. Oliveira, M.L. Fanani
    Journal: Biochimica et Biophysica Acta (BBA) – Biomembranes, Vol. 1828 (11), pp. 2496–2505
    Year: 2013
    Citations: 33

  9. Title: Biopolymers for medical applications
    Authors: J.M. Ruso, P.V. Messina
    Publisher: CRC Press
    Year: 2017
    Citations: 31

Zhong-Hong Zhu | Chemistry | Excellence in Research Award

Dr. Zhong-Hong Zhu | Chemistry | Excellence in Research Award

Guangxi University, China

Dr. Zhong-Hong Zhu is a rising scholar in the fields of materials science, nanotechnology, and applied chemistry. Currently serving as an Assistant Professor at Guangxi University, China, Dr. Zhu’s academic path reflects a consistent commitment to excellence and innovation. With a Ph.D. in Materials Science and Engineering from South China University of Technology, he has conducted extensive research in luminescent materials, nanoclusters, and their applications in biomedicine. His publication record is exemplary, with more than 50 peer-reviewed articles in top international journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials. His research has gained significant academic recognition, having been cited over 1,600 times, earning him an H-index of 26 and two highly cited papers. Dr. Zhu’s contributions extend to multidisciplinary applications, including antibacterial technologies, cell imaging, and dynamic luminescent complexes. His deep understanding of chemistry, materials design, and functional nanomaterials places him at the forefront of next-generation research. As he embarks on his independent academic journey, Dr. Zhu is well-positioned to make transformative contributions to science and technology, especially in the areas of smart materials and biomedical engineering. His profile reflects a blend of academic rigor, innovation, and potential for leadership in the scientific community.

Professional Profile

Education

Dr. Zhong-Hong Zhu has a robust academic foundation that has shaped his multidisciplinary research expertise. He began his higher education journey in 2012, enrolling at Anyang Normal University, where he pursued a Bachelor’s degree in Applied Chemistry, which he completed in 2016. During this time, he gained a solid grounding in chemical principles, materials analysis, and laboratory research techniques. Motivated by a deepening interest in chemical science, he proceeded to Guangxi Normal University for his Master’s degree in Chemistry, graduating in 2019. His Master’s training allowed him to engage more deeply with research methodologies and experimental designs in advanced materials. Following his master’s degree, he worked as a Research Assistant at Guangxi Normal University, which further enriched his hands-on research capabilities and introduced him to collaborative academic projects. Dr. Zhu then pursued his Ph.D. at South China University of Technology in the field of Materials Science and Engineering, a highly interdisciplinary area combining chemistry, nanotechnology, and applied physics. Completing his doctorate in 2024, he was equipped with the advanced knowledge and experimental skills required for high-level research in luminescent nanomaterials and bio-functional systems. His educational path has provided a comprehensive and progressive framework for his innovative contributions to science.

Professional Experience

Dr. Zhong-Hong Zhu’s professional experience reflects a progressive journey through academia and research, culminating in his current role as an Assistant Professor at Guangxi University. His initial professional experience began shortly after completing his Master’s degree, when he took on the role of Research Assistant at Guangxi Normal University from July 2019 to September 2020. This position enabled him to contribute to ongoing research projects, refine his technical skills, and participate in scholarly publications. During this time, he gained exposure to collaborative research environments and developed a strong foundation in experimental design, materials synthesis, and characterization techniques. In September 2020, Dr. Zhu commenced his Ph.D. in Materials Science and Engineering at South China University of Technology. This phase marked a significant advancement in his academic career, where he engaged in independent research, published extensively, and gained expertise in lanthanide-based nanomaterials and their applications. After completing his doctoral studies in June 2024, he joined Guangxi University as an Assistant Professor. In this role, Dr. Zhu is now responsible for leading research initiatives, supervising students, and contributing to the academic development of his department. His professional experience illustrates a consistent and strategic commitment to scientific excellence and academic growth.

Research Interests

Dr. Zhong-Hong Zhu’s research interests are rooted in materials science, chemistry, and biomedical applications, with a particular focus on luminescent nanomaterials and their multifunctional uses. One of his primary areas of interest is the self-assembly mechanism and luminescence properties of lanthanide nanoclusters, which are pivotal in developing smart optical materials. His work investigates how these nanoclusters can be manipulated at the molecular level to achieve precise emission behaviors and structural properties. In addition, Dr. Zhu explores the use of lanthanide nanoclusters in cell imaging and antibacterial applications, leveraging their unique luminescent features to enable bioimaging and therapeutic effects in medical diagnostics. Another core area of interest includes the luminescence mechanisms of intelligent dynamic luminescent complexes, which hold promise for responsive sensors and display technologies. Furthermore, his research extends to nanoporous photosensitizers for use in bio-diagnosis and treatment, especially in the context of cancer therapy and photodynamic applications. His interdisciplinary approach combines chemistry, materials engineering, and nanobiotechnology, placing him at the forefront of innovation in smart materials and bio-functional systems. These interests not only reflect high-impact scientific inquiry but also aim to address global challenges in health care and environmental monitoring through cutting-edge material design.

Research Skills

Dr. Zhong-Hong Zhu possesses a comprehensive set of research skills that enable him to conduct high-level investigations in materials science and nanotechnology. His technical expertise includes the synthesis and structural analysis of lanthanide-based nanoclusters, where he applies both traditional wet-chemical methods and advanced self-assembly techniques to design luminescent materials. He is highly skilled in using a range of spectroscopic and imaging tools, including photoluminescence spectroscopy, UV-Vis, FTIR, NMR, and advanced microscopy, such as TEM and SEM, for the characterization of nanostructures. His work also involves quantitative and qualitative analysis of luminescent properties, enabling accurate determination of emission mechanisms and energy transfer processes. Additionally, Dr. Zhu is proficient in cell culture techniques, biocompatibility testing, and antibacterial assays, allowing him to bridge material science with biomedical applications. He is experienced in preparing publications for high-impact journals, managing collaborative research, and mentoring junior researchers. His computational skills support data interpretation and modeling, which are essential for understanding structure–property relationships in complex systems. These capabilities make him a well-rounded scientist capable of addressing interdisciplinary challenges through both experimental and theoretical approaches. His combination of laboratory proficiency and scientific reasoning ensures impactful and reproducible research outcomes.

Awards and Honors

Although specific awards and honors are not detailed in the provided resume, Dr. Zhong-Hong Zhu’s academic and research accomplishments strongly suggest that his work has been recognized and valued within the scientific community. His publication record, which includes over 50 high-level papers as the first or corresponding author in top-tier journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials, reflects peer recognition and academic excellence. Furthermore, his research has been cited more than 1,600 times, and he holds an H-index of 26—indicators of the quality, relevance, and influence of his scholarly work. Two of his papers have been categorized as “highly cited,” further demonstrating that his contributions are shaping the direction of current research in luminescent nanomaterials and bio-functional systems. His rapid academic progression—from research assistant to assistant professor within a short timeframe—also suggests strong institutional endorsement and recognition of his research potential. It is likely that, with the continuation of his independent research and academic leadership, formal honors, fellowships, and national or international research awards will follow. Dr. Zhu is on a clear path to establishing himself as a leading voice in his domain.

Conclusion

Dr. Zhong-Hong Zhu emerges as a promising young academic with a strong foundation in materials science, applied chemistry, and nanotechnology. His rapid career progression, prolific publication record, and interdisciplinary research interests position him as a notable early-career researcher. The breadth and depth of his work—ranging from the synthesis of luminescent nanoclusters to their application in cell imaging, antibacterial systems, and smart diagnostic tools—highlight his scientific vision and methodological rigor. While he is still in the early stages of his independent academic career, his current accomplishments far exceed typical benchmarks for his career stage. The absence of detailed information on awards or project leadership does not overshadow the significance of his contributions, which have already made a measurable impact on the field. Going forward, building on his leadership in research funding, collaboration, and mentorship will further strengthen his academic profile. Overall, Dr. Zhu is an ideal candidate for early-career research excellence awards. His record demonstrates innovation, productivity, and a commitment to impactful, high-quality research that addresses important scientific and societal challenges. With continued support and opportunities, he is poised to make substantial contributions to science and technology on a global scale.

Publications Top Notes

  1. Title: Designing pillar–layered metal–organic frameworks with photo-induced electron transfer interactions between ligands for enhanced photodynamic sterilization and photocatalytic degradation of dyes and antibiotics
    Authors: Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Liang, Fupei; Zhou, Liya
    Journal: Journal of Colloid and Interface Science
    Year: 2025

  2. Title: Lanthanide Molecular Clusters and Metal-Organic Layers Constructed by Manipulation of Substituents
    Authors: Li, Yunlan; Lan, Hai Fang; Wang, Hailing; Cheng, Lei; Zou, Huahong
    Journal: Inorganic Chemistry
    Year: 2025

  3. Title: Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates
    Authors: Tang, Mengjuan; Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Zou, Huahong
    Journal: Journal of Colloid and Interface Science
    Year: 2025
    Citations: 5

  4. Title: Twisted-Planar Molecular Engineering with Sonication-Induced J-Aggregation To Design Near-Infrared J-Aggregates for Enhanced Phototherapy
    Authors: Liu, Yubo; Song, Yuchen; Zhu, Zhonghong; Tang, Ben Zhong; Feng, Guangxue
    Journal: Angewandte Chemie International Edition
    Year: 2025
    Citations: 3

  5. Title: Hourglass-shaped europium cluster-based secondary building unit in metal–organic framework for photocatalytic wastewater purification and sterilization via enhanced reactive oxygen species production
    Authors: Zhang, Guanhuang; Wang, Hailing; Cheng, Lei; Zhu, Zhonghong; Zou, Huahong
    Journal: Journal of Colloid and Interface Science
    Year: 2025
    Citations: 1

  6. Title: Nanoscale Metal-Organic Framework Leveraging Water, Oxygen, and Hydron Peroxide to Generate Reactive Oxygen Species for Cancer Therapy
    Authors: Zhu, Zhonghong; Zhang, Le; Jia, Shaorui; Tang, Ben Zhong; Feng, Guangxue
    Journal: Advanced Functional Materials
    Year: 2025
    Citations: 2

  7. Title: In Situ Coordination-Catalyzed o-Vanillin Underwent a One-Pot Tandem Reaction to Construct Complex Chiral Tetrameric Isomer-Based Hexanuclear Clusters
    Authors: Li, Ruyan; Ai, Jufen; Tao, Jia Yi; Zou, Huahong; Wang, Hailing
    Journal: Inorganic Chemistry
    Year: 2025

Hiroshi Nishihara | Chemistry | Best Researcher Award

Prof. Dr. Hiroshi Nishihara | Chemistry | Best Researcher Award

Vice President from Tokyo, Japan

Professor Hiroshi Nishihara is a distinguished Japanese chemist renowned for his pioneering work in electrochemistry, coordination chemistry, and materials science. Over a career spanning more than four decades, he has made substantial contributions to fundamental and applied research in organometallic and supramolecular chemistry. Beginning his academic journey at the University of Tokyo, he has held prominent academic and leadership roles in Japan and internationally. As a prolific scholar, he has authored 490 original research papers and led several high-impact national projects. His research has helped develop innovative materials such as coordination nanosheets and hybrid 2D materials with advanced electronic, photonic, and chemical functionalities. Prof. Nishihara has been recognized globally for his academic excellence, holding honorary and visiting professorships in Europe and Asia, and receiving multiple prestigious awards. He is currently Professor and Director at the Research Institute for Science and Technology (RIST), Tokyo University of Science, and also serves as the Vice President of the institution. Beyond research, he has demonstrated a strong commitment to science education and academic leadership, serving in top roles within key scientific societies. His interdisciplinary expertise and visionary leadership have positioned him as one of the leading figures in modern chemical science.

Professional Profile

Education

Professor Hiroshi Nishihara completed his Doctor of Science (D.Sc.) degree in 1982 from the prestigious University of Tokyo, Japan. This strong academic foundation in chemistry laid the groundwork for his extensive research and teaching career. The University of Tokyo, known for its rigorous academic training and excellence in scientific research, played a vital role in shaping Prof. Nishihara’s scientific perspective, particularly in the fields of coordination chemistry and electrochemistry. His early academic training focused on understanding the intricate behaviors of molecular and supramolecular systems, which later became central themes in his professional research endeavors. His doctoral work equipped him with both theoretical and practical skills necessary for advanced chemical synthesis and analysis. The influence of this rigorous doctoral education is evident in the methodological precision and innovation found throughout his academic contributions. His advanced education also enabled him to engage with global scholars and institutions at an early stage in his career, supporting his later appointments and recognitions abroad. The University of Tokyo remains a critical pillar in his academic trajectory, not only as the alma mater where he began his journey but also as the institution where he returned as a full professor and served until his retirement in 2020.

Professional Experience

Professor Hiroshi Nishihara’s professional journey reflects a distinguished and progressive academic career. He began as a Research Associate at Keio University in 1982, shortly after receiving his doctoral degree. He was later promoted to Lecturer in 1990 and Associate Professor in 1992 at the same institution. In 1996, he was appointed as a Professor at the School of Science, University of Tokyo, where he served until his retirement in 2020. Since then, he has continued to be active in academia as an Emeritus Professor at the University of Tokyo and as a Professor and Director of the Research Institute for Science and Technology (RIST) at Tokyo University of Science. He is also the current Vice President of Tokyo University of Science. His international experience includes serving as a Visiting Research Associate at the University of North Carolina at Chapel Hill (1987–1989). He has held professorships at the University of Bordeaux and University of Strasbourg in France, and a distinguished lectureship at Hong Kong Baptist University. His appointment as Honorary Chair Professor at National Sun-Yat-sen University (2024–2027) further attests to his global academic influence. Throughout his career, he has held numerous leadership roles in professional societies and research projects.

Research Interests

Professor Hiroshi Nishihara’s research interests span several interdisciplinary areas of modern chemistry, with a particular focus on electrochemistry, coordination chemistry, organometallic chemistry, photochemistry, and materials science. A central theme in his research is the design and synthesis of novel molecular and supramolecular systems with advanced functionalities. He has made pioneering contributions to the development of coordination nanosheets and hybrid organic-inorganic 2D materials, which exhibit unique electronic and optical properties. His work aims to understand and manipulate electron transfer processes at the molecular level, leading to innovations in electronic devices, energy storage, and sensing technologies. The intersection of coordination chemistry with nanotechnology is a hallmark of his research approach, as he continuously explores how molecular structure can be harnessed to control physical behavior. He has also contributed significantly to the field of photofunctional materials and molecular electronics. In recent years, his research has emphasized the creation of hetero-structured nanosheets and conjugated polymers with potential applications in energy storage and catalysis. These interests not only reflect his deep theoretical understanding but also his drive toward real-world applications. His work is at the forefront of molecular materials chemistry, bridging traditional chemical disciplines with advanced materials science.

Research Skills

Professor Hiroshi Nishihara possesses an exceptional range of research skills that have positioned him at the forefront of chemical science and materials research. His expertise in the synthesis of coordination compounds, organometallic complexes, and supramolecular assemblies forms the foundation of his experimental approach. He is highly skilled in applying electrochemical techniques to study redox-active materials and electron transfer processes. His ability to design and fabricate novel 2D materials, such as coordination nanosheets and hybrid organic-inorganic systems, highlights his proficiency in nanomaterial synthesis and structural control. He also demonstrates strong analytical capabilities in characterizing complex systems using spectroscopy, electrochemical analysis, and crystallography. Moreover, Prof. Nishihara has led large-scale, interdisciplinary research projects that require advanced project management, innovation planning, and cross-functional collaboration. He is adept at translating fundamental chemical insights into technologically relevant applications, including electronic devices and high-energy-density batteries. His experience in leading government-funded projects reflects his strategic thinking and ability to identify emerging research opportunities. Additionally, his mentoring of young researchers and involvement in chemical education showcases his skills in scientific communication and pedagogy. Overall, his research toolkit integrates deep chemical knowledge with innovative problem-solving and leadership in collaborative environments.

Awards and Honors

Professor Hiroshi Nishihara has received numerous prestigious awards and honors in recognition of his exceptional contributions to chemical science. He was awarded the Docteur Honoris Causa by the University of Bordeaux in 2011, reflecting his international influence and collaborative scientific achievements. In 2014, he received the Commendation for Science and Technology by Japan’s Minister of Education, Culture, Sports, Science and Technology. This was followed by the Japan Society of Coordination Chemistry Award in 2015 and The Chemical Society of Japan Award in 2016, both of which honor his innovative contributions to coordination chemistry. In 2020, he received The Chemical Society of Japan Award for Chemical Education, acknowledging his efforts in mentoring and educational leadership. He also received the Kato Memorial Award in 2022. Prof. Nishihara is a Fellow of the Royal Society of Chemistry (2014) and the Electrochemical Society of Japan (2020). His academic service includes serving as Vice President of the International Society of Electrochemistry and The Chemical Society of Japan, and President of the Electrochemical Society of Japan and the Japan Society of Coordination Chemistry. These recognitions collectively highlight his wide-ranging impact on both scientific research and the chemical community.

Conclusion

Professor Hiroshi Nishihara exemplifies excellence in scientific research, education, and academic leadership. With a prolific output of 490 original research papers and a distinguished track record of leading major research initiatives, he has significantly advanced the fields of electrochemistry, coordination chemistry, and materials science. His work has not only contributed to foundational scientific understanding but also to the development of functional materials with practical applications. Through his international collaborations, he has fostered global academic exchange, further enhancing the visibility and impact of his research. His service to academic societies and commitment to educating the next generation of chemists are additional testaments to his comprehensive contributions to science. Despite his retirement from the University of Tokyo, his ongoing roles as Professor, Vice President, and Director at Tokyo University of Science reflect his continued leadership in academia. While more public visibility of recent high-impact publications or patent activity could add further depth to his profile, his overall accomplishments make him a strong and deserving candidate for the Best Researcher Award. His career serves as a model of sustained excellence, interdisciplinary innovation, and dedicated service to the advancement of chemistry.

Publications Top Notes

  • Synthesis of Bis(diimino)palladium Nanosheets as Highly Active Electrocatalysts for Hydrogen Evolution
    Chemistry – A European Journal, 2025.
    DOI: 10.1002/CHEM.202403082
    Contributors: Maeda, Hiroaki; Phua, Eunice Jia Han; Sudo, Yuta; Nagashima, Sayoko; Chen, Wentai; Fujino, Mayumi; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; et al.

  • Coordination Nanosheets Stabilizing Efficient Tin-Based Perovskite Solar Cells
    ACS Applied Materials & Interfaces, 2025-05-07.
    DOI: 10.1021/acsami.5c05011
    Contributors: Khadka, Dhruba B.; Kuo, Yan-Chen; Li, Yi Zhen; Waqas, Muhammad; Xu, You-Jia; Yanagida, Masatoshi; Nishihara, Hiroshi; Tsukagoshi, Kazuhito; Chou, Mitch M. C.; Shirai, Yasuhiro; et al.

  • Rationally Engineered Heterometallic Metalladithiolene Coordination Nanosheets with Defined Atomic Arrangements
    Small, 2025-05-05.
    DOI: 10.1002/smll.202503227
    Contributors: Ito, Miyu; Fukui, Naoya; Takada, Kenji; Yu, Ziheng; Maeda, Hiroaki; Mizuno, Katsuya; Nishihara, Hiroshi.

  • Interfacial Synthesis of an Electro-Functional 2D Bis(terpyridine)copper(II) Polymer Nanosheet
    Molecules, 2025-05-04.
    DOI: 10.3390/molecules30092044
    Contributors: Takada, Kenji; Komeda, Joe; Maeda, Hiroaki; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Nishihara, Hiroshi.

  • Revealing the Charge Transport Physics in Metallic Coordination Nanosheets by Thermoelectric and Magnetotransport Measurements
    Science Advances, 2025-04-09.
    DOI: 10.1126/sciadv.adt9196
    Contributors: Fukui, Naoya; Nishihara, Hiroshi; Quarti, Claudio; Zhang, Lu; Ren, Xinglong; Beljonne, David; Jacobs, Ian; Sirringhaus, Henning; Wu, Tian; Cornil, David.

  • Discrete Coordination Nanochains Based on Photoluminescent Dyes Reveal Intrachain Exciton Migration Dynamics
    Nature Communications, 2025-02-04.
    DOI: 10.1038/s41467-025-56381-0
    Contributors: Toyoda, Ryojun; Fukui, Naoya; Taniguchi, Haru; Uratani, Hiroki; Komeda, Joe; Chiba, Yuta; Takaya, Hikaru; Nishihara, Hiroshi; Sakamoto, Ryota.

  • Bis(diimino)nickel Coordination Nanosheets Modified with Triptycene Moieties for Facile Exfoliation and Enhanced Hydrogen Evolution Catalytic Activity
    ACS Applied Nano Materials, 2024.
    DOI: 10.1021/acsanm.4c02625
    Contributors: Maeda, Hiroaki; Sudo, Yuta; Nagashima, Sayoko; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Nishihara, Hiroshi.

  • Face-on-Oriented Formation of Bis(diimino)metal Coordination Nanosheets on Gold Electrodes by Electrochemical Oxidation
    New Journal of Chemistry, 2024.
    DOI: 10.1039/d3nj05650c
    Contributors: Maeda, Hiroaki; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Tsukagoshi, Kazuhito; Nishihara, Hiroshi.

  • Lateral Heterometal Junction Rectifier Fabricated by Sequential Transmetallation of Coordination Nanosheet
    Angewandte Chemie International Edition, 2024.
    DOI: 10.1002/anie.202318181
    Contributors: Tan, C.M.; Fukui, Naoya; Takada, Kenji; Maeda, Hiroaki; Selezneva, Ekaterina; Bourgès, Camille; Masunaga, Hiroyasu; Sasaki, Sono; Tsukagoshi, Kazuhito; Mori, Takehiko; et al.

  • Manipulating the Morphology and Electronic State of a Two-Dimensional Coordination Polymer as a Hydrogen Evolution Cocatalyst Enhances Photocatalytic Overall Water Splitting
    ACS Catalysis, 2024.
    DOI: 10.1021/acscatal.3c04389
    Contributors: Guan, Jiahao; Koizumi, Keisuke; Fukui, Naoya; Suzuki, Hiroyuki; Murayama, Koji; Toyoda, Ryojun; Maeda, Hiroaki; Kamiya, Kenji; Ohashi, Koichi; Takaishi, Shigeru; et al.

Yang Na | Chemistry | Best Researcher Award

Dr. Yang Na | Chemistry | Best Researcher Award

Associate professor at University of Electronic Science and Technology of China, China

Dr. Na Yang (b. Jan 1992) is an Associate Professor at the School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 🇨🇳. She earned her Ph.D. in Chemical Engineering and Technology from Chongqing University and completed postdoctoral research under Prof. Zhongwei Chen at South China Normal University and the University of Waterloo 🇨🇦. Her research focuses on density functional theory (DFT)🧠, ab initio molecular dynamics (AIMD)🧪, catalyst design🧲, and electrochemical mechanisms⚡. With an H-index of 15, Dr. Yang has published in high-impact journals like Angewandte Chemie, Advanced Materials, and ACS Energy Letters 📚. She has contributed significantly to the fields of CO₂ reduction, oxygen reduction reactions, and nitrogen fixation catalysis 🌱.

Publication Profile

Scopus Profile

Research Fields

Dr. Yang Na’s research spans several cutting-edge areas in materials science and energy technology ⚙️⚡. Her primary expertise lies in density functional theory (DFT) and ab initio molecular dynamics (AIMD), which she uses to model and simulate material behavior at the atomic level 🧬💻. She is deeply involved in the design and screening of catalysts for various energy applications, focusing on improving efficiency and stability 🔍🔋. Dr. Yang also works on the preparation of new highly active catalysts, utilizing advanced synthesis techniques to enhance catalytic performance 🧪⚗️. Another key area of her research is the exploration of electrochemical catalytic mechanisms, where she investigates fundamental reaction pathways to optimize energy conversion processes such as hydrogen evolution and oxygen reduction 🌱⚡. Through these interdisciplinary approaches, Dr. Yang contributes significantly to the development of sustainable and high-performance energy materials for a greener future 🌍🔧

🎓 Educational Background

Dr. Yang Na earned her Ph.D. in Chemical Engineering and Technology from Chongqing University, Chongqing, China, where she studied from September 2014 to June 2020 🧪🎓. Under the expert mentorship of Professor Li Li, she developed a strong foundation in advanced chemical engineering principles and materials research 🔬📘. Her doctoral studies involved in-depth exploration of catalyst design, electrochemical energy conversion, and computational modeling, laying the groundwork for her current contributions to energy materials and catalysis research 💡⚙️. The rigorous academic environment at Chongqing University provided her with both theoretical knowledge and hands-on research experience, enabling her to tackle real-world energy challenges with innovative scientific approaches 🌍💻. Dr. Yang’s time at Chongqing University was instrumental in shaping her expertise in computational chemistry, materials synthesis, and electrochemical systems, which continue to define her career as a forward-thinking and impactful researcher in the field of materials science and energy technology ⚛️🔋.

💼 Professional Experience

From September 2020 to September 2022, Dr. Yang Na undertook postdoctoral research that significantly advanced her expertise in materials and energy science 🌱🔬. She began her postdoctoral journey at the School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong, China, where she worked under the mentorship of Prof. Zhongwei Chen 📡🧠. During this period, she focused on optoelectronic materials and their applications in energy systems.

Simultaneously, Dr. Yang continued her postdoctoral research at the School of Chemistry and Chemical Engineering, University of Waterloo, Ontario, Canada 🍁⚗️. Under the same mentorship of Prof. Chen, she deepened her research into electrocatalysis and advanced energy storage materials, contributing to cutting-edge developments in sustainable energy technologies 🔋🌍. These international and interdisciplinary experiences enriched her research perspective and equipped her with global insights into innovation and collaboration in the materials science domain 🌐🧪.

Research Focus

Dr. Yang Na specializes in cutting-edge research within the fields of catalysis, energy materials, and sustainable chemistry ⚗️🔋. Her work spans a diverse range of topics including electrocatalysis, chemical looping reforming, CO₂ photoreduction, and ammonia synthesis. Using advanced techniques like density functional theory (DFT) and ab initio molecular dynamics (AIMD), she designs and screens highly active catalysts for clean energy conversion 🌱🌍. Her contributions to perovskite-based and polymer dielectric materials show a strong interdisciplinary approach, connecting materials science, environmental engineering, and green chemistry ♻️🧪. Dr. Yang’s research plays a vital role in promoting efficient energy solutions.

Conclusion

Dr. Yang Na’s exceptional research in renewable energy, particularly her work on catalytic mechanisms and material design for electrochemical reactions, positions her as an outstanding candidate for the “Best Researcher Award.” Her contributions to both theoretical and practical aspects of energy research make her a leader in the field, and her continued work promises to bring lasting impacts to sustainable energy solutions.

Publication Top Notes
  • 🔬 Tailoring active lattice oxygen in CeO₂-Based oxygen carriers for enhanced chemical looping dry reforming of methaneJournal of the Energy Institute, 2025  📄

  • ⚡ NiFe-based arrays with MnO₂ enhance chloride blocking for durable alkaline seawater oxidationJournal of Colloid and Interface Science, 2025 | 1 citation 💧

  • 🌞 Rational Design of Methylated Triazine-Based Polymers for CO₂ Photoreduction with WaterAdvanced Materials, 2025  📘

  • 🧪 Durable, Super-Resilient Polyurethane Elastomers via Hydrogen Bond Cross-LinkingMacromolecules, 2025 🧵

  • 🧫 Axial Cl-Induced Symmetry-Breaking Iron SAC for Electrochemical Ammonia SynthesisACS Catalysis, 2025 ⚗️

  • 🔌 All-organic dielectric PP-based polymer with high breakdown strengthPolymer, 2025  ⚡

  • 🧴 Mini-review: Indium-oxide based catalysts for CO₂ to methanol2025  📚

  • 💡 Lattice Oxygen Redox in Zeolite-Encapsulated CsPbBr₃ Perovskites for OERAdvanced Science, 2025 🌐

  • 🔄 Real-Time Detection in KNixFe₁₋ₓF₃ Perovskites for Water OxidationSmall, 2025 | 1 citation 🔍

  • 💧 Water dissociation via bimetallic phosphide & Mn oxide for alkaline HERNano Research, 2025  🌊

Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Associate Professor from Southern University of Science and Technology, China

Gen-Qiang Chen is a distinguished researcher and Professor at the Shenzhen Grubbs Institute, Southern University of Science and Technology. Renowned for his expertise in asymmetric catalysis, ligand design, and total synthesis of complex molecules, he has made substantial contributions to both fundamental research and industrial applications. His work has been published extensively in prestigious journals, including Nature Chemistry, Nature Communications, Journal of the American Chemical Society, Angewandte Chemie, and Science Advances. Chen’s research achievements have directly contributed to significant industrial advancements, such as the asymmetric synthesis of Sacubitril, a drug for heart failure treatment, which has led to the production of over 20 tons of intermediates and generated approximately 40 million yuan in industrial output. Recognized nationally, he has received competitive grants, awards, and honors, including the Guangdong Outstanding Youth Fund and the Shenzhen Natural Science First Prize. His work has been highlighted by the National Natural Science Foundation of China and featured by international research platforms like Synfacts. Chen’s balanced approach, integrating rigorous academic inquiry with practical, scalable applications, positions him as a leader in modern organic chemistry. He is actively engaged in reviewing for top journals, contributing to the scientific community’s advancement and maintaining high research standards.

Professional Profile

Education

Gen-Qiang Chen’s academic journey reflects a continuous pursuit of excellence in organic chemistry. He earned his Bachelor’s degree from Lanzhou University, one of China’s most respected institutions, where he developed a strong foundation in chemical sciences. Driven by a passion for advanced research, he pursued a PhD at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, completing his doctorate in 2012. His doctoral work focused on the development of new catalytic systems and the synthesis of bioactive molecules, setting the stage for his future research trajectory. Following his PhD, Chen undertook postdoctoral research at the prestigious California Institute of Technology (Caltech) in the United States. There, he worked under the mentorship of renowned chemists, expanding his expertise in asymmetric catalysis and gaining exposure to cutting-edge research methodologies and international collaboration. This blend of top-tier Chinese and international education provided Chen with a robust theoretical and experimental foundation, allowing him to bridge Eastern and Western research traditions. His educational path has not only equipped him with deep technical knowledge but also shaped his scientific perspective, enabling him to tackle complex research problems with innovative solutions and to mentor the next generation of scientists.

Professional Experience

Gen-Qiang Chen currently holds a professorship at the Shenzhen Grubbs Institute, Southern University of Science and Technology, where he leads a dynamic research group focused on asymmetric catalysis, ligand design, and total synthesis. Prior to this role, Chen gained valuable international experience during his postdoctoral work at Caltech, where he honed his skills in advanced catalytic methodologies and expanded his professional network. Upon returning to China, Chen took on faculty positions that allowed him to establish his independent research program, attracting competitive funding and assembling a talented team of researchers and students. Over the years, Chen has built strong collaborations with both academic and industrial partners, integrating fundamental research with real-world applications. His group has successfully designed novel chiral ligands, such as O-SDP, which have been adopted in industrial settings for the synthesis of important pharmaceuticals. Chen is also deeply involved in academic service, acting as a reviewer for leading journals and contributing to the organization of scientific conferences and workshops. His professional experience reflects a well-rounded combination of academic leadership, international collaboration, industrial engagement, and community service, marking him as an influential figure in the field of organic chemistry.

Research Interests

Gen-Qiang Chen’s research interests center on the design and development of new catalytic systems, particularly in asymmetric catalysis, which enables the selective production of chiral molecules. His work focuses on creating novel chiral ligands and catalysts that can surpass existing commercial systems in terms of efficiency, selectivity, and scalability. A major area of interest is the application of these catalysts in complex molecule synthesis, including the total synthesis of natural products and pharmaceuticals such as prostaglandins and Sacubitril. Chen is also keenly interested in understanding catalytic mechanisms at a fundamental level, using both experimental and computational tools to uncover the principles driving selectivity and reactivity. His research bridges the gap between fundamental chemistry and industrial application, ensuring that discoveries in the lab can be translated into real-world solutions. Additionally, Chen explores the development of highly selective catalysts for challenging transformations, such as asymmetric hydroformylation, which has broad implications for fine chemical production and material science. His work contributes to the advancement of green chemistry by aiming for more sustainable, efficient, and cost-effective processes, aligning with global efforts to reduce waste and improve chemical manufacturing practices.

Research Skills

Gen-Qiang Chen possesses a comprehensive set of research skills that span synthetic organic chemistry, asymmetric catalysis, ligand design, and mechanistic studies. He is highly skilled in designing and synthesizing chiral ligands and catalysts, demonstrating expertise in optimizing reaction conditions to achieve high selectivity and efficiency. Chen is adept at conducting total synthesis projects, including multi-step syntheses of complex natural products and pharmaceuticals, requiring advanced planning, problem-solving, and analytical techniques. He is proficient in using modern spectroscopic and chromatographic methods, such as NMR, HPLC, and mass spectrometry, to characterize reaction intermediates and products with precision. Additionally, Chen integrates computational chemistry approaches to investigate catalytic mechanisms, allowing his team to understand the molecular-level details that drive reactivity and selectivity. He has strong project management skills, overseeing multiple research projects simultaneously and guiding a team of graduate students and postdoctoral researchers. Chen’s ability to translate laboratory discoveries into industrial applications demonstrates his practical know-how and innovation. His experience in drafting patents and publishing high-impact research further reflects his skill in communicating scientific advances to both academic and industrial audiences, making him a versatile and impactful researcher.

Awards and Honors

Gen-Qiang Chen has received numerous prestigious awards and honors in recognition of his outstanding contributions to organic chemistry and catalysis research. Notably, he has been awarded the Guangdong Outstanding Youth Fund, a highly competitive grant that supports exceptional young scientists in advancing innovative research projects. He has also received the Shenzhen Natural Science First Prize, which acknowledges his groundbreaking work in developing chiral ligands and asymmetric catalytic methods with significant industrial applications. Chen’s research achievements have been repeatedly highlighted by the National Natural Science Foundation of China, underscoring his national prominence. Internationally, his work has been featured multiple times by Synfacts and Organic Chemistry Highlights, reflecting the global relevance and impact of his research. Additionally, Chen holds several patents for novel catalytic systems, further demonstrating the practical significance of his innovations. His role as a frequent reviewer for leading international journals and his participation in high-profile conferences and workshops attest to his strong standing in the scientific community. These recognitions not only celebrate his past achievements but also signal his potential to continue driving innovation and excellence in the field of asymmetric catalysis.

Conclusion

In conclusion, Gen-Qiang Chen exemplifies the qualities of a leading researcher in modern organic chemistry, combining deep scientific insight with practical innovation. His prolific publication record, cutting-edge catalytic systems, and impactful industrial collaborations highlight his ability to translate fundamental discoveries into real-world applications. Chen’s commitment to excellence is evident not only in his research output but also in his mentorship of young scientists, his service to the academic community, and his contribution to advancing chemical manufacturing processes. Recognized nationally and internationally, his achievements have positioned him as a rising star in the field, with the potential to influence the direction of asymmetric catalysis and ligand design for years to come. Chen’s balanced focus on both fundamental science and industrial relevance aligns with global priorities for sustainable and efficient chemical production. As he continues to expand his research portfolio and build international collaborations, his work will undoubtedly play a central role in shaping the future of organic synthesis. Gen-Qiang Chen’s exceptional track record and ongoing innovation make him a highly deserving candidate for the Best Researcher Award, reflecting his significant contributions to science and society.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

 

 

Seyed Iman Alavioon | Chemistry | Best Researcher Award

Dr. Seyed Iman Alavioon | Chemistry | Best Researcher Award

University of Tehran and Shahid Beheshti University, Iran

Dr. Seyed Iman Alavioon is a distinguished Iranian researcher specializing in organic and medicinal chemistry. With a robust academic foundation and extensive professional experience, he has made significant contributions to the fields of catalysis, drug delivery systems, and nanomedicine. His work encompasses both theoretical and applied aspects of chemistry, reflecting a deep commitment to advancing scientific knowledge and practical applications. Dr. Alavioon’s interdisciplinary approach bridges the gap between fundamental research and industrial innovation, positioning him as a valuable asset in both academic and commercial settings. His dedication to research excellence and education underscores his suitability for recognition as a leading researcher in his field.

Professional Profile

Education

Dr. Alavioon’s academic journey began with a Bachelor of Science in Applied Chemistry from Urmia University, where he focused on theoretical studies of natural products. He then pursued a Master of Science in Organic Chemistry at the University of Tehran, researching the catalytic effects of metal-supported SBA-15 on cyclization reactions. His doctoral studies at Shahid Beheshti University centered on C-H bond functionalization and decarboxylation reactions using transition metal catalysts, earning him an “Excellent” grade. Furthering his expertise, Dr. Alavioon completed two postdoctoral fellowships at the National Nutrition and Food Technology Research Institute, exploring coumarin derivatives, antibacterial biofilms, and nano redox-sensitive drug delivery systems.

Professional Experience

Dr. Alavioon’s professional career is marked by a blend of academic and industrial roles. Since 2020, he has served as the R&D Manager at Bayer Aflak Pharmaceutical Company, overseeing drug formulation and regulation for both veterinary and human applications. Concurrently, he held the position of Technical Officer and Cosmetic Formulator at Modiran Sanat Sa’adat, focusing on cosmeceutical products. His tenure as a Research Fellow at the Ministry of Defense from 2015 to 2022 highlights his involvement in high-impact projects, including the development of advanced rocket fuel materials. Dr. Alavioon’s diverse experiences reflect his ability to apply scientific principles to real-world challenges effectively.

Research Interests

Dr. Alavioon’s research interests are broad and interdisciplinary, encompassing C-H activation and functionalization, drug delivery systems, medicinal chemistry, and electrochemical synthesis. He is particularly focused on the synthesis of novel organic and medicinal derivatives, exploring their potential therapeutic properties. His work in encapsulation and pharmaceutics aims to enhance drug efficacy and delivery mechanisms. Additionally, Dr. Alavioon is engaged in computational organic chemistry and living polymerization, contributing to the development of advanced materials and pharmaceuticals. His research endeavors are characterized by a commitment to innovation and practical application.

Research Skills

Dr. Alavioon possesses a comprehensive skill set that spans various aspects of chemistry and related disciplines. He is proficient in molecular docking using AutoDock, and has extensive experience with chemistry software such as Gaussian, HyperChem, Spartan, and MATLAB. His expertise includes instrumental analytical techniques like HPLC, GC, IR, UV, and AAS. Dr. Alavioon has taught a range of subjects, including organic and medicinal chemistry, physical organic chemistry, and analytical chemistry, demonstrating his ability to convey complex concepts effectively. His skills in polymer chemistry and spectrometry further enhance his research capabilities, enabling him to undertake multifaceted projects with precision.

Awards and Honors

Dr. Alavioon’s contributions to science and technology have been recognized through various awards and honors. He is a permanent member of the Iranian Chemistry and Chemical Engineering Association and a member of the National Elite Foundation. His innovative work in developing a high-performance compound for rocket fuel, which surpassed existing high-energy materials in several parameters, was acknowledged by the Ministry of Defense. Additionally, Dr. Alavioon achieved notable rankings in national examinations, securing the 77th position in the master’s national exam and the 6th position in the specialized doctorate exam, reflecting his academic excellence and dedication to his field.

Conclusion

Dr. Seyed Iman Alavioon exemplifies the qualities of a leading researcher through his extensive academic background, diverse professional experiences, and significant contributions to science and industry. His interdisciplinary approach, combining organic chemistry, medicinal research, and practical applications, underscores his ability to address complex challenges effectively. Dr. Alavioon’s commitment to innovation, education, and collaboration positions him as a valuable contributor to the scientific community. His achievements and ongoing endeavors make him a strong candidate for recognition as a top researcher in his field

Publications Top Notes

  1. Title: Decarboxylation and cross-coupling reactions of coumarin-3-carboxylic acid: A comprehensive review
    Authors: Hooshmand, Seyyed Emad; Alavioon, Seyed Iman; Saeb, Mohammad Reza; Brahmachari, Goutam; Shiri, Morteza
    Type: Review
    Year: 2025 (assumed, please confirm if needed)
    Citations: 2

Yaojia Jiang | Organic Chemistry | Best Researcher Award

Mr. Yaojia Jiang | Organic Chemistry | Best Researcher Award

Professor from Guizhou University, China

Yaojia Jiang is an accomplished chemist with a strong academic and research background in radical chemistry, carbene and nitrene chemistry, and biological sciences. His academic journey showcases steady growth under the mentorship of highly respected scholars and at leading institutions. After earning his Master’s degree at Soochow University in 2010, he pursued a Ph.D. at Nanyang Technological University, completing it in 2014. During his doctoral studies, he specialized in carbene and nitrene transformations, a highly significant area of research with broad applications in organic synthesis. Jiang then expanded his expertise through postdoctoral work in biological sciences, which added a multidisciplinary dimension to his research profile. His independent career began in 2015 at Nanjing Tech University, focusing on carbene transformations, and later advanced at Guizhou University, where his work centers on modular single-carbon insertion reactions and sustainable pesticide development. His research combines fundamental chemistry with applications that address real-world problems, particularly in agriculture and green chemistry. Yaojia Jiang’s career path highlights not only technical expertise but also innovation, adaptability, and an ongoing commitment to sustainability and atom-economical processes. His diverse experiences position him as a leading figure in advancing chemical sciences in environmentally conscious ways.

Professional Profile

Education

Yaojia Jiang’s educational journey reflects strong academic foundations and strategic specialization in areas of growing scientific importance. He earned his Master’s degree in 2010 from Soochow University under the supervision of Professor Jian-Ping Zou, specializing in radical chemistry. This early focus provided him with a rigorous understanding of reactive intermediates and set the stage for his future contributions to the field. In 2014, he completed his Ph.D. at Nanyang Technological University (NTU) in Singapore, one of Asia’s leading research institutions. His doctoral research, supervised by Professors Cheol-Min Park and Teck-Peng Loh, delved into the chemistry of carbenes and nitrenes, reactive species crucial in modern organic synthesis. His Ph.D. work significantly enhanced his expertise in reaction mechanisms and synthetic methods, skills essential for high-level chemical innovation. Jiang’s educational experiences at two prominent institutions, combined with mentorship from globally respected scientists, provided him with both theoretical depth and practical skills. His academic background was further diversified through postdoctoral research in biological sciences, broadening his interdisciplinary knowledge and positioning him well for independent research that bridges chemistry and applied life sciences.

Professional Experience

Yaojia Jiang began his independent academic career shortly after completing his postdoctoral studies. In 2015, he joined Nanjing Tech University, where he focused on carbene transformations, contributing important research on highly reactive intermediates and their controlled manipulation for synthetic applications. His early years as an independent researcher showcased a rapid transition from trainee to research leader, reflecting his ability to design, lead, and execute complex chemical research projects. Subsequently, Jiang moved to Guizhou University, a rising hub for scientific research in China. At Guizhou University, he expanded his research portfolio by focusing on modular single-carbon insertion reactions and their applications in pesticide design. His work at Guizhou emphasizes green chemistry principles and atom-economical strategies, aligning his research with global calls for sustainable innovation. Over the course of his professional career, Jiang has demonstrated a unique combination of deep technical expertise and practical application, consistently pushing the boundaries of synthetic chemistry. His progression from graduate student to a respected academic researcher in a relatively short span reflects both his scientific excellence and leadership capabilities.

Research Interest

Yaojia Jiang’s research interests center around reactive intermediates, especially carbenes and nitrenes, and their controlled transformations for synthetic applications. His early work in radical chemistry laid the foundation for a deep understanding of highly reactive species, leading to advanced exploration of carbene and nitrene chemistries during his Ph.D. training. Jiang is particularly fascinated by modular single-carbon insertion reactions, which offer precise control over molecular architecture and have significant implications in developing functional molecules. His current research aims to apply these reactions toward the design of new, environmentally friendly pesticides using green and atom-economical processes. This focus bridges fundamental organic chemistry with real-world applications in agriculture and environmental protection. His interdisciplinary approach, integrating organic synthesis with biological insights from his postdoctoral experience, allows him to pursue research topics that are both intellectually challenging and socially impactful. In an era where sustainable chemical processes are increasingly vital, Jiang’s research direction positions him at the forefront of green innovation in synthetic chemistry. His ongoing projects reflect a balance of fundamental scientific curiosity and a commitment to contributing solutions to pressing global challenges.

Research Skills

Yaojia Jiang possesses an extensive range of research skills that make him highly effective as a synthetic chemist and innovator. His expertise in radical, carbene, and nitrene chemistry provides him with a strong foundation in handling reactive intermediates and understanding complex reaction mechanisms. He is skilled in the design and execution of multi-step organic synthesis, employing both classical methods and cutting-edge techniques. His experience with biological sciences during his postdoctoral training broadened his technical capabilities to include interdisciplinary methods, blending chemistry with biological systems analysis. Jiang’s research emphasizes green chemistry and atom-economical strategies, requiring a keen understanding of reaction efficiency, catalyst design, and sustainable process development. His work also demonstrates strong skills in experimental planning, data analysis, and scientific writing, evidenced by his successful transition into independent research leadership. Jiang has shown proficiency in mentoring younger researchers and managing laboratory activities, essential skills for building and maintaining a productive research team. His methodological rigor, creativity in problem-solving, and adaptability to new research challenges underscore his profile as a highly skilled and versatile researcher ready for larger international scientific collaborations and leadership roles.

Award and Honors

Although specific awards and honors for Yaojia Jiang were not listed in the provided information, his career progression itself is a testament to his excellence. Successfully obtaining a Ph.D. from a prestigious institution such as Nanyang Technological University under the mentorship of world-renowned scientists is a strong indicator of his academic and research capabilities. Securing independent research positions at respected universities like Nanjing Tech University and Guizhou University reflects institutional recognition of his potential and contributions. His rapid transition to an independent career and his ability to sustain and develop research programs in competitive environments suggest that he has earned professional respect in the field of synthetic and green chemistry. In future stages of his career, additional formal recognitions such as international awards, research grants, or leadership appointments in scientific societies could further highlight his achievements. Overall, Yaojia Jiang’s track record positions him well for future honors as he continues to contribute significantly to the advancement of chemical sciences and sustainable technologies.

Conclusion

Yaojia Jiang exemplifies the qualities of a forward-thinking and highly capable researcher in the field of synthetic and green chemistry. His strong academic background, diverse research experiences, and focus on addressing real-world challenges through innovative chemical processes make him a standout figure in modern scientific research. His work on carbene transformations and modular single-carbon insertion reactions, with applications in sustainable pesticide development, reflects a rare combination of deep scientific understanding and social responsibility. While his profile would be further strengthened by greater international recognition and large-scale collaborations, his current achievements already demonstrate significant excellence and impact. Yaojia Jiang is on a clear path toward becoming a global leader in green chemistry and synthetic innovation. His ongoing dedication to sustainable chemical solutions and his ability to adapt and expand his research interests mark him as an ideal candidate for future prestigious awards and broader academic leadership roles.

Publications Top Notes

  1. Title: Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety

    • Authors: Zou Yue, Zhu Mei, Zhu Zongnan, Jiang Yaojia, Chen Jixiang

    • Year: 2025

  2. Title: Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System

    • Authors: Han Jiabin, Fan Yaxin, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

    • Citations: 1

  3. Title: Pd(II) Auxiliary Assembling and Diverse Transformations via Inert C(sp³)-H Bond Activation

    • Authors: Luo Jiangbin, Chen Jie, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

  4. Title: Nickel-Catalyzed Multicomponent Assembly of Alkynes Toward α‑CF₃‑Alkenes

    • Authors: Li Ling, Li Yingmei, Yan Chongchong, Zhang Jian, Jiang Yaojia

    • Year: 2024