Yuriy Maletin | Energy | Best Researcher Award

Prof. Yuriy Maletin | Energy | Best Researcher Award

Head of laboratory from Institute for sorption and Problems of Endoecology National Academy of Sciences of Ukraine, Ukraine

Yuriy A. Maletin is an accomplished chemist with over five decades of scientific contributions in inorganic and physical chemistry. Born on January 15, 1949, in Moscow, Russia, he has established a profound legacy in the field of nanosized carbon materials and energy storage systems. Currently serving as Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology in Kyiv, Ukraine, and as Chief Scientist at Yunasko-Ukraine LLC, he combines academic leadership with industrial innovation. His commitment to advancing science has earned him membership in several prestigious boards and societies, including being a Corresponding Member of the National Academy of Sciences of Ukraine. With over 105 published papers and 35 patents, his work has left a significant mark on scientific and technological development in Ukraine and beyond. Throughout his career, he has held notable leadership roles at various institutions, contributing to both theoretical and applied research. Maletin continues to be active in international scientific dialogue, frequently invited to deliver keynote lectures. His distinguished career embodies a blend of research excellence, innovation, and mentorship that reflects an enduring passion for scientific progress.

Professional Profile

Education

Yuriy A. Maletin pursued his academic journey at some of the most prestigious institutions in the former Soviet Union. He graduated in 1971 with an MSc in Chemistry from the renowned Moscow State University named after M.V. Lomonosov, a leading institution known for producing world-class scientists. Following his graduate studies, he earned a Ph.D. in Inorganic Chemistry from the Institute of General and Inorganic Chemistry in Kiev in 1977. This was followed by his Doctor of Science (Dr. habil.) degree in Physical Chemistry from the Institute of Chemical Physics in Moscow in 1989, marking the peak of academic qualifications in the former USSR and Eastern Europe. These degrees reflect a deep academic foundation in both theoretical and applied chemistry. His education laid the groundwork for his later achievements in research and leadership, particularly in the fields of coordination chemistry, sorption technologies, and nanomaterials for energy storage. His multidisciplinary training provided him with the ability to work at the interface of various scientific domains and effectively lead complex research projects with national and international significance.

Professional Experience

Yuriy A. Maletin’s professional career spans over four decades of continuous engagement in scientific research, academic leadership, and industrial collaboration. He is currently the Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, a position he has held since 2009. Since 2010, he has also served as the Chief Scientist at Yunasko-Ukraine LLC, focusing on advanced energy storage solutions. From 2002 to 2008, he was Head of the Physical Chemistry Department at the National Technical University of Ukraine “KPI.” Prior to that, from 1987 to 2002, he headed the Coordination Chemistry Department at the Institute of General and Inorganic Chemistry. His career also includes serving on national advisory boards in inorganic chemistry and electrochemistry. This diverse experience reflects not only his scientific expertise but also his ability to manage research teams, influence policy, and bridge academia with industry. Through each of these roles, he has contributed significantly to Ukraine’s scientific infrastructure and its positioning within global scientific communities.

Research Interests

Yuriy A. Maletin’s research interests lie primarily in the areas of inorganic chemistry, physical chemistry, and materials science, with a particular emphasis on nanosized carbon materials for energy storage. His early work focused on coordination chemistry and the synthesis of complex compounds, while his later career has evolved toward the design, characterization, and application of materials relevant to energy technologies. He has been at the forefront of research on supercapacitors, batteries, and other energy storage systems, developing novel carbon-based nanostructures that enhance storage efficiency and device longevity. His interest in sorption processes and endoecology further reflects his multidisciplinary approach, addressing both energy needs and environmental challenges. In addition to core chemistry domains, he actively engages in applied sciences and industrial innovation, contributing to the development of practical technologies. His current work continues to explore advanced physical and chemical methods for improving material performance in energy devices, guided by a strong foundation in electrochemistry, thermodynamics, and nanotechnology. His long-standing contributions reflect a career dedicated to pushing the boundaries of material science and contributing to global efforts toward sustainable and efficient energy solutions.

Research Skills

Yuriy A. Maletin possesses a diverse set of research skills that span across multiple disciplines within chemistry and materials science. He is proficient in the synthesis and characterization of inorganic compounds, particularly within coordination and physical chemistry. His expertise includes the design and fabrication of nanosized carbon materials, with applications in energy storage technologies such as batteries and supercapacitors. Maletin has demonstrated strong analytical skills through his work on the physical and chemical behavior of materials, employing various spectroscopic, electrochemical, and thermal analysis methods. He also has significant experience in sorption studies, enabling him to assess environmental interactions and the efficiency of materials in filtration and separation processes. Beyond laboratory skills, he has a strategic mindset for guiding research directions, demonstrated through his leadership in multiple scientific institutions. His patent portfolio underscores a practical orientation in translating theoretical insights into functional applications. Additionally, he has cultivated scientific writing, mentoring, and public speaking abilities through numerous publications and invited lectures. These comprehensive research skills position him as a leader capable of both deep scientific inquiry and high-impact innovation.

Awards and Honors

Yuriy A. Maletin has received numerous awards and honors in recognition of his outstanding scientific contributions. Among his most prestigious accolades is his election as a Corresponding Member of the National Academy of Sciences of Ukraine in 2021, acknowledging his lifetime achievements and leadership in chemical sciences. Earlier in his career, he was a Fellow of the Royal Society of Chemistry (United Kingdom) from 1996 to 2014, a testament to his international recognition and influence. He has also served on national and international advisory boards, including the Advisory Board of Inorganic Chemistry Communications (1998–2002), which highlights his authoritative role in the global research community. His consistent presence in high-level scientific committees—such as the All-Ukrainian Boards on Inorganic Chemistry and Electrochemistry—demonstrates his long-standing impact on the development of Ukraine’s scientific ecosystem. With over 105 peer-reviewed articles and 35 patents and applications, Maletin’s research has not only advanced theoretical understanding but also led to practical applications, earning both academic and industrial accolades. These honors reflect a career marked by excellence, influence, and a dedication to scientific advancement at both national and global levels.

Conclusion

Yuriy A. Maletin’s career represents a rare blend of academic brilliance, research innovation, and scientific leadership. His journey from Moscow State University to leading institutions in Ukraine showcases a lifelong dedication to advancing chemistry and materials science. His work on nanosized carbon materials for energy storage has contributed meaningfully to the global pursuit of sustainable energy solutions. Beyond his scientific outputs—evident in his publications and patents—he has influenced generations of researchers through teaching, mentoring, and strategic leadership. His recognition by the National Academy of Sciences of Ukraine and global societies like the Royal Society of Chemistry affirms his standing in the international scientific community. He remains actively involved in shaping future research directions and disseminating knowledge through conferences and advisory roles. Given his comprehensive achievements, Maletin is a distinguished figure whose work continues to inspire innovation in energy, chemistry, and environmental technologies. His legacy is built not only on scientific discovery but also on his commitment to applying research for real-world impact, making him an exemplary candidate for top-level research recognition awards.

Publications Top Notes

  1. Graphene vs activated carbon in supercapacitors
    Journal: Nanosistemi, Nanomateriali, Nanotehnologii, 2020
    Authors: Zelinskyi, S.O.; Stryzhakova, N.G.; Maletin, Y.A.

  2. Supercapacitor technology: Targets and limits
    Conference: LLIBTA 2015 & ECCAP 2015, AABC Europe, 2015
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.

  3. Electrochemical double layer capacitors and hybrid devices for green energy applications
    Journal: Green, 2014
    DOI: 10.1515/green-2014-0002
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.; Tychina, S.; Drobny, D.

  4. On the perspectives of supercapacitor technology
    Conference: AABC 2014, 2014
    Author: Maletin, Y.

  5. Ultracapacitor technology: What it can offer to electrified vehicles
    Conference: IEEE IEVC, 2014
    DOI: 10.1109/IEVC.2014.7056227
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinskyi, S.; Chernukhin, S.; Tretyakov, D.; Mosqueda, H.A.; Davydenko, N.; Drobnyi, D.

  6. The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation
    Journal: Corrosion Science, 2013
    DOI: 10.1016/j.corsci.2012.12.002
    Authors: Gromadskyi, D.G.; Fateev, Y.F.; Maletin, Y.A.

  7. Anodic processes on aluminum in aprotic electrolytes based on the tetraethylammonium tetrafluoroborate salt in acetonitrile
    Journal: Materials Science, 2010
    DOI: 10.1007/s11003-010-9305-1
    Authors: Hromads’kyi, D.H.; Fateev, Yu.F.; Stryzhakova, N.H.; Maletin, Yu.A.

  8. Ultracapacitors as the key to efficient power solutions
    Conference: AABC 2010, 2010
    Author: Maletin, Y.

  9. Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors
    Journal: Applied Physics A: Materials Science and Processing, 2006
    DOI: 10.1007/s00339-005-3416-9
    Authors: Maletin, Y.; Novak, P.; Shembel, E.; Izotov, V.; Strizhakova, N.; Mironova, A.; Danilin, V.; Podmogilny, S.

  10. Complexes of some 3d-metal salts with N,N-dimethylhydrazide of 4-nitrobenzoic acid
    Journal: Russian Journal of Coordination Chemistry / Koordinatsionnaya Khimiya, 2004
    DOI: 10.1023/B:RUCO.0000043902.12955.5e
    Authors: Zub, V.Ya.; Bugaeva, P.V.; Strizhakova, N.G.; Maletin, Yu.A.

Li Yan | Energy | Best Researcher Award

Dr. Li Yan | Energy | Best Researcher Award

Assistant Researcher from Beijing University of Technology, China

Dr. Yan Li is an accomplished researcher in the field of energy materials, currently serving as an Assistant Researcher at Beijing University of Technology. With a strong academic background and postdoctoral training at one of China’s most prestigious universities, he has developed expertise in designing and synthesizing advanced cathode materials for both lithium-ion and sodium-ion batteries. His work focuses on improving battery performance, safety, and understanding degradation mechanisms through cutting-edge in situ and operando transmission electron microscopy (TEM) techniques. Dr. Li’s contribution lies not only in material synthesis but also in developing novel characterization methods to address the fundamental scientific challenges related to energy storage systems. His multidisciplinary approach combines materials science, electrochemistry, and electron microscopy to explore next-generation battery technologies. Dr. Li is emerging as a strong presence in the research community, known for his technical depth, innovative thinking, and commitment to solving real-world energy problems. His current research aims to enhance the reliability and lifespan of battery systems, which are crucial for applications in electric vehicles, portable electronics, and grid storage. Dr. Yan Li continues to make substantial contributions to the scientific community and has the potential to influence global advancements in sustainable energy technologies.

Professional Profile

Education

Dr. Yan Li obtained his Doctor of Philosophy (Ph.D.) degree in 2016 from Nanjing Tech University, Nanjing, China, where he specialized in the field of materials science and engineering with a particular emphasis on electrochemical energy storage systems. His academic journey began with a solid foundation in chemistry and material science, which later evolved into specialized research in battery technologies. During his Ph.D. studies, Dr. Li gained rigorous training in materials synthesis, electrochemical analysis, and structural characterization, setting the groundwork for his future innovations in energy storage. His doctoral thesis likely explored aspects of material behavior under electrochemical conditions, especially within battery systems. His academic excellence and research potential were evident early on, leading to postdoctoral opportunities at leading institutions. Dr. Li’s commitment to academic rigor and continuous learning has enabled him to stay at the forefront of energy research. The comprehensive nature of his education has played a critical role in shaping his ability to address complex challenges in the development of high-performance and safe battery materials, making him a valuable asset in both academic and industrial research environments.

Professional Experience

Dr. Yan Li is currently employed as an Assistant Researcher at Beijing University of Technology, where he is actively involved in energy materials research. Before his current role, he worked as a Postdoctoral Researcher in the Automotive Department at Tsinghua University, one of China’s top-tier institutions. During his postdoctoral tenure, he contributed to projects that explored the performance and safety of batteries in vehicular applications, particularly electric vehicles. His responsibilities included not only experimental research but also data analysis, project planning, and collaboration with cross-disciplinary teams. These roles provided him with invaluable experience in applying academic research to real-world industrial needs. At Beijing University of Technology, Dr. Li continues to expand his research on lithium-ion and sodium-ion battery technologies. His professional work integrates both fundamental research and applied science, offering insights into battery degradation, safety, and longevity. This professional journey underscores his ability to contribute to high-impact research projects while also nurturing the skills required for academic leadership and innovation. Through these experiences, Dr. Li has built a strong foundation for further academic achievements and collaborative ventures in the global energy research community.

Research Interest

Dr. Yan Li’s research interests lie at the intersection of materials science, electrochemistry, and energy storage systems. He is particularly focused on the design, synthesis, and optimization of cathode materials for lithium-ion and sodium-ion batteries. These energy storage technologies are pivotal for the future of electric vehicles, renewable energy integration, and portable electronic devices. His research explores new material chemistries that offer higher energy density, better thermal stability, and longer cycle life. One of the most distinctive aspects of Dr. Li’s work is his application of in situ and operando transmission electron microscopy (TEM) to study the real-time structural and chemical changes occurring in battery materials during operation. This technique allows for the direct observation of degradation mechanisms, providing critical insights that can lead to safer and more durable battery systems. Additionally, Dr. Li is interested in exploring environmentally friendly and cost-effective alternatives to conventional battery materials. His multidisciplinary approach and continuous pursuit of innovation highlight his dedication to solving pressing energy challenges and advancing battery technology for broader societal impact.

Research Skills

Dr. Yan Li possesses a diverse and robust set of research skills that make him a leading expert in the field of energy storage materials. His core competencies include advanced materials synthesis, especially in the development of cathode materials for lithium-ion and sodium-ion batteries. He is proficient in a wide array of characterization techniques, with specialized expertise in in situ and operando transmission electron microscopy (TEM), which allows him to analyze material transformations and degradation processes in real-time during battery operation. His skills also encompass electrochemical testing, such as cyclic voltammetry, galvanostatic charge/discharge measurements, and impedance spectroscopy, which are essential for evaluating the performance of battery materials. Dr. Li has hands-on experience with battery fabrication techniques, including electrode preparation, coin-cell assembly, and safety testing protocols. Additionally, he is skilled in data analysis, scientific writing, and project management, making him capable of leading and executing comprehensive research projects. His ability to integrate theoretical knowledge with experimental practice enables him to develop innovative solutions in the realm of energy storage, ensuring both academic excellence and industrial relevance.

Awards and Honors

While specific awards and honors received by Dr. Yan Li have not been publicly listed, his academic and professional trajectory suggests a strong record of recognition and merit. Being selected for a postdoctoral position at Tsinghua University, a globally recognized institution, is itself an indicator of high academic standing and research potential. His current appointment as an Assistant Researcher at Beijing University of Technology also reflects his capabilities and the trust placed in him by academic peers and senior faculty. It is likely that he has received institutional and project-based acknowledgments for his work on battery materials and electrochemical analysis. Furthermore, Dr. Li’s contributions to cutting-edge topics such as in situ characterization and energy storage mechanisms may have positioned him to receive future recognitions in the form of research grants, invitations to conferences, and publication awards. As his research output grows and gains visibility, he is well-positioned to earn national and international honors that further validate his contributions to the field of materials science and energy technology.

Conclusion

Dr. Yan Li is a promising and capable researcher with a strong academic foundation, diverse professional experience, and clear research focus in the field of advanced energy storage systems. His work on lithium-ion and sodium-ion battery cathode materials, combined with his innovative application of in situ and operando TEM, places him at the forefront of modern materials research. Dr. Li exhibits a balanced skill set that includes experimental technique, critical analysis, and interdisciplinary collaboration. While he is still in the early stages of his independent research career, his track record shows a consistent trajectory of growth and excellence. To further strengthen his global research profile, increased publication in high-impact journals, active international collaboration, and participation in global energy forums will be advantageous. Overall, Dr. Yan Li is highly suitable for recognition through a Best Researcher Award. His work not only contributes to academic knowledge but also addresses critical challenges in sustainable energy storage, making his research impactful both scientifically and societally. He represents the next generation of materials scientists capable of driving innovation in the energy sector.

Publication Top Notes

1. Removal of residual contaminants by minute-level washing facilitates the direct regeneration of spent cathodes from retired EV Li-ion batteries

  • Authors: Guo, Yi; Li, Yang; Qiu, Kai; Li, Yan; Yuan, Weijing; Li, Chenxi; Rui, Xinyu; Shi, Lewei; Hou, Yukun; Liu, Saiyue et al.

  • Year: 2025

2. Cryo-Sampling Enables Precise Evaluation of Thermal Stability of a Ni-Rich Layered Cathode

  • Authors: Mindi Zhang; Yan Li; Manling Sui; Pengfei Yan

  • Year: 2025

3. Cross-scale deciphering thermal failure process of Ni-rich layered cathode

  • Authors: Ding, Yang; Li, Yan; Xu, Ruoyu; Han, Xiao; Huang, Kai; Ke, Xiaoxing; Wang, Bo; Sui, Manling; Yan, Pengfei

  • Year: 2024

4. Early-stage latent thermal failure of single-crystal Ni-rich layered cathode

  • Authors: Han, Xiao; Xu, Ruoyu; Li, Yan; Ding, Yang; Zhang, Manchen; Wang, Bo; Ke, Xiaoxing; Sui, Manling; Yan, Pengfei

  • Year: 2024

5. Selective core-shell doping enabling high performance 4.6 V-LiCoO₂

  • Authors: Xia, Yueming; Feng, Jianrui; Li, Jinhui; Li, Yan; Zhang, Zhengfeng; Wang, Xiaoqi; Shao, Jianli; Sui, Manling; Yan, Pengfei

  • Year: 2024

6. Toward a high-voltage practical lithium ion batteries with ultraconformal interphases and enhanced battery safety

  • Authors: Li, Yan; Li, Jinhui; Ding, Yang; Feng, Xuning; Liu, Xiang; Yan, Pengfei; Sui, Manling; Ouyang, Minggao

  • Year: 2024

7. Advanced characterization guiding rational design of regeneration protocol for spent-LiCoO₂

  • Authors: Mu, Xulin; Huang, Kai; Zhu, Genxiang; Li, Yan; Liu, Conghui; Hui, Xiaojuan; Sui, Manling; Yan, Pengfei

  • Year: 2023

8. Mitigating Twin Boundary-Induced Cracking for Enhanced Cycling Stability of Layered Cathodes

  • Authors: Mu, Xulin; Hui, Xiaojuan; Wang, Mingming; Wang, Kuan; Li, Yan; Zhang, Yuefei; Sui, Manling; Yan, Pengfei

  • Year: 2023

9. Development of cathode-electrolyte-interphase for safer lithium batteries

  • Authors: Wu, Yu; Liu, Xiang; Wang, Li; Feng, Xuning; Ren, Dongsheng; Li, Yan; Rui, Xinyu; Wang, Yan; Han, Xuebing; Xu, Gui-Liang et al.

  • Year: 2021

10. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries

  • Authors: Hou, Junxian; Feng, Xuning; Wang, Li; Liu, Xiang; Ohma, Atsushi; Lu, Languang; Ren, Dongsheng; Huang, Wensheng; Li, Yan; Yi, Mengchao et al.

  • Year: 2021

 

 

 

Yige Zhao | Energy | Best Researcher Award

Assoc. Prof. Dr. Yige Zhao | Energy | Best Researcher Award

Dr. Yige Zhao is an accomplished Associate Professor at the School of Materials Science and Engineering, Zhengzhou University, with a research focus on advanced energy materials and devices. Her work spans the development of innovative solutions in hydrogen energy, electrocatalysis, and next-generation energy storage systems such as metal-air and lithium-sulfur batteries. With a strong educational foundation from Beijing University of Chemical Technology and rich professional experience in academia, Dr. Zhao has established herself as a leading expert in clean energy research. She has been at the forefront of several major research initiatives, including national and provincial-level projects, and maintains active collaborations with industry partners to ensure practical application of her work. In addition to her robust research profile, Dr. Zhao is a dedicated educator, delivering core undergraduate and innovation-based courses and mentoring graduate students. She has contributed significantly to academic literature with publications in high-impact journals and holds patents on novel electrocatalysts. Recognized for her excellence in both research and teaching, Dr. Zhao has received multiple honors and awards at the university and provincial levels. Her contributions are shaping the future of sustainable energy technologies in China and beyond, demonstrating her commitment to scientific innovation, education, and real-world impact.

Professional Profile

Education

Dr. Yige Zhao’s academic journey began at Beijing University of Chemical Technology, where she earned both her bachelor’s and doctoral degrees in Materials Science and Engineering. From 2009 to 2013, she pursued her undergraduate studies, laying a strong foundation in material chemistry, polymer science, and electrochemical systems. Following her bachelor’s degree, she continued her education at the same institution, completing her Ph.D. in 2018. During her doctoral research, she delved deeply into the synthesis and characterization of energy-related materials, with a specific focus on their application in sustainable technologies such as fuel cells and water-splitting devices. Her rigorous academic training equipped her with comprehensive knowledge in materials processing, advanced characterization techniques, and catalytic mechanisms. The Ph.D. experience also fostered her ability to independently manage research projects and collaborate across disciplines. Her formal education, combined with hands-on lab experience and participation in national-level projects during her doctoral studies, has been crucial in shaping her future career in academia and research. The excellence of her academic record not only underscores her technical competence but also reflects her persistent dedication to addressing global energy challenges through scientific innovation.

Professional Experience

Since July 2018, Dr. Yige Zhao has been affiliated with Zhengzhou University’s School of Materials Science and Engineering, initially joining as a lecturer and subsequently promoted to the role of Associate Professor. Her professional experience in this capacity has been defined by her leadership in academic instruction, research innovation, and student mentorship. She has played a pivotal role in developing and teaching core undergraduate courses such as Electrochemistry, New Energy Device Innovation Practice, and Innovation and Entrepreneurship Training. These courses are aligned with her research specializations and have been instrumental in preparing students for careers in clean energy technologies. In addition to her teaching duties, Dr. Zhao has successfully led several funded research projects sponsored by the National Natural Science Foundation of China, Henan Provincial Science and Technology Department, and other institutional platforms. Her involvement with industrial projects through horizontal enterprise collaborations further reflects her practical orientation and commitment to technology transfer. She also supervises graduate research through the National Joint Research Center for Low-Carbon Environmental Protection Materials. With an emphasis on collaborative innovation, Dr. Zhao’s professional journey demonstrates a balanced blend of theoretical knowledge and application-driven research, marking her as a dynamic contributor to China’s sustainable energy ambitions.

Research Interest

Dr. Zhao’s research interests are centered around the synthesis, modification, and application of advanced materials for clean energy conversion and storage. Her work addresses critical challenges in hydrogen energy production, storage, and utilization, as well as the development of efficient electrocatalysts for oxygen evolution and reduction reactions. She has a particular interest in the design of bifunctional materials that enable high-performance metal-air batteries and overall water splitting devices. Dr. Zhao’s investigations extend to lithium-sulfur and zinc-air battery systems, aiming to enhance their stability, conductivity, and charge-discharge efficiency through nanostructuring and surface engineering. She is especially adept at designing carbon-based nanomaterials doped with transition metals and heteroatoms to boost electrocatalytic activity. Her work also involves in situ characterization techniques to explore the underlying mechanisms of energy storage reactions. These multidisciplinary efforts integrate chemistry, materials science, and environmental engineering to create novel solutions for next-generation energy needs. Dr. Zhao’s long-term goal is to contribute to the global transition to low-carbon technologies by developing scalable and cost-effective materials that support sustainable energy systems. Her research is both fundamental and applied, providing innovative directions in material design for clean energy technologies.

Research Skills

Dr. Yige Zhao possesses an advanced skill set in both experimental and analytical aspects of materials research, particularly in the field of electrocatalysis and energy storage devices. Her expertise includes the synthesis of nanostructured materials such as doped carbon nanofibers, porous carbon matrices, and hybrid composites with metal-based active sites. She is highly proficient in techniques like electrospinning, chemical vapor deposition, and hydrothermal synthesis. Dr. Zhao also brings deep experience in utilizing high-end characterization tools such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and in situ electrochemical methods to probe catalytic mechanisms. She is skilled in electrochemical testing techniques, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV), crucial for evaluating electrocatalyst performance. Additionally, she has a demonstrated ability to design experimental systems for full-cell battery evaluation, including zinc-air and lithium-sulfur batteries. Dr. Zhao’s interdisciplinary skills enable her to bridge material design with device integration, allowing a holistic approach to innovation in energy technologies. Her ability to conduct mechanistic studies, coupled with process optimization and scale-up, reflects a rare blend of theoretical insight and practical implementation capacity.

Awards and Honors

Dr. Yige Zhao has received numerous accolades recognizing her contributions to scientific research and education. Among the most prestigious is the Henan Provincial Department of Education Science and Technology Achievement Award, which highlights the significance of her innovations in energy materials. She was also awarded the First Prize for Excellent Scientific Papers by the same department, reflecting the high academic quality and impact of her publications. Her role as a Mentor for the National Innovation and Entrepreneurship Training Program for University Students underlines her commitment to fostering research talent and promoting creativity among the next generation. At Zhengzhou University, Dr. Zhao has been consistently recognized for her excellence in student mentorship and academic leadership, earning titles such as Outstanding Undergraduate Thesis Advisor and Excellent Class Advisor. These honors are a testament to her holistic contributions—not just in laboratory research but also in education, leadership, and student engagement. The range of awards from both institutional and governmental levels affirms her status as a prominent figure in the field of energy materials and highlights her ongoing influence in advancing both academic scholarship and sustainable technologies.

Conclusion

In conclusion, Dr. Yige Zhao stands out as a highly accomplished researcher and academic leader in the field of new energy materials and devices. Her comprehensive educational background, innovative research contributions, and dedication to teaching make her an exemplary candidate for recognition in any competitive award platform. She has made significant strides in addressing pressing energy challenges through her work on hydrogen energy, metal-air batteries, and electrocatalysis, combining fundamental science with practical applications. Her published work in top-tier journals and patent contributions underscore her scientific excellence, while her success in securing national and provincial research funding demonstrates her leadership and credibility in the research community. Additionally, her active involvement in student development and academic instruction reflects a deep commitment to knowledge transfer and mentorship. As global energy systems shift toward sustainability, the work of scientists like Dr. Zhao becomes increasingly vital. Her interdisciplinary approach, strategic vision, and hands-on research skills position her as a driving force in clean energy innovation. Dr. Zhao not only meets but exceeds the criteria for the Best Researcher Award, making her a deserving candidate whose contributions are already making a meaningful impact in the field of sustainable energy science.

Publications Top Notes

A Parallel Array Structured Cobalt Sulfide/Nitrogen Doped Carbon Nanocage/Carbon Fiber Composite Based on Microfluidic Spinning Technology

  • Authors: Yige Zhao, Ting Li, Qing Wang, Yinyin Ai, Ruohan Hou, Aneela Habib, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2024

2. Bead-Structured Triple-Doped Carbon Nanocage/Carbon Nanofiber Composite as a Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries

  • Authors: Qing Wang, Yige Zhao, Bo Zhang, Yukun Li, Xiang Li, Guosheng Shao, Peng Zhang

  • Year: 2024

3. One-Pot Synthesis of Nitrogen-Doped Porous Carbon Derived from the Siraitia grosvenorii Peel for Rechargeable Zinc–Air Batteries

  • Authors: Lu Li, Mengyao Zhao, Bo Zhang, Guosheng Shao, Yige Zhao

  • Year: 2023

4. Li Intercalation in an MoSe₂ Electrocatalyst: In Situ Observation and Modulation of Its Precisely Controllable Phase Engineering for a High‐Performance Flexible Li‐S Battery

  • Authors: Yunke Wang, Yige Zhao, Kangli Liu, Shaobin Wang, Neng Li, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2023

5. Watermelon Peel‐Derived Nitrogen‐Doped Porous Carbon as a Superior Oxygen Reduction Electrocatalyst for Zinc‐Air Batteries

  • Authors: Lu Li, Zhiheng Wu, Jin Zhang, Yige Zhao, Guosheng Shao

  • Year: 2021

6. Sponge Tofu-like Graphene-Carbon Hybrid Supporting Pt–Co Nanocrystals for Efficient Oxygen Reduction Reaction and Zn–Air Battery

  • Authors: Yige Zhao, Lu Li, Dengke Liu, Zhiheng Wu, Yongxie Wang, Jingjun Liu, Guosheng Shao

  • Year: 2021

7. Nitrogen-Doped Vertical Graphene Nanosheets by High-Flux Plasma Enhanced Chemical Vapor Deposition as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries

  • Authors: Zhiheng Wu, Yongshang Zhang, Lu Li, Yige Zhao, Yonglong Shen, Shaobin Wang, Guosheng Shao

  • Year: 2020

8. Adding Refractory 5d Transition Metal W into PtCo System: An Advanced Ternary Alloy for Efficient Oxygen Reduction Reaction

  • Authors: Yige Zhao et al.

  • Year: 2018

9. PDA-Assisted Formation of Ordered Intermetallic CoPt₃ Catalysts with Enhanced Oxygen Reduction Activity and Stability

  • Authors: Yige Zhao et al.

  • Year: 2018

10. Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt–Cu Alloy Catalysts

  • Authors: Yige Zhao et al.

  • Year: 2017

Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Dr. Xiaoquan Zhu | Energy Conversion | Best Researcher Award

Lecturer at Nanjing University of Aeronautics and Astronautics, China

Dr. Xiaoquan Zhu is a distinguished researcher and academic in the field of power electronics and energy conversion. Currently serving as a Lecturer at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), China, he has dedicated his career to advancing renewable energy systems, DC/DC converters, and related technologies. With over 27 SCIE-indexed journal publications, 15 patents, and numerous international collaborations, Dr. Zhu’s work has made significant contributions to cutting-edge research in his field. An IEEE Senior Member and active participant in leading professional societies, he has earned recognition for his leadership in both academia and innovation.

Professional Profile

Education

Dr. Zhu’s academic journey began at the China University of Mining and Technology, where he earned his Bachelor’s degree in Information and Control Engineering in 2014. He pursued his Ph.D. in Power Electronics at the South China University of Technology, Guangzhou, completing it in 2019. His doctoral work laid the foundation for his expertise in high-efficiency energy systems and advanced converter designs. This strong educational background has provided Dr. Zhu with the technical knowledge and research acumen to excel in the dynamic fields of renewable energy and power systems.

Professional Experience

Since 2019, Dr. Zhu has been a Lecturer at NUAA, where he has contributed to both teaching and groundbreaking research. He has been the principal investigator for one National Natural Science Foundation of China (NSFC) project, two university research funds, and an open research grant for the State Key Laboratory of HVDC. His role as a senior researcher involves mentoring graduate students, leading innovative projects, and collaborating with global institutions to advance energy conversion technology. Dr. Zhu’s professional trajectory reflects his commitment to research excellence and capacity building.

Research Interests

Dr. Zhu’s research focuses on power electronics, energy conversion, and renewable energy systems. His key interests include developing cost-effective and efficient DC/DC converter topologies, renewable energy integration, and high-performance energy storage systems. He has also worked extensively on modular converters for photovoltaic systems and optimization techniques for energy systems in aerospace and electric vehicles. Dr. Zhu’s innovative approaches to addressing challenges in renewable energy systems underscore his dedication to a sustainable energy future.

Research Skills

Dr. Zhu possesses expertise in designing and modeling power converters, fractional calculus, and control optimization for high-efficiency systems. He is skilled in developing mathematical models, simulation frameworks, and hardware prototypes to validate advanced energy technologies. His experience extends to high-impact publishing, grant acquisition, and project leadership. As a seasoned reviewer for prestigious journals like IEEE Transactions, Dr. Zhu also brings a critical perspective to evaluating technical advancements in his field.

Awards and Honors

Dr. Zhu’s exemplary work has earned him the 2024 Outstanding Young Engineer Award from the Jiangsu Society for Electrical Engineering. He has also been recognized with multiple grants, reflecting his ability to attract funding for innovative projects. As an IEEE Senior Member and a member of several prominent societies, Dr. Zhu has built a reputation for his contributions to power electronics and renewable energy.

Conclusion

Dr. Xiaoquan Zhu stands out as a dedicated researcher with a proven track record of impactful contributions to energy systems. His blend of academic excellence, innovative research, and global collaboration places him among the leading figures in power electronics. With his continued focus on addressing global energy challenges, Dr. Zhu exemplifies the qualities of a Best Researcher Award recipient.

Publication Top Notes

  1. Publication: A Multiport Power Electronic Transformer With MVDC Integration Interface for Multiple DC Units
    Authors: Zhu, X., Hou, J., Zhang, B.
    Year: 2024
    Citations: 1
  2. Publication: Single-phase Single-stage Coupled Inductor Split-source Boost Inverter | 单相单级式耦合电感型分裂源升压逆变器
    Authors: Zhu, X., Ye, K., Jin, K., Zhou, W., Zhang, B.
    Year: 2024
  3. Publication: A Multiport Current-Fed IIOS Dual-Half-Bridge Converter for Distributed Photovoltaic MVDC Integration System
    Authors: Zhu, X., Hou, P., Zhang, B.
    Year: 2024
    Citations: 3
  4. Publication: A Modular Multiport DC-DC Converter With MVDC Integration for Multiple DC Units
    Authors: Zhu, X., Hou, J., Jin, K., Zhang, B.
    Year: 2024
    Citations: 2
  5. Publication: Multiphase BHB-CLL Resonant Converter Based on Secondary-Side VDR With Automatic Current Sharing Characteristic
    Authors: Zhu, X., Liu, K., Zhang, B., Jin, K.
    Year: 2024
    Citations: 2
  6. Publication: Analysis and Modeling of Fractional Order LC Series Resonant Boost Converter Based on Fractional Calculus and Laplace Transform
    Authors: Ma, C., Zhu, X., Chen, Z., Hou, J., Zhang, B.
    Year: 2024
  7. Publication: Fractional-Order Modeling and Steady-State Analysis of Single-Phase Quasi-Z-Source Pulse Width Modulation Rectifier
    Authors: Zhu, X., Chen, Z., Zhang, B.
    Year: 2024
    Citations: 2
  8. Publication: A Modular Multiport DC Power Electronic Transformer Based on Triple-Active-Bridge for Multiple Distributed DC Units
    Authors: Zhu, X., Hou, J., Liu, L., Zhang, B., Wu, Y.
    Year: 2024
    Citations: 1
  9. Publication: An Analytical Approach for Obtaining Steady-State Periodic Solutions of Fractional-Order quasi-Z-Source Rectifier
    Authors: Chen, Z., Zhu, X., Ma, C., Liu, L.
    Year: 2024
  10. Publication: Modeling and Analysis of Fractional-Order Full-Bridge LLC Resonant Converter
    Authors: Ma, C., Zhu, X., Wei, C.
    Year: 2024
    Citations: 1

 

Xiangcheng Lyu | Solar Panel | Best Researcher Award

Mr. Xiangcheng Lyu | Solar Panel | Best Researcher Award

PhD Student at Cranfield University, United Kingdom 

Xiangcheng Lyu is a driven postgraduate researcher specializing in offshore renewable energy and materials science. Currently pursuing a Ph.D. in Energy and Sustainability at Cranfield University, he combines academic excellence with innovative research. His work focuses on the development of sustainable solutions, such as wave energy converters for floating solar farms, demonstrating his ability to address real-world challenges. With prior industry experience as a mechanical engineer, Xiangcheng contributed to designing experimental apparatus and developing eco-friendly flame retardants, securing multiple patents. His technical proficiency extends to advanced simulation software, solidifying his expertise in mechanical engineering and offshore systems. Recognized through numerous academic and professional awards, Xiangcheng exemplifies a balance of research innovation, practical application, and teamwork, making him a promising researcher in his field.

Professional Profile

Education

Xiangcheng Lyu has an impressive academic background in mechanical engineering and energy sustainability. He is pursuing a Ph.D. in Energy and Sustainability (2024–2027) and a Master’s degree in Advanced Mechanical Engineering (2023–2024) at Cranfield University, UK. His undergraduate education was completed at Minnan University of Science and Technology, China, where he graduated with a Bachelor of Engineering in Mechanical Engineering in 2021, achieving an outstanding GPA of 3.81. His strong academic foundation is complemented by awards and scholarships that highlight his consistent academic excellence, including recognition for his bachelor’s thesis. Xiangcheng’s multidisciplinary education equips him with expertise in designing and analyzing advanced engineering systems, contributing significantly to his innovative research pursuits.

Professional Experience

Xiangcheng Lyu brings two years of industry experience as a Test/Mechanical Engineer at Tonggou Technology Co., Ltd. in Suzhou, China (2021–2023). During this time, he specialized in the testing and experimentation of flame retardants, where he designed and manufactured experimental setups to improve efficiency. His work led to the development of eco-friendly flame retardants, resulting in enhanced experimental apparatus and multiple patented innovations. Xiangcheng’s professional experience extends to mechanical design, system optimization, and materials testing. In his academic journey, he has also contributed to research projects involving wave energy converters and floating breakwater systems. His ability to integrate theoretical knowledge with practical application makes him adept at solving engineering challenges, and his work consistently focuses on sustainability and innovation.

Research Interests

Xiangcheng Lyu’s research interests lie at the intersection of renewable energy, mechanical engineering, and materials science. He is passionate about exploring sustainable energy solutions, focusing on offshore renewable systems such as wave energy converters and floating solar farms. His projects reflect a commitment to tackling global energy challenges through innovative engineering designs. Additionally, Xiangcheng is keenly interested in the testing and optimization of flame retardants, particularly eco-friendly materials that minimize environmental impact. His academic and professional endeavors also include mechanical systems innovation, as evidenced by his patented designs for fire-resistant children’s carts and floating breakwaters. His interdisciplinary approach combines expertise in materials, mechanics, and sustainability, driving his ambition to contribute to advancements in energy and materials research.

Research Skills

Xiangcheng Lyu is highly skilled in a variety of research methodologies and technical applications. His expertise includes offshore engineering principles, experimental design, and the analysis of renewable energy systems. He is proficient in advanced simulation and design software, including Solidworks, ANSYS, Abaqus, MATLAB, and Python, enabling him to create and test complex mechanical systems. His experience in flame retardant testing highlights his ability to evaluate and optimize organic materials for industrial applications. Xiangcheng’s innovation is further demonstrated through his patented designs, showcasing his problem-solving capabilities. He is also adept at working collaboratively or independently, ensuring efficient project execution. His comprehensive research skill set equips him to tackle challenges in renewable energy, mechanical engineering, and materials science effectively.

Awards and Honors

Xiangcheng Lyu’s academic and professional excellence has been recognized through numerous awards and honors. Notable achievements include the First Prize in the China-US Young Maker Competition of Fujian Province (2020) and multiple Second Prizes in National Innovation Competitions between 2018 and 2019. He was named an Excellent Graduate (top 10%) and received recognition for his bachelor’s thesis (top 5%) at Minnan University of Science and Technology in 2021. Xiangcheng also earned the First Prize Scholarship (top 5%) consecutively from 2018 to 2020. His accomplishments reflect his dedication to innovation and academic rigor, solidifying his reputation as a promising researcher in mechanical engineering and energy sustainability.

Conclusion

Xiangcheng Lyu possesses a strong foundation of technical skills, academic excellence, and innovative research in renewable energy and materials science. His achievements, including patents and practical contributions to flame retardant technology, demonstrate a clear potential for impactful research. However, to fully meet the criteria for a Best Researcher Award, he could improve by publishing his work in reputable journals and engaging in international collaborations.

 

 

Abdulwasiu Muhammed Raji | Renewable Energy | Best Researcher Award

Mr. Abdulwasiu Muhammed Raji | Renewable Energy | Best Researcher Award 

Doctoral Researcher, at INSA Centre Val de Loire – Bourges Campus, France.

Abdulwasiu Muhammed Raji is an aspiring PhD researcher and teaching assistant at the Institut National des Sciences Appliquées (INSA) in France, specializing in fire safety, combustion, and sustainable aviation fuel. With a deep-rooted passion for fire safety, Abdulwasiu’s research focuses on exploring the combustion and emission characteristics of biofuels as alternatives to conventional aviation fuels. His educational background spans from Ahmadu Bello University in Nigeria to Universiti Teknologi Malaysia, where he earned a Master’s degree in Polymer Technology. Abdulwasiu has a keen interest in advancing green biocomposites and emission reduction strategies, which has led to multiple academic publications in esteemed journals. Recognized by institutions like Universiti Teknologi Malaysia and Nigeria’s Petroleum Technology Development Fund, he has earned awards for his academic achievements. His dedication to environmental sustainability drives his research on biofuel innovation for future aviation needs. 🌍

Profile

Education 🎓

Abdulwasiu Muhammed Raji’s academic journey is marked by a strong focus on fire safety, sustainable fuel research, and polymer technology. He is currently pursuing a PhD at the Institut National des Sciences Appliquées (INSA) in France (2023–2026), where he is investigating sustainable aviation fuels’ combustion properties in comparison to traditional jet fuels under the guidance of Professor Khaled Chetehouna. He completed his Master’s degree in Polymer Technology at Universiti Teknologi Malaysia (CGPA 3.91/4.0) with a thesis on an eco-friendly flame retardant for polyurethane foam, advised by Assoc. Professor Zurina B. Mohamad. His foundational Bachelor’s degree in Textile Science and Technology from Ahmadu Bello University in Nigeria explored natural fiber composites for automotive use. Abdulwasiu’s academic excellence and dedication to sustainable research are evident throughout his studies. 🔬🌿

Experience 💼

Abdulwasiu Muhammed Raji has cultivated a strong research portfolio in fire safety and sustainable fuels. Currently, he serves as a Graduate Research Assistant at INSA’s PRISME Laboratory, where he focuses on developing biojet fuels that align with ASTM standards for aviation. His role involves assessing the physical, chemical, and thermal properties of biofuels, utilizing ASTM tests to analyze emission characteristics. Previously, at Universiti Teknologi Malaysia, he developed a novel intumescent flame retardant using sepiolite, advancing eco-friendly solutions for high-performance applications. Abdulwasiu has also held industry roles, including as a visiting trainer and quality supervisor at Haffar Industrial Company in Nigeria, where he provided expertise in textile material standards and quality assurance. His hands-on experience across academia and industry reflects a commitment to advancing environmentally sustainable technologies. 🔥🌱

Research Interests 🔍

Abdulwasiu’s research is driven by a dedication to environmental sustainability and fire safety. His primary focus is on the development and analysis of flame retardants for enhanced material safety, green biocomposites for ecological benefits, and biofuels, including sustainable aviation fuel (SAF), as alternatives to fossil fuels. His research spans combustion and pyrolysis studies, focusing on emission analysis to reduce environmental impact. At INSA’s PRISME Laboratory, he actively examines SAF combustion characteristics to identify potential biojet fuel substitutes. With expertise in flame retardancy and biocomposite innovations, Abdulwasiu’s work aims to contribute to the advancement of eco-friendly and safer material solutions for industries that rely on high-performance materials and fuels. 🌍🌱🔥

Honors and Awards 🏅

Abdulwasiu has been recognized for his academic and research contributions with several prestigious awards. In 2022, he received a PhD Scholarship from the Petroleum Technology Development Fund (PTDF) in Nigeria to pursue advanced studies at a partner university in France. During his Master’s studies, he was honored with the Best Postgraduate Student Award at Universiti Teknologi Malaysia (UTM) and received the Pro-Chancellor Award at UTM’s 65th Convocation in 2022. His contributions to the Postgraduate Student Society at UTM earned him a Certificate of Recognition in 2021. Additionally, he was awarded a full scholarship from Nigeria’s Tertiary Education Trust Fund (TETFUND) for his Master’s program. These accolades underscore his dedication and excellence in sustainable material and fuel research. 🎖️🌍

Publications 📚

Abdulwasiu’s work has been widely published in prominent journals, with key contributions in sustainable fuel and fire safety research.

  • Muhammed Raji, A., Brady, M., Khaled, C., Ludovic, L., & Raphael, O. (2024). Comparative analysis of the combustion and emission characteristics of biojet and conventional Jet A-1 fuel: A review. Biofuels, Bioproducts and Biorefining, 1-19. https://doi.org/10.1002/bbb.2682 🌍
  • Muhammed Raji, A., Brady, M., Khaled, C., Ekomy, A. S., & Raphael, O. (2024). Performance and spray characteristics of fossil JET A-1 and bioJET fuel: A comprehensive review. Renewable and Sustainable Energy Reviews, 207, 114970. https://doi.org/10.1016/j.rser.2024.114970 🔥
  • Aisha, E. A., Zurina, M., Rohah, A., & Muhammed Raji, A. (2024). Aluminium Hydroxide/Graphene-reinforced Rigid Polyurethane Foam Hybrid Composites. Pertanika Journal of Science and Technology, 32(5), 2095-2119. https://doi.org/10.47836/pjst.32.5.10 🌱

Conclusion

Abdulwasiu Muhammed Raji is a promising candidate for the Best Researcher Award. His research contributions in sustainable aviation fuel and fire safety align with significant environmental and technological needs, and his strong academic background, coupled with ongoing research output, highlights his dedication and expertise. Addressing some strategic improvements could further elevate the impact of his work, making him a highly suitable candidate for this award.