Longbin Liu | Engineering | Best Researcher Award

Assist. Prof. Dr. Longbin Liu | Engineering | Best Researcher Award

National University of Defense Technology | China

Dr. Liu Longbin is a dedicated aerospace engineering expert specializing in aircraft conceptual design and missile structure. Currently serving as a lecturer at the National University of Defense Technology, he actively contributes to China’s defense and aviation research efforts. His academic foundation and practical insights drive innovation in flight vehicle structures and performance. With several research papers and conference presentations to his credit, he stands out for his technical depth and commitment to academic excellence. Dr. Liu’s involvement in global research forums further reflects his growing recognition in the field and his potential as a future leader in aerospace innovation.

Professional Profile

Scopus Profile  | ORCID

Education

Dr. Liu Longbin received his Ph.D. in Aircraft Design from the prestigious Beijing University of Aeronautics and Astronautics in Beijing, China. His academic training focused on the theoretical and practical aspects of advanced aircraft and missile design. The program provided rigorous exposure to aerodynamics, materials science, systems engineering, and structural analysis, equipping him with the expertise needed to pursue cutting-edge aerospace research. His doctoral research addressed complex challenges in structural optimization and design methodology, laying a strong foundation for his later contributions to both academia and defense-oriented engineering projects.

Professional Experience

Dr. Liu Longbin currently holds the position of Lecturer at the National University of Defense Technology, where he is involved in both teaching and research. He has participated in numerous national and international projects focused on aerospace structure and design systems. His role includes guiding students, publishing peer-reviewed papers, and contributing to the defense sector through technology development. Prior to his academic appointment, he was involved in project-based work that strengthened his experience in applying theoretical knowledge to practical defense-related systems, enhancing his profile as an emerging expert in aerospace engineering.

Research Interest

Dr. Liu’s research interests lie in the fields of aircraft conceptual design and missile structural engineering. He is particularly focused on the integration of structural and aerodynamic principles to enhance flight performance, reliability, and mission capability. His work often involves the simulation and modeling of missile systems, as well as investigating the material and structural configurations that optimize weight and durability. By combining innovative design techniques with modern computational tools, Dr. Liu aims to address some of the most pressing challenges in advanced aerospace system development and contribute to national defense strategies.

Research Skills

Dr. Liu possesses a robust set of research skills that include aerodynamic simulation, structural optimization, and system-level conceptual design. He is proficient in computational tools and software widely used in aerospace engineering, such as MATLAB, CATIA, and ANSYS. His capabilities also extend to data analysis, research methodology design, and collaborative problem-solving within interdisciplinary teams. Dr. Liu is experienced in drafting scientific papers, presenting at academic conferences, and managing research timelines and deliverables effectively. These technical and analytical skills enable him to contribute meaningfully to high-impact projects in both academia and industry.

Awards and Honors

Dr. Liu Longbin has been recognized for his scholarly contributions through various academic commendations and conference selections. While specific awards have not been publicly listed, his peer-reviewed journal publications and international conference presentations speak to his credibility and recognition within the aerospace research community. His work has been well-received in academic forums, and his selection as a presenter at multiple technical gatherings underscores his reputation as a capable and respected voice in aircraft and missile design. Continued excellence in research positions him for future honors and leadership roles in scientific and engineering circles.

Publications Top Notes

  1. Title: An LSTM-driven thermoelectric coupling response prediction method for shape memory alloy actuators

    • Journal: Scientific Reports

    • Year: 2025

  2. Title: The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film

    • Journal: Applied Sciences Switzerland

    • Year: 2025

  3. Title: Analysis on the thrust characteristics of flexible deformable self-pressurized water rocket

    • Journal: Guofang Keji Daxue Xuebao (Journal of National University of Defense Technology)

    • Year: 2025

  4. Title: Research on one-dimensional phase change heat transfer characteristics based on instrument compartment structure

    • Journal: Scientific Reports

    • Year: 2024

Conclusion

In conclusion, Dr. Liu Longbin’s blend of academic excellence, technical competence, and applied research experience makes him a valuable contributor to the field of aerospace engineering. His work in aircraft and missile structural design not only advances academic understanding but also supports national defense innovation. With a solid educational background, active research involvement, and growing visibility in international forums, he is well-positioned to lead impactful projects in the future. Dr. Liu’s commitment to knowledge advancement and collaboration makes him a deserving candidate for prestigious academic and scientific recognition on global platforms.

Anouar BEN MABROUK | Environmental Science | Best Researcher Award

Prof. Dr. Anouar BEN MABROUK | Environmental Science | Best Researcher Award

Professor from University of Tabuk, Saudi Arabia

Professor Anouar Ben Mabrouk is a distinguished academic and researcher in mathematics, currently serving at the University of Monastir and the University of Kairouan, Tunisia. He holds full professorial qualifications from both the Tunisian and French Ministries of Higher Education in Pure and Applied Mathematics. With a career spanning over two decades, his research is grounded in advanced mathematical theories and their cross-disciplinary applications. Professor Ben Mabrouk is recognized for his profound contributions to wavelets, fractals, probability, statistics, signal processing, and mathematical models in finance, biology, and the environment. His scholarly output includes over a hundred peer-reviewed publications, multiple book chapters, and extensive teaching across various institutions in Tunisia, Saudi Arabia, and France. His academic roles also extend to thesis supervision at undergraduate, master’s, and Ph.D. levels. In addition to traditional research, he engages with topics like scientific phenomena in the Qur’an and Sunnah, translating key texts from Arabic to English and French. He has played crucial roles in research projects related to sustainability, health modeling, and climate impact. Professor Ben Mabrouk’s academic footprint reflects a commitment to interdisciplinary knowledge creation, curriculum development, and scientific inquiry, marking him as a global contributor to the advancement of mathematical sciences.

Professional Profile

Education

Professor Anouar Ben Mabrouk’s academic journey is marked by excellence and specialization in mathematics. He began with a Bachelor’s degree in Mathematics from the Faculty of Sciences of Monastir in 1995, followed by graduate studies in Mathematics, where he defended his Master’s thesis on the multifractal spectrum of measures in 1998. He earned his Ph.D. in Mathematics from the University of Monastir in 2007, focusing on wavelet analysis of quasi self-similar functions. Furthering his academic distinction, he completed his HDR (Habilitation à Diriger des Recherches) in 2015 at the University of Kairouan, addressing wavelets and nonlinear PDEs. His qualifications have been formally recognized by the Tunisian Ministry of Higher Education and the French Ministry of Higher Education, granting him the title of Full Professor in both Pure and Applied Mathematics in 2019. This dual recognition underlines the international credibility of his educational background. Additionally, he obtained a university diploma in scientific studies in mathematics and physics (1993) and a mathematics-focused Baccalaureate from Tataouine in 1991. This strong academic foundation laid the groundwork for his contributions across mathematics, computational analysis, and interdisciplinary applications.

Professional Experience

Professor Anouar Ben Mabrouk has accumulated a rich and varied professional experience in teaching, research, and academic administration. Over the past two decades, he has served in key roles at several institutions, including the University of Monastir and the Higher Institute of Applied Mathematics and Computer Sciences at the University of Kairouan. His teaching portfolio spans undergraduate to postgraduate levels, covering subjects such as functional analysis, real analysis, numerical methods, differential geometry, fractals, and financial mathematics. He has also taught extensively in Saudi Arabia at Taibah University, Um-Al-Qura University, and Tabuk University, where he contributed to curriculum development, program accreditation, and academic committees. In addition to his teaching commitments, he has served as a supervisor for countless undergraduate, master’s, and doctoral theses. His roles on PhD and HDR committees and scientific research councils demonstrate his leadership in shaping academic programs. Professor Ben Mabrouk has also been involved in several national and international collaborations and scientific committees, particularly in the fields of environmental modeling, smart health systems, and sustainable development. His experience reflects a strong balance between deep academic involvement and applied scientific contributions that address real-world problems.

Research Interests

Professor Ben Mabrouk’s research interests lie at the intersection of advanced mathematics and real-world application domains. His primary focus includes wavelets and fractals, with applications in signal and image processing, financial mathematics, climate science, and biological systems. He is also deeply involved in the study of partial differential equations (PDEs), both from theoretical and numerical perspectives, particularly on fractal domains and with fractal initial data. Another significant interest lies in biomathematics and biostatistics, especially concerning biosignals and bioimages, where his mathematical models support the diagnosis and understanding of physiological phenomena. Furthermore, he has extended his research to the applications of Clifford algebras in signal and image processing, enabling new ways of interpreting multidimensional data. His work also touches on the scientific and mathematical analysis of religious texts, particularly those from the Qur’an and Sunnah, adding a unique dimension to his interdisciplinary profile. He contributes to climate change research by modeling pollution dispersion and sustainable resource management. Professor Ben Mabrouk’s comprehensive and integrative approach to research showcases his commitment to using mathematical tools to address global challenges across health, environment, technology, and culture.

Research Skills

Professor Anouar Ben Mabrouk possesses a broad spectrum of research skills that position him as a leader in interdisciplinary mathematical studies. His expertise includes advanced modeling using wavelets and fractals, statistical analysis, and non-commutative algebra. He is proficient in both analytical and numerical methods for solving partial differential equations, especially in complex domains. His skills also encompass the use of mathematical models for financial systems, environmental impact simulations, and biomedical data processing. In signal and image processing, he employs tools from functional and harmonic analysis, as well as Clifford algebras, to interpret complex datasets. He demonstrates strong abilities in project development and execution, having led and contributed to research funded by the Saudi Research and Development Innovation Authority and other institutions. His experience also includes translating theoretical mathematical constructs into practical applications across sustainability, health monitoring, and resource optimization. Additionally, Professor Ben Mabrouk is adept in scientific writing, publication strategies, and peer-review processes, as evidenced by his roles as editor and reviewer for various academic journals. His supervisory and mentoring capabilities further highlight his strength in academic leadership and capacity-building in research.

Awards and Honors

While specific awards and formal honors are not extensively listed, Professor Ben Mabrouk’s academic distinctions are reflected in the dual recognition of his professorship from both the Tunisian and French higher education authorities—an honor that places him among a select group of internationally certified scholars. He has served as a member of multiple scientific committees and accreditation boards, notably at Tabuk University in Saudi Arabia. His repeated selection for leading roles in research projects funded by government institutions, such as the Saudi Research and Development Innovation Authority, illustrates the trust and recognition he has earned from research funders and academic institutions. Additionally, his contributions to mathematical education and curriculum development across multiple countries underline the esteem in which he is held. His membership in respected bodies such as the Tunisian Mathematical Society and The Asian Council of Science Editors further acknowledges his standing in the academic community. Professor Ben Mabrouk’s extensive publication record, leadership in cross-border academic initiatives, and multidisciplinary engagements are in themselves reflective of significant academic honor and professional respect.

Conclusion

Professor Anouar Ben Mabrouk exemplifies the ideal profile of a globally engaged researcher and educator whose work bridges rigorous mathematical theory with impactful real-world applications. With a foundation grounded in fractals, wavelets, and PDEs, he has extended his scholarship to diverse areas including finance, health, climate, and environmental sustainability. His teaching and mentoring contributions span continents and academic levels, nurturing future generations of mathematicians and interdisciplinary researchers. His involvement in high-impact research projects, curriculum development, and academic leadership underscores his holistic approach to advancing science and education. His dual professorial accreditation from France and Tunisia, combined with his publication record, project leadership, and service on academic committees, positions him as a scholar of high integrity and influence. Professor Ben Mabrouk continues to contribute meaningfully to both theoretical inquiry and applied science, making him a strong candidate for recognition through the Best Researcher Award. His profile represents not just scholarly excellence, but also a commitment to the global advancement of knowledge in mathematics and its real-life applications.

Publications Top Notes

  1. On an assorted nonlinear Schrödinger dynamical system
    Authors: AF Aljohani, S Arfaoui, A Ben Mabrouk
    Journal: Arabian Journal of Mathematics, pp. 1–29

  2. Numerical solution for stochastic mixed nonlinear Schrödinger equation
    Authors: S Arfaoui, AB Mabrouk, C Souissi
    Journal: Bulletin of the Transilvania University of Brasov. Series III: Mathematics

  3. A wavelet time-frequency analysis of pandemic dynamics and impacts—COVID-19 case study
    Authors: A Hamdouni, ME Zidan, A Ben Mabrouk, M Guettari
    Journal: International Journal of Biomathematics

  4. ABS1254-PARE Addressing patients with systemic autoimmune diseases needs through educational booklets: Experience of the Tunisian Association of Young Internists
    Authors: O Dhrif, H Abida, R Abida, W Helali, S Kammoun, F Fatnassi, W Letifi, …
    Journal: Annals of the Rheumatic Diseases 84, p. 1833

  5. Testing for the multifractality in air pollutants time series and application to Tabuk region case study
    Authors: AF Aljohani, AB Mabrouk, M Areshi, J Bouslimi, AH Laatar, AA Shaltout
    Journal: Fractals

  6. Feistel inspired novel hybrid cryptosystem for information secure processing
    Authors: N Aydin, D Behloul, S Benatmane, AB Mabrouk
    Journal: Bulletin of the Transilvania University of Brasov. Series III: Mathematics

  7. A wavelet multifractal model for quality of life index measuring during pandemics and crises
    Authors: MS Balalaa, A Ben Mabrouk
    Journal: Expert Systems 42(1), e13284
    Citations: 5

  8. Heterogeneity of the francophone network and satisfaction of the international
    Authors: O Dhrif, H Abida, F Fatnassi, W Letifi, A Mabrouk
    Journal: La Revue de Médecine Interne 45, A525

  9. A Wavelet Multi-Scale Takagi-Sugeno Fuzzy Approach for Financial Time Series Modeling
    Authors: AB Mabrouk, AM Alanazi, AR Alharbi, A Aljaedi
    Journal: Contemporary Mathematics, pp. 5341–5357

  10. A wavelet modeling of correlated noise in smart health multi-sensors data monitoring
    Authors: AB Mabrouk, Z Bassfar, FS Alshammari, S Bassfar, A Alanazi
    Journal: Fractals, Article ID: 2440055

Jingying Mao | Environmental Science | Women Researcher Award

Dr. Jingying Mao | Environmental Science | Women Researcher Award

Deputy Director from Scientific Research Academy of Guangxi Environmental Protection, China

Jingying Mao is a Senior Engineer at the Guangxi Environmental Protection Scientific Research Institute, specializing in atmospheric environment and climate change. With a strong educational foundation in ecology and environmental engineering, Mao has developed extensive expertise in air pollution control, atmospheric chemical modeling, and climate impact assessments. Over the years, Mao has significantly contributed to the understanding of aerosol formation, ozone control strategies, and pollutant transport mechanisms in various regional and global contexts. Her leadership in multiple National Natural Science Foundation projects and provincial scientific initiatives demonstrates her capacity for high-level scientific research and project management. Mao’s representative works have been published in internationally recognized journals such as Journal of Geophysical Research: Atmospheres, Science of the Total Environment, and Elementa: Science of the Anthropocene. She has also played key roles in collaborative studies addressing complex air quality issues in China. Her research achievements have been acknowledged through several provincial awards, including second-class prizes in Guangxi Science and Technology Progress. Through her rigorous scientific contributions and dedication to environmental protection, Mao has become a respected figure in the atmospheric science community, making meaningful strides in pollution control and climate impact research.

Professional Profile

Education

Jingying Mao holds a Ph.D. in Ecology from Jinan University (2017–2021), where she deepened her expertise in atmospheric sciences and climate interactions. She completed her Master’s degree in Environmental Engineering at Southwest Jiaotong University (2009–2012), focusing on advanced environmental protection techniques and pollution management. Her undergraduate studies were conducted at Guangxi Normal College (2005–2009), where she earned a Bachelor’s degree in Environmental Science, laying the foundational knowledge in environmental systems and resource management. Throughout her academic journey, Mao demonstrated a consistent focus on environmental issues, particularly air pollution and climate dynamics, which shaped her professional path toward becoming a leading researcher in atmospheric environment and climate change. Her educational background is distinguished by a clear progression toward specialization in air quality modeling, atmospheric chemistry, and pollutant mitigation strategies.

Professional Experience

Mao Jingying currently serves as a Senior Engineer at the Guangxi Environmental Protection Scientific Research Institute’s Atmospheric Environment and Climate Change Research Center (since December 2022). Before this, she held the role of Engineer within the same center from December 2021 to November 2022 and at the Atmospheric Environment Research Center from July 2015 to July 2017. Her initial position at the institute was within the Environmental Analysis and Heavy Metal Pollution Control Center from July 2012 to June 2015. Across these roles, Mao has accumulated over a decade of experience in atmospheric pollution monitoring, climate modeling, and the development of emission reduction strategies. Her responsibilities have included leading major research projects, contributing to national and provincial environmental initiatives, and publishing impactful research in prestigious journals. Mao’s consistent career trajectory within the Guangxi Environmental Protection Scientific Research Institute illustrates her deep-rooted commitment to environmental improvement and scientific advancement.

Research Interests

Jingying Mao’s primary research interests include atmospheric chemistry, air quality modeling, secondary organic aerosol (SOA) formation, and the impacts of climate change on atmospheric processes. She is particularly focused on the temporal and spatial distribution of IEPOX-SOA (isoprene epoxydiol-derived SOA) in the troposphere and its radiative effects, which she investigates through numerical simulations. Mao is also engaged in studying nitrate aerosols in the stratosphere and their influence on climate dynamics. Her work extends to the development of coordinated emission reduction strategies and the assessment of pollutant sources through both field measurements and chemical transport models. Mao’s studies on ozone control strategies and pollutant transport mechanisms aim to provide actionable solutions for urban and regional air quality management. Her diverse research portfolio contributes significantly to the broader understanding of atmospheric processes and their environmental consequences.

Research Skills

Mao Jingying possesses advanced research skills in atmospheric chemical transport modeling using tools like WRF-Chem and MOSAIC, chemical characterization of aerosols, and source apportionment techniques. She is proficient in designing and conducting large-scale environmental monitoring campaigns, analyzing time-resolved aerosol data, and integrating field observations with numerical simulations. Mao’s expertise also includes regional climate impact assessments, chemical data interpretation, and multi-pollutant control strategy evaluation. Her strong analytical abilities are complemented by a solid understanding of environmental policy and regulatory frameworks, which enhances her capacity to develop practical solutions for air pollution control. Additionally, Mao’s collaborative research experience and multidisciplinary approach have enabled her to address complex atmospheric challenges effectively.

Awards and Honors

Jingying Mao has received several notable scientific recognitions at the provincial level. She was awarded the Guangxi Science and Technology Progress Award (Second Class) in 2023 for her contribution to regional atmospheric research and pollution control strategies. In 2019, she was honored again by the Guangxi People’s Government for her involvement in collaborative air quality studies. Additionally, she received the Guangxi Social Science Excellent Achievement Award in 2018 for her multi-authored research addressing environmental challenges in the region. These accolades highlight her impactful contributions to both scientific advancement and environmental protection in Guangxi. Mao’s continuous recognition through competitive awards reflects her dedication, innovative research, and leadership in atmospheric science.

Conclusion

Jingying Mao is a highly qualified atmospheric scientist with substantial expertise in air pollution modeling, aerosol chemistry, and climate impact studies. Her educational background, professional experience, and successful leadership in both national and regional research projects position her as a valuable contributor to the field of atmospheric environment and climate change. Mao’s research is not only scientifically rigorous but also practically oriented, focusing on developing strategies for pollution control and environmental sustainability. Her recognized contributions and award-winning projects demonstrate her influence and growing leadership within the scientific community. Moving forward, Mao is well-positioned to expand her research on the interaction between atmospheric processes and climate dynamics, furthering her contributions to solving pressing environmental issues.

Publications Top Notes

  • Pollution characteristics of peroxyacetyl nitrate in karst areas in Southwest China

    • Authors: Songjun Guo, Xu Wei, Hongjiao Li, Wen Qin, Yijun Mu, Jiongli Huang, Chuan Nong, Junchao Yang, Dabiao Zhang, Hua Lin, Jingying Mao

    • Year: 2023

  • Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China

    • Authors: Jingying Mao, Fenghua Yan, Lianming Zheng, Yingchang You, Weiwen Wang, Shiguo Jia, Wenhui Liao, Xuemei Wang, Weihua Chen

    • Year: 2022

  • Evaluation of Biogenic Organic Aerosols in the Amazon Rainforest Using WRF‐Chem With MOSAIC

    • Authors: Jingying Mao, Luxi Zhou, Liqing Wu, Weihua Chen, Xuemei Wang, Pengfei Yu

    • Year: 2021

  • Comparative study of chemical characterization and source apportionment of PM2.5 in South China by filter-based and single particle analysis

    • Authors: Jingying Mao, Liming Yang, Zhaoyu Mo, Zongkai Jiang, Padmaja Krishnan, Sayantan Sarkar, Qi Zhang, Weihua Chen, Buqing Zhong, Yuan Yang

    • Year: 2021

  • A Comparative Study on Air Pollution Characteristics in Four Key Cities during 2013 in Guangxi Province, China

    • Authors: Jing-Ying Mao, Zhi-Ming Chen, Zong-Kai Jiang, Zhao-Yu Mo, Hong-Jiao Li, Fan Meng, Bei Chen, Hui-Jiao Ling, Hong Li

    • Year: 2021

  • Highly time-resolved aerosol characteristics during springtime in Weizhou Island

    • Authors: Jingying Mao, Zhiming Chen, Zhaoyu Mo, Xiaoyang Yang, Hong Li, Yonglin Liu, Huilin Liu, Jiongli Huang, Junchao Yang, Hongjiao Li

    • Year: 2018

Li Yan | Energy | Best Researcher Award

Dr. Li Yan | Energy | Best Researcher Award

Assistant Researcher from Beijing University of Technology, China

Dr. Yan Li is an accomplished researcher in the field of energy materials, currently serving as an Assistant Researcher at Beijing University of Technology. With a strong academic background and postdoctoral training at one of China’s most prestigious universities, he has developed expertise in designing and synthesizing advanced cathode materials for both lithium-ion and sodium-ion batteries. His work focuses on improving battery performance, safety, and understanding degradation mechanisms through cutting-edge in situ and operando transmission electron microscopy (TEM) techniques. Dr. Li’s contribution lies not only in material synthesis but also in developing novel characterization methods to address the fundamental scientific challenges related to energy storage systems. His multidisciplinary approach combines materials science, electrochemistry, and electron microscopy to explore next-generation battery technologies. Dr. Li is emerging as a strong presence in the research community, known for his technical depth, innovative thinking, and commitment to solving real-world energy problems. His current research aims to enhance the reliability and lifespan of battery systems, which are crucial for applications in electric vehicles, portable electronics, and grid storage. Dr. Yan Li continues to make substantial contributions to the scientific community and has the potential to influence global advancements in sustainable energy technologies.

Professional Profile

Education

Dr. Yan Li obtained his Doctor of Philosophy (Ph.D.) degree in 2016 from Nanjing Tech University, Nanjing, China, where he specialized in the field of materials science and engineering with a particular emphasis on electrochemical energy storage systems. His academic journey began with a solid foundation in chemistry and material science, which later evolved into specialized research in battery technologies. During his Ph.D. studies, Dr. Li gained rigorous training in materials synthesis, electrochemical analysis, and structural characterization, setting the groundwork for his future innovations in energy storage. His doctoral thesis likely explored aspects of material behavior under electrochemical conditions, especially within battery systems. His academic excellence and research potential were evident early on, leading to postdoctoral opportunities at leading institutions. Dr. Li’s commitment to academic rigor and continuous learning has enabled him to stay at the forefront of energy research. The comprehensive nature of his education has played a critical role in shaping his ability to address complex challenges in the development of high-performance and safe battery materials, making him a valuable asset in both academic and industrial research environments.

Professional Experience

Dr. Yan Li is currently employed as an Assistant Researcher at Beijing University of Technology, where he is actively involved in energy materials research. Before his current role, he worked as a Postdoctoral Researcher in the Automotive Department at Tsinghua University, one of China’s top-tier institutions. During his postdoctoral tenure, he contributed to projects that explored the performance and safety of batteries in vehicular applications, particularly electric vehicles. His responsibilities included not only experimental research but also data analysis, project planning, and collaboration with cross-disciplinary teams. These roles provided him with invaluable experience in applying academic research to real-world industrial needs. At Beijing University of Technology, Dr. Li continues to expand his research on lithium-ion and sodium-ion battery technologies. His professional work integrates both fundamental research and applied science, offering insights into battery degradation, safety, and longevity. This professional journey underscores his ability to contribute to high-impact research projects while also nurturing the skills required for academic leadership and innovation. Through these experiences, Dr. Li has built a strong foundation for further academic achievements and collaborative ventures in the global energy research community.

Research Interest

Dr. Yan Li’s research interests lie at the intersection of materials science, electrochemistry, and energy storage systems. He is particularly focused on the design, synthesis, and optimization of cathode materials for lithium-ion and sodium-ion batteries. These energy storage technologies are pivotal for the future of electric vehicles, renewable energy integration, and portable electronic devices. His research explores new material chemistries that offer higher energy density, better thermal stability, and longer cycle life. One of the most distinctive aspects of Dr. Li’s work is his application of in situ and operando transmission electron microscopy (TEM) to study the real-time structural and chemical changes occurring in battery materials during operation. This technique allows for the direct observation of degradation mechanisms, providing critical insights that can lead to safer and more durable battery systems. Additionally, Dr. Li is interested in exploring environmentally friendly and cost-effective alternatives to conventional battery materials. His multidisciplinary approach and continuous pursuit of innovation highlight his dedication to solving pressing energy challenges and advancing battery technology for broader societal impact.

Research Skills

Dr. Yan Li possesses a diverse and robust set of research skills that make him a leading expert in the field of energy storage materials. His core competencies include advanced materials synthesis, especially in the development of cathode materials for lithium-ion and sodium-ion batteries. He is proficient in a wide array of characterization techniques, with specialized expertise in in situ and operando transmission electron microscopy (TEM), which allows him to analyze material transformations and degradation processes in real-time during battery operation. His skills also encompass electrochemical testing, such as cyclic voltammetry, galvanostatic charge/discharge measurements, and impedance spectroscopy, which are essential for evaluating the performance of battery materials. Dr. Li has hands-on experience with battery fabrication techniques, including electrode preparation, coin-cell assembly, and safety testing protocols. Additionally, he is skilled in data analysis, scientific writing, and project management, making him capable of leading and executing comprehensive research projects. His ability to integrate theoretical knowledge with experimental practice enables him to develop innovative solutions in the realm of energy storage, ensuring both academic excellence and industrial relevance.

Awards and Honors

While specific awards and honors received by Dr. Yan Li have not been publicly listed, his academic and professional trajectory suggests a strong record of recognition and merit. Being selected for a postdoctoral position at Tsinghua University, a globally recognized institution, is itself an indicator of high academic standing and research potential. His current appointment as an Assistant Researcher at Beijing University of Technology also reflects his capabilities and the trust placed in him by academic peers and senior faculty. It is likely that he has received institutional and project-based acknowledgments for his work on battery materials and electrochemical analysis. Furthermore, Dr. Li’s contributions to cutting-edge topics such as in situ characterization and energy storage mechanisms may have positioned him to receive future recognitions in the form of research grants, invitations to conferences, and publication awards. As his research output grows and gains visibility, he is well-positioned to earn national and international honors that further validate his contributions to the field of materials science and energy technology.

Conclusion

Dr. Yan Li is a promising and capable researcher with a strong academic foundation, diverse professional experience, and clear research focus in the field of advanced energy storage systems. His work on lithium-ion and sodium-ion battery cathode materials, combined with his innovative application of in situ and operando TEM, places him at the forefront of modern materials research. Dr. Li exhibits a balanced skill set that includes experimental technique, critical analysis, and interdisciplinary collaboration. While he is still in the early stages of his independent research career, his track record shows a consistent trajectory of growth and excellence. To further strengthen his global research profile, increased publication in high-impact journals, active international collaboration, and participation in global energy forums will be advantageous. Overall, Dr. Yan Li is highly suitable for recognition through a Best Researcher Award. His work not only contributes to academic knowledge but also addresses critical challenges in sustainable energy storage, making his research impactful both scientifically and societally. He represents the next generation of materials scientists capable of driving innovation in the energy sector.

Publication Top Notes

1. Removal of residual contaminants by minute-level washing facilitates the direct regeneration of spent cathodes from retired EV Li-ion batteries

  • Authors: Guo, Yi; Li, Yang; Qiu, Kai; Li, Yan; Yuan, Weijing; Li, Chenxi; Rui, Xinyu; Shi, Lewei; Hou, Yukun; Liu, Saiyue et al.

  • Year: 2025

2. Cryo-Sampling Enables Precise Evaluation of Thermal Stability of a Ni-Rich Layered Cathode

  • Authors: Mindi Zhang; Yan Li; Manling Sui; Pengfei Yan

  • Year: 2025

3. Cross-scale deciphering thermal failure process of Ni-rich layered cathode

  • Authors: Ding, Yang; Li, Yan; Xu, Ruoyu; Han, Xiao; Huang, Kai; Ke, Xiaoxing; Wang, Bo; Sui, Manling; Yan, Pengfei

  • Year: 2024

4. Early-stage latent thermal failure of single-crystal Ni-rich layered cathode

  • Authors: Han, Xiao; Xu, Ruoyu; Li, Yan; Ding, Yang; Zhang, Manchen; Wang, Bo; Ke, Xiaoxing; Sui, Manling; Yan, Pengfei

  • Year: 2024

5. Selective core-shell doping enabling high performance 4.6 V-LiCoO₂

  • Authors: Xia, Yueming; Feng, Jianrui; Li, Jinhui; Li, Yan; Zhang, Zhengfeng; Wang, Xiaoqi; Shao, Jianli; Sui, Manling; Yan, Pengfei

  • Year: 2024

6. Toward a high-voltage practical lithium ion batteries with ultraconformal interphases and enhanced battery safety

  • Authors: Li, Yan; Li, Jinhui; Ding, Yang; Feng, Xuning; Liu, Xiang; Yan, Pengfei; Sui, Manling; Ouyang, Minggao

  • Year: 2024

7. Advanced characterization guiding rational design of regeneration protocol for spent-LiCoO₂

  • Authors: Mu, Xulin; Huang, Kai; Zhu, Genxiang; Li, Yan; Liu, Conghui; Hui, Xiaojuan; Sui, Manling; Yan, Pengfei

  • Year: 2023

8. Mitigating Twin Boundary-Induced Cracking for Enhanced Cycling Stability of Layered Cathodes

  • Authors: Mu, Xulin; Hui, Xiaojuan; Wang, Mingming; Wang, Kuan; Li, Yan; Zhang, Yuefei; Sui, Manling; Yan, Pengfei

  • Year: 2023

9. Development of cathode-electrolyte-interphase for safer lithium batteries

  • Authors: Wu, Yu; Liu, Xiang; Wang, Li; Feng, Xuning; Ren, Dongsheng; Li, Yan; Rui, Xinyu; Wang, Yan; Han, Xuebing; Xu, Gui-Liang et al.

  • Year: 2021

10. Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries

  • Authors: Hou, Junxian; Feng, Xuning; Wang, Li; Liu, Xiang; Ohma, Atsushi; Lu, Languang; Ren, Dongsheng; Huang, Wensheng; Li, Yan; Yi, Mengchao et al.

  • Year: 2021

 

 

 

Yige Zhao | Energy | Best Researcher Award

Assoc. Prof. Dr. Yige Zhao | Energy | Best Researcher Award

Dr. Yige Zhao is an accomplished Associate Professor at the School of Materials Science and Engineering, Zhengzhou University, with a research focus on advanced energy materials and devices. Her work spans the development of innovative solutions in hydrogen energy, electrocatalysis, and next-generation energy storage systems such as metal-air and lithium-sulfur batteries. With a strong educational foundation from Beijing University of Chemical Technology and rich professional experience in academia, Dr. Zhao has established herself as a leading expert in clean energy research. She has been at the forefront of several major research initiatives, including national and provincial-level projects, and maintains active collaborations with industry partners to ensure practical application of her work. In addition to her robust research profile, Dr. Zhao is a dedicated educator, delivering core undergraduate and innovation-based courses and mentoring graduate students. She has contributed significantly to academic literature with publications in high-impact journals and holds patents on novel electrocatalysts. Recognized for her excellence in both research and teaching, Dr. Zhao has received multiple honors and awards at the university and provincial levels. Her contributions are shaping the future of sustainable energy technologies in China and beyond, demonstrating her commitment to scientific innovation, education, and real-world impact.

Professional Profile

Education

Dr. Yige Zhao’s academic journey began at Beijing University of Chemical Technology, where she earned both her bachelor’s and doctoral degrees in Materials Science and Engineering. From 2009 to 2013, she pursued her undergraduate studies, laying a strong foundation in material chemistry, polymer science, and electrochemical systems. Following her bachelor’s degree, she continued her education at the same institution, completing her Ph.D. in 2018. During her doctoral research, she delved deeply into the synthesis and characterization of energy-related materials, with a specific focus on their application in sustainable technologies such as fuel cells and water-splitting devices. Her rigorous academic training equipped her with comprehensive knowledge in materials processing, advanced characterization techniques, and catalytic mechanisms. The Ph.D. experience also fostered her ability to independently manage research projects and collaborate across disciplines. Her formal education, combined with hands-on lab experience and participation in national-level projects during her doctoral studies, has been crucial in shaping her future career in academia and research. The excellence of her academic record not only underscores her technical competence but also reflects her persistent dedication to addressing global energy challenges through scientific innovation.

Professional Experience

Since July 2018, Dr. Yige Zhao has been affiliated with Zhengzhou University’s School of Materials Science and Engineering, initially joining as a lecturer and subsequently promoted to the role of Associate Professor. Her professional experience in this capacity has been defined by her leadership in academic instruction, research innovation, and student mentorship. She has played a pivotal role in developing and teaching core undergraduate courses such as Electrochemistry, New Energy Device Innovation Practice, and Innovation and Entrepreneurship Training. These courses are aligned with her research specializations and have been instrumental in preparing students for careers in clean energy technologies. In addition to her teaching duties, Dr. Zhao has successfully led several funded research projects sponsored by the National Natural Science Foundation of China, Henan Provincial Science and Technology Department, and other institutional platforms. Her involvement with industrial projects through horizontal enterprise collaborations further reflects her practical orientation and commitment to technology transfer. She also supervises graduate research through the National Joint Research Center for Low-Carbon Environmental Protection Materials. With an emphasis on collaborative innovation, Dr. Zhao’s professional journey demonstrates a balanced blend of theoretical knowledge and application-driven research, marking her as a dynamic contributor to China’s sustainable energy ambitions.

Research Interest

Dr. Zhao’s research interests are centered around the synthesis, modification, and application of advanced materials for clean energy conversion and storage. Her work addresses critical challenges in hydrogen energy production, storage, and utilization, as well as the development of efficient electrocatalysts for oxygen evolution and reduction reactions. She has a particular interest in the design of bifunctional materials that enable high-performance metal-air batteries and overall water splitting devices. Dr. Zhao’s investigations extend to lithium-sulfur and zinc-air battery systems, aiming to enhance their stability, conductivity, and charge-discharge efficiency through nanostructuring and surface engineering. She is especially adept at designing carbon-based nanomaterials doped with transition metals and heteroatoms to boost electrocatalytic activity. Her work also involves in situ characterization techniques to explore the underlying mechanisms of energy storage reactions. These multidisciplinary efforts integrate chemistry, materials science, and environmental engineering to create novel solutions for next-generation energy needs. Dr. Zhao’s long-term goal is to contribute to the global transition to low-carbon technologies by developing scalable and cost-effective materials that support sustainable energy systems. Her research is both fundamental and applied, providing innovative directions in material design for clean energy technologies.

Research Skills

Dr. Yige Zhao possesses an advanced skill set in both experimental and analytical aspects of materials research, particularly in the field of electrocatalysis and energy storage devices. Her expertise includes the synthesis of nanostructured materials such as doped carbon nanofibers, porous carbon matrices, and hybrid composites with metal-based active sites. She is highly proficient in techniques like electrospinning, chemical vapor deposition, and hydrothermal synthesis. Dr. Zhao also brings deep experience in utilizing high-end characterization tools such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and in situ electrochemical methods to probe catalytic mechanisms. She is skilled in electrochemical testing techniques, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV), crucial for evaluating electrocatalyst performance. Additionally, she has a demonstrated ability to design experimental systems for full-cell battery evaluation, including zinc-air and lithium-sulfur batteries. Dr. Zhao’s interdisciplinary skills enable her to bridge material design with device integration, allowing a holistic approach to innovation in energy technologies. Her ability to conduct mechanistic studies, coupled with process optimization and scale-up, reflects a rare blend of theoretical insight and practical implementation capacity.

Awards and Honors

Dr. Yige Zhao has received numerous accolades recognizing her contributions to scientific research and education. Among the most prestigious is the Henan Provincial Department of Education Science and Technology Achievement Award, which highlights the significance of her innovations in energy materials. She was also awarded the First Prize for Excellent Scientific Papers by the same department, reflecting the high academic quality and impact of her publications. Her role as a Mentor for the National Innovation and Entrepreneurship Training Program for University Students underlines her commitment to fostering research talent and promoting creativity among the next generation. At Zhengzhou University, Dr. Zhao has been consistently recognized for her excellence in student mentorship and academic leadership, earning titles such as Outstanding Undergraduate Thesis Advisor and Excellent Class Advisor. These honors are a testament to her holistic contributions—not just in laboratory research but also in education, leadership, and student engagement. The range of awards from both institutional and governmental levels affirms her status as a prominent figure in the field of energy materials and highlights her ongoing influence in advancing both academic scholarship and sustainable technologies.

Conclusion

In conclusion, Dr. Yige Zhao stands out as a highly accomplished researcher and academic leader in the field of new energy materials and devices. Her comprehensive educational background, innovative research contributions, and dedication to teaching make her an exemplary candidate for recognition in any competitive award platform. She has made significant strides in addressing pressing energy challenges through her work on hydrogen energy, metal-air batteries, and electrocatalysis, combining fundamental science with practical applications. Her published work in top-tier journals and patent contributions underscore her scientific excellence, while her success in securing national and provincial research funding demonstrates her leadership and credibility in the research community. Additionally, her active involvement in student development and academic instruction reflects a deep commitment to knowledge transfer and mentorship. As global energy systems shift toward sustainability, the work of scientists like Dr. Zhao becomes increasingly vital. Her interdisciplinary approach, strategic vision, and hands-on research skills position her as a driving force in clean energy innovation. Dr. Zhao not only meets but exceeds the criteria for the Best Researcher Award, making her a deserving candidate whose contributions are already making a meaningful impact in the field of sustainable energy science.

Publications Top Notes

A Parallel Array Structured Cobalt Sulfide/Nitrogen Doped Carbon Nanocage/Carbon Fiber Composite Based on Microfluidic Spinning Technology

  • Authors: Yige Zhao, Ting Li, Qing Wang, Yinyin Ai, Ruohan Hou, Aneela Habib, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2024

2. Bead-Structured Triple-Doped Carbon Nanocage/Carbon Nanofiber Composite as a Bifunctional Oxygen Electrocatalyst for Zn–Air Batteries

  • Authors: Qing Wang, Yige Zhao, Bo Zhang, Yukun Li, Xiang Li, Guosheng Shao, Peng Zhang

  • Year: 2024

3. One-Pot Synthesis of Nitrogen-Doped Porous Carbon Derived from the Siraitia grosvenorii Peel for Rechargeable Zinc–Air Batteries

  • Authors: Lu Li, Mengyao Zhao, Bo Zhang, Guosheng Shao, Yige Zhao

  • Year: 2023

4. Li Intercalation in an MoSe₂ Electrocatalyst: In Situ Observation and Modulation of Its Precisely Controllable Phase Engineering for a High‐Performance Flexible Li‐S Battery

  • Authors: Yunke Wang, Yige Zhao, Kangli Liu, Shaobin Wang, Neng Li, Guosheng Shao, Feng Wang, Peng Zhang

  • Year: 2023

5. Watermelon Peel‐Derived Nitrogen‐Doped Porous Carbon as a Superior Oxygen Reduction Electrocatalyst for Zinc‐Air Batteries

  • Authors: Lu Li, Zhiheng Wu, Jin Zhang, Yige Zhao, Guosheng Shao

  • Year: 2021

6. Sponge Tofu-like Graphene-Carbon Hybrid Supporting Pt–Co Nanocrystals for Efficient Oxygen Reduction Reaction and Zn–Air Battery

  • Authors: Yige Zhao, Lu Li, Dengke Liu, Zhiheng Wu, Yongxie Wang, Jingjun Liu, Guosheng Shao

  • Year: 2021

7. Nitrogen-Doped Vertical Graphene Nanosheets by High-Flux Plasma Enhanced Chemical Vapor Deposition as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries

  • Authors: Zhiheng Wu, Yongshang Zhang, Lu Li, Yige Zhao, Yonglong Shen, Shaobin Wang, Guosheng Shao

  • Year: 2020

8. Adding Refractory 5d Transition Metal W into PtCo System: An Advanced Ternary Alloy for Efficient Oxygen Reduction Reaction

  • Authors: Yige Zhao et al.

  • Year: 2018

9. PDA-Assisted Formation of Ordered Intermetallic CoPt₃ Catalysts with Enhanced Oxygen Reduction Activity and Stability

  • Authors: Yige Zhao et al.

  • Year: 2018

10. Dependent Relationship between Quantitative Lattice Contraction and Enhanced Oxygen Reduction Activity over Pt–Cu Alloy Catalysts

  • Authors: Yige Zhao et al.

  • Year: 2017

Xinjian Fan | Environmental Science | Best Researcher Award

Mr. Xinjian Fan | Environmental Science | Best Researcher Award

Associate Professor from Lanzhou University of Technology, China

Dr. Fan Xinjian is an esteemed associate professor and master’s supervisor specializing in water conservancy and hydropower engineering. He currently serves as the Director of the Department of Water Conservancy and Hydropower Engineering at Lanzhou University of Technology. A graduate with a Ph.D. in Engineering from the Nanjing Hydraulic Research Institute, Dr. Fan has significantly contributed to the academic and professional landscape of hydraulic engineering in China. With a research portfolio spanning over 50 national, provincial, and enterprise-level projects, his work has brought forth practical solutions to some of the field’s most complex problems, including high arch dam flood discharge and energy dissipation mechanisms. As a dedicated educator, he integrates scientific research with hands-on learning experiences for students, having led numerous teaching and innovation projects. His contribution is well-recognized through various awards and honors in both research and teaching. Dr. Fan’s expertise in ecological hydraulics, computational hydraulics, and sediment dynamics makes him a leading authority in his field. His profile is a model of how academic leadership, research excellence, and practical application can come together to support national infrastructure and environmental goals, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Fan Xinjian holds a Doctorate in Engineering from the prestigious Nanjing Hydraulic Research Institute. His advanced education laid a strong foundation in the theoretical and applied aspects of water resources and hydraulic engineering. At the doctoral level, he received specialized training in computational and ecological hydraulics, river basin management, sediment transport dynamics, and energy dissipation mechanisms. His academic training was reinforced with hands-on research experience, equipping him to tackle real-world engineering problems with a research-driven approach. Dr. Fan’s formal education combined rigorous academic coursework with practical application, which played a key role in developing his expertise in high-head hydropower systems, open channel flow analysis, and hydraulic structure optimization. The interdisciplinary exposure during his Ph.D. has enabled him to effectively bridge theory and practice, particularly in hydrological modeling, flow dynamics, and flood risk mitigation. His educational background continues to inform his ongoing research, teaching, and innovation work, as he trains the next generation of hydraulic engineers. His ability to translate complex hydraulic theories into practical designs and policies is a direct reflection of the quality of education he received and the dedication he has shown throughout his academic journey.

Professional Experience

Dr. Fan Xinjian brings over two decades of academic and research experience in hydraulic and water resources engineering. He serves as the Director of the Department of Water Conservancy and Hydropower Engineering at Lanzhou University of Technology. He also leads the provincial experimental teaching demonstration center and coordinates the Hongliu First-Class Major in Water Conservancy and Hydropower Engineering. His professional journey includes leadership of more than 50 national and provincial-level projects, including the National Natural Science Foundation, National Science and Technology Support Plan, and international cooperative research initiatives. Dr. Fan is a member of key professional bodies such as the Chinese Hydraulic Society, the Gansu Hydraulic Society, and the Chinese Hydropower Engineering Society. In his academic capacity, he has developed and delivered core undergraduate and graduate-level courses, including “Introduction to Water Conservancy Engineering” and “Hydraulic Structures.” He has also supervised numerous graduation theses, practical internships, and student design projects. His leadership in project management, educational innovation, and engineering applications exemplifies a strong blend of research, teaching, and community engagement. Dr. Fan’s professional experience highlights his comprehensive understanding of the hydraulic engineering landscape, making him a well-respected figure in both academic and engineering circles.

Research Interest

Dr. Fan Xinjian’s primary research interests lie in the fields of computational hydraulics, ecological hydraulics, hydraulic structures, and river basin sediment dynamics. His research is driven by the need to address real-world water conservancy challenges, especially in mountainous terrains and regions with high-head dams. One of his key interests is the study and optimization of flood discharge and energy dissipation systems for large-scale hydropower structures. He has made significant contributions to this area through research on the Jinping I high arch dam and Longkoukou dam systems. His work extends to understanding the interactions between water and vegetation in open channels, particularly under the influence of submerged flexible vegetation. This research sheds light on resistance, flow patterns, and sediment transport—critical elements for ecological conservation and hydraulic modeling. He is also keenly interested in developing digital simulation systems that integrate ecological and engineering hydraulics for better river management. These interests align closely with the pressing global issues of sustainable water infrastructure, flood management, and river ecosystem restoration. Dr. Fan’s multi-disciplinary approach enables him to contribute novel insights and engineering solutions that combine hydrodynamics, environmental science, and computational modeling.

Research Skills

Dr. Fan Xinjian possesses a broad range of research skills that enable him to approach hydraulic engineering problems from both theoretical and applied perspectives. He is highly proficient in computational modeling and simulation, which he uses to analyze complex water flow and energy dissipation systems. His skills include the development of numerical models to assess flood discharge, turbulence, and sediment transport in both natural and engineered waterways. He is adept at laboratory-based experimental research, having led physical modeling studies on high-velocity flow and bottom plate energy dissipation devices. In addition, Dr. Fan is skilled in data analysis, using modern hydraulic measurement tools and statistical software to interpret flow dynamics and optimize hydraulic structures. He also has experience in drafting technical reports, scientific papers, and patent documentation. With strong collaborative abilities, he has coordinated interdisciplinary projects involving engineers, ecologists, and government agencies. His grant writing skills have helped secure major national and provincial funding. Dr. Fan’s mentorship abilities further amplify his research capacity, as he actively involves students in experimentation, fieldwork, and competitions. His wide-ranging skill set allows him to produce high-impact research with direct applications in dam safety, environmental conservation, and water resource management.

Awards and Honors

Dr. Fan Xinjian has received multiple prestigious awards in recognition of his outstanding contributions to research and teaching in hydraulic engineering. His research has been honored with three first prizes and one second prize from the Gansu Water Conservancy Science and Technology Progress Awards, reflecting the practical impact and innovation of his work. In the educational domain, he has secured two second prizes in provincial and ministerial teaching achievement awards, in addition to a third prize in the National University Teachers’ Teaching Innovation Competition. His recognition extends to intellectual property as well, with three national invention patents, five utility model patents, and one software copyright, showcasing his inventive and solutions-oriented research approach. Beyond formal awards, Dr. Fan has earned distinctions such as the Teaching Excellence Award, Graduation Design Outstanding Instructor Award, Teaching Quality Excellence Award, and the Three Education Awards. He has also led student teams to win more than 20 national and provincial science and technology innovation competitions, highlighting his excellence in student mentorship. These accolades not only affirm his research excellence but also his holistic contributions to education, innovation, and professional development in hydraulic engineering.

Conclusion

Dr. Fan Xinjian exemplifies the profile of a high-impact researcher and educator whose work bridges theoretical research and real-world application. His expertise in hydraulic and ecological engineering has led to significant advancements in the understanding and management of complex water systems, particularly in flood control and sediment transport. With more than 50 national and provincial research projects under his leadership or participation, he has developed practical engineering solutions that have been applied to iconic structures such as the Jinping I high arch dam. His recognition through numerous awards and patents highlights his influence and innovation. Furthermore, his dedication to student mentorship and educational excellence reflects his commitment to shaping the next generation of engineers. Through his administrative roles and academic leadership, he contributes actively to national capacity-building in hydraulic engineering. His profile presents a rare integration of research, teaching, and leadership, making him a compelling candidate for the Best Researcher Award. Dr. Fan’s continued contributions are expected to further advance the development of sustainable and intelligent water infrastructure in China and beyond.

Stefano Focardi | Environmental Science | Excellence in Innovation Award

Dr. Stefano Focardi | Environmental Science | Excellence in Innovation Award

ISC-CNR, Italy

Stefano Focardi is a distinguished wildlife ecologist with a career dedicated to understanding the complex interactions between animals and their environments. Over the course of his career, he has made significant contributions to wildlife population dynamics, animal behavior, and biodiversity conservation, particularly with a focus on endangered species such as the Italian roe deer. Focardi’s work emphasizes the importance of quantitative models in ecological studies, contributing to a more sophisticated understanding of species conservation. His research has earned him a prominent place within the scientific community, as he has led numerous international collaborations and mentored many young researchers. Focardi’s contributions to the academic and scientific community are evident in his leadership roles in research institutions, as well as his active participation in organizing scientific conferences. His work bridges the gap between theoretical ecological research and practical conservation efforts, making his contributions impactful not only in academia but also in conservation practice. Focardi’s career is a testament to his commitment to wildlife ecology, and his influence continues to shape conservation strategies and policies globally.

Professional Profile

Education

Stefano Focardi earned his academic credentials through rigorous training in wildlife ecology and biological sciences. He completed his undergraduate studies at the University of Florence, where he developed an interest in animal behavior and population ecology. He went on to complete his Ph.D. at the same institution, where his doctoral research focused on wildlife population dynamics, specifically regarding ungulates. His academic journey was further enriched by postdoctoral work at several prestigious institutions, where he specialized in advanced ecological modeling and conservation biology. Throughout his education, Focardi developed a strong foundation in quantitative methods, which he would later apply to ecological research. His educational background reflects a commitment to understanding and addressing critical issues in conservation, particularly in regard to endangered species and habitat management. The knowledge and expertise Focardi gained throughout his education provided him with the tools to become a leader in his field, making significant strides in both theoretical and applied ecology. His academic training has been integral to his success as a researcher and educator, shaping his approach to understanding and solving complex ecological problems.

Professional Experience

Stefano Focardi’s professional experience spans over several decades, during which he has held prominent positions in research and academia. He has worked with multiple research institutions and universities across Europe, contributing his expertise in wildlife ecology and population dynamics. Focardi has served as a faculty member at the University of Florence, where he has been involved in teaching and mentoring students in ecology and conservation biology. His leadership extended to administrative roles, where he oversaw research projects and coordinated collaborations with international conservation organizations. Additionally, Focardi has worked as a senior researcher on several high-profile conservation projects, applying his skills in ecological modeling and data analysis to improve wildlife management strategies. His professional experience also includes extensive fieldwork, during which he has studied and monitored endangered species, providing valuable insights into their behavior and population trends. Focardi’s career is marked by his commitment to bridging the gap between academic research and practical conservation efforts, ensuring that his work contributes to real-world solutions in biodiversity conservation.

Research Interests

Stefano Focardi’s research interests center on wildlife population dynamics, animal behavior, and biodiversity conservation. He is particularly known for his work on species conservation and the use of quantitative methods, such as capture-recapture models and distance sampling, to better understand animal populations. Focardi’s primary focus has been on ungulate species, including the Italian roe deer, and his research aims to improve conservation strategies for these endangered animals. He is also interested in understanding the ecological processes that drive species behavior and their interaction with environmental changes. His research integrates both theoretical and applied ecology, using mathematical models to predict the impacts of human activity, climate change, and habitat destruction on wildlife populations. Focardi is an advocate for evidence-based conservation, ensuring that ecological models inform decision-making processes in conservation policies. His work in adaptive management, particularly for species in protected areas, has been influential in shaping conservation management practices. Focardi’s research continues to address pressing ecological challenges, and his work remains at the forefront of wildlife conservation science.

Research Skills

Stefano Focardi possesses a wide range of research skills that have been honed throughout his career. He is highly skilled in quantitative modeling, particularly in the use of ecological models to understand population dynamics and animal behavior. His expertise includes capture-recapture methods, distance sampling, and other statistical techniques that are essential for studying wildlife populations in the field. Focardi is also proficient in the use of software tools for data analysis and simulation modeling, such as R and program MARK. In addition to his technical skills, Focardi has extensive experience in fieldwork, where he has designed and conducted wildlife surveys and monitoring programs in diverse ecological settings. His ability to collect and analyze data from both field studies and laboratory experiments has been central to his research. Focardi is also a skilled communicator, with a strong track record of publishing research findings in peer-reviewed journals and presenting at international conferences. His interdisciplinary approach allows him to collaborate effectively with experts from various fields, including conservation biology, mathematics, and environmental science.

Awards and Honors

Throughout his distinguished career, Stefano Focardi has received numerous awards and honors in recognition of his contributions to wildlife ecology and conservation science. His groundbreaking research on wildlife population dynamics has earned him accolades from leading conservation organizations and academic institutions. He has received prestigious grants for his research projects, particularly those focused on the conservation of endangered species in Europe. Focardi’s work has been cited extensively in scientific literature, further underscoring the impact of his research in the field of wildlife ecology. In addition to academic recognition, he has been invited to serve as an editor for major ecological journals, where his expertise is highly valued in shaping the direction of research in conservation biology. His leadership in organizing and leading international conferences on wildlife conservation has also been recognized as a major contribution to the global scientific community. Focardi’s awards reflect his exceptional career and his dedication to advancing scientific knowledge in the service of biodiversity conservation.

Conclusion

Stefano Focardi is a highly accomplished wildlife ecologist whose contributions to the field of biodiversity conservation have been profound and far-reaching. His research, particularly in wildlife population dynamics and the conservation of endangered species, has had a lasting impact on both scientific theory and practical conservation strategies. Focardi’s innovative use of ecological models and his emphasis on adaptive management have made him a leader in his field. He has demonstrated an exceptional ability to bridge the gap between theoretical research and real-world applications, making his work highly relevant to contemporary conservation efforts. His collaborations with international research groups and conservation organizations further amplify the influence of his work, positioning him as a key figure in global wildlife conservation. As an educator, mentor, and leader, Focardi has shaped the careers of many young researchers, ensuring the continued growth of the field. His legacy is one of scientific excellence and a deep commitment to the preservation of biodiversity for future generations. Focardi’s career serves as an exemplary model of how rigorous scientific research can contribute to solving the pressing environmental challenges of our time.

Publications Top Notes

  1. Title: Making the best of a hard job: A response to Nakashima (2022)
    Authors: Santini, Giacomo; Abolaffio, Milo; Ossi, Federico; Cagnacci, Francesca; Focardi, Stefano
    Year: 2022

  2. Title: On the mean path length invariance property for random walks of animals in open environment
    Authors: Tommasi, Federico; Fini, Lorenzo; Focardi, Stefano; Santini, Giacomo; Cavalieri, Stefano
    Journal: Scientific Reports
    Year: 2022
    Citations: 6

  3. Title: Population assessment without individual identification using camera-traps: A comparison of four methods
    Authors: Santini, Giacomo; Abolaffio, Milo; Ossi, Federico; Cagnacci, Francesca; Focardi, Stefano
    Journal: Basic and Applied Ecology
    Year: 2022
    Citations: 20

  4. Title: Day versus night use of forest by red and roe deer as determined by Corine Land Cover and Copernicus Tree Cover Density: assessing use of geographic layers in movement ecology
    Authors: Salvatori, Marco; de Groeve, Johannes E.; van Loon, E. Emiel; Van De Weghe, Nico; Cagnacci, Francesca
    Journal: Landscape Ecology
    Year: 2022
    Citations: 9

  5. Title: Quantifying the errors in animal contacts recorded by proximity loggers
    Authors: Ossi, Federico; Focardi, Stefano; Tolhurst, Bryony Anne; Gaillard, Jean Michel; Cagnacci, Francesca
    Journal: Journal of Wildlife Management
    Year: 2022
    Citations: 2

  6. Title: Mapping out a future for ungulate migrations
    Authors: Kauffman, Matthew J.; Cagnacci, Francesca; Chamaillé-Jammes, Simon; Xu, Wenjing; Zuther, Steffen
    Journal: Science
    Year: 2021
    Citations: 84

  7. Title: Effects of pulsed resources on the dynamics of seed consumer populations: a comparative demographic study in wild boar
    Authors: Gamelon, Marléne; Touzot, Laura; Baubet, Éric; Veylit, Lara; Sæther, Bernt Erik
    Journal: Ecosphere
    Year: 2021
    Citations: 14

  8. Title: Sex differences in condition dependence of natal dispersal in a large herbivore: Dispersal propensity and distance are decoupled
    Authors: Hewison, Aidan Jonathan Mark; Gaillard, Jean Michel; Morellet, Nicolas; Börger, Luca; Focardi, Stefano
    Journal: Proceedings of the Royal Society B: Biological Sciences
    Year: 2021
    Citations: 8

Usman Mohammed Ali | Plant Science | Young Scientist Award

Mr. Usman Mohammed Ali | Plant Science | Young Scientist Award

Lecturer from Wollega University, Ethiopia

Usman Mohammed Ali is an Ethiopian researcher and educator specializing in plant science, horticulture, and crop production management. With a strong background in academic and practical applications, he is dedicated to improving agricultural practices in Ethiopia, focusing on sustainable crop production, climate resilience, and community engagement. Usman has demonstrated his leadership and organizational skills through various roles, such as the Council Secretary for the Plant Science Department and a lecturer at Wollega University. His research, particularly in areas like crop yield maximization and climate-smart horticultural practices, has been published in respected academic journals. Additionally, Usman actively participates in training farmers and development agents, ensuring that his research benefits local communities. His commitment to lifelong learning is evident from his numerous certifications and professional development efforts, including courses from Kansas State University. Usman continues to contribute significantly to both academia and practical agricultural development, positioning himself as a promising candidate for the Young Scientist Award.

Professional Profile

Education:

Usman Mohammed Ali holds a Master of Science degree in Horticulture from Wollega University, completed in February 2024. Prior to this, he earned a Bachelor of Science in Plant Science from Haramaya University in July 2018. These academic qualifications provided a strong foundation for his research in crop production, horticultural practices, and agricultural development. His education has allowed him to build a comprehensive understanding of plant science, equipping him with the necessary skills to contribute to sustainable agricultural practices. Usman’s academic journey has been further enriched by his continuous pursuit of knowledge, including certifications in specialized areas such as sorghum production and post-harvest management from Kansas State University. His solid educational background underpins his passion for advancing agricultural science and supporting local farming communities.

Professional Experience:

Usman’s professional experience is extensive and varied, with a focus on teaching, research, and administrative leadership. Since September 2022, he has worked as a Chief Technical Assistant-I and Lecturer at Wollega University, where he delivers courses in plant science, crop physiology, and horticultural management. In addition to his teaching duties, Usman serves as the Council Secretary for the Plant Science Department, coordinating faculty plans, budgets, and research activities. His work also involves the development and implementation of academic curricula and managing student affairs within the faculty. Usman is also actively involved in research projects that aim to improve crop productivity and sustainability in Ethiopia, particularly in the highland and lowland regions of East Wollega. His role in conducting basic research and providing training to farmers and development agents has significantly contributed to local agricultural practices.

Research Interests:

Usman Mohammed Ali’s research interests lie primarily in plant science, horticulture, and crop production management. He is particularly focused on improving crop yield, resilience to climate change, and the sustainability of agricultural practices in Ethiopia. His research explores various areas, including the adaptation of crops to different microclimates, the evaluation of crop quality and yield responses, and the development of climate-smart horticultural practices. Usman is also passionate about enhancing the production and market potential of specialty crops like coffee, which holds significant economic value in Ethiopia. His interest extends to agricultural systems that can increase food security and promote sustainable farming practices. Usman’s research contributes directly to addressing the challenges faced by farmers in Ethiopia, aiming to increase productivity, conserve natural resources, and build resilience in the agricultural sector.

Research Skills:

Usman Mohammed Ali possesses a strong set of research skills, making him a proficient scientist in the field of plant science and agriculture. He is well-versed in using various statistical and analytical software such as Minitab, SAS, SPSS, Genstat, and R-program, enabling him to analyze data and draw meaningful conclusions. His research also involves conducting field studies and experiments to evaluate crop performance under different environmental conditions. Usman is skilled in designing research proposals, writing action plans, and preparing quarterly and annual reports for research projects. His work is often collaborative, involving coordination with other researchers and institutions to implement and disseminate research findings. Additionally, Usman’s involvement in writing research papers and reviewing academic manuals showcases his attention to detail and commitment to academic excellence. His practical research experience, combined with his theoretical knowledge, makes him a capable and resourceful researcher in the agricultural sector.

Awards and Honors:

Usman Mohammed Ali has been recognized for his contributions to the field of agriculture, particularly for his research and community involvement. Notably, he received a certificate of appreciation for his one-month salary contribution to internally displaced persons (IDPs) by Wollega University. This reflects his dedication to supporting his community in times of need. Additionally, he has been awarded multiple certifications in recognition of his academic and professional development. These include certificates in sorghum production and post-harvest management from Kansas State University, as well as a certificate for his completion of a Master Class in online teaching from Arizona State University. Usman has also been awarded a research grant for his project on onion production techniques in western Ethiopia, highlighting his ability to secure funding for impactful research. These awards and honors underscore his commitment to both academic excellence and community service.

Conclusion:

Usman Mohammed Ali is a promising young scientist whose contributions to plant science and agriculture make him a strong candidate for the Young Scientist Award. His academic background, professional experience, and research interests reflect his dedication to improving agricultural practices and promoting sustainability in Ethiopia. Through his roles in teaching, research, and community service, Usman has demonstrated leadership and a deep commitment to making a positive impact on local farming communities. His research addresses critical challenges in crop production, climate change resilience, and food security, and his ongoing professional development ensures that he remains at the forefront of advancements in agricultural science. With his passion for research and his focus on practical applications, Usman is poised for continued success and is deserving of recognition for his work.

Publications Top Notes

  1. Tailoring Tomato (Solanum lycopersicum L.) Traits to Microclimates: A Multilocation Evaluation of Yield and Quality Responses in Western Ethiopia

    • Journal: Scientifica

    • Date: 2025-01

    • DOI: 10.1155/sci5/6345142

    • Contributors: Usman Mohammed Ali, Desalegn Negasa Soresa, Tilahun Wondimu Fufa, Mehdi Rahimi

  2. Climate-Smart Horticultural Practices: Building Resilience in a Changing Environment: A Scoping Review

  3. Current Status of Specialty Coffee Production and Market in Ethiopia: A Review

    • Journal: Journal of Agriculture

    • Date: 2024-04-30

    • DOI: 10.20372/AFNR.V2I1.844

    • Contributors: Usman Ali, Abdela Tufa

  4. Influence of Different Planting Dates Pertaining to the Length of Monsoon on Stalk Yield, Sugar Content and Estimated Ethanol Yield in Sweet Sorghum Varieties

  5. Teff (Eragrostis tef [Zucc] Trotter): An Emerging Global Demanding Crop

    • Journal: Agriculture Observer

    • Date: 2020-01-06

    • Contributors: Usman Mohammed Ali, B.C. Nandeshwar, Hirko O, Morketa G, Belay G, Reta F, Fufa M, Kinde L

 

Hu Fangyuan | Energy | Best Researcher Award

Prof. Dr. Hu Fangyuan | Energy | Best Researcher Award

Professor from Dalian University of Technology, China

Dr. Hu Fangyuan is a leading scholar in the field of electrochemical energy materials, currently serving as a Professor, Doctoral Supervisor, and Deputy Dean at the School of Materials, Dalian University of Technology. Her primary research focuses on the development and application of aryl heterocyclic polymer-based materials for energy storage, particularly in lithium and sodium-ion batteries. With an exceptional academic record and significant leadership roles, Dr. Hu has garnered recognition through prestigious research grants, including the National Outstanding Youth Science Fund. Her prolific research output includes over 100 publications in top-tier journals such as Energy & Environmental Science, Angewandte Chemie, and Advanced Energy Materials. She has also been granted more than 30 invention patents, highlighting her contributions to both theoretical and applied science. Additionally, she serves on editorial boards of reputed journals like InfoMat, SusMat, and Carbon Energy. Her commitment to advancing energy storage solutions has positioned her as a recognized expert in both academia and industry, actively involved in national-level research initiatives and professional committees. Dr. Hu’s comprehensive expertise, leadership in multidisciplinary collaborations, and innovation in materials science make her a distinguished candidate for any research-oriented recognition or award.

Professional Profile

Education

Dr. Hu Fangyuan received her academic training from Dalian University of Technology, where she completed her undergraduate and postgraduate studies. Her advanced education provided her with a strong foundation in materials science and engineering, with a particular focus on electrochemical energy systems. Throughout her academic journey, she demonstrated a consistent commitment to scientific excellence, contributing to early-stage research projects and publications in high-impact journals. Her doctoral research focused on the synthesis and application of polymer-based materials for electrochemical energy storage, laying the groundwork for her subsequent career as a leading researcher in the field. During her studies, she actively engaged in interdisciplinary research and collaborated with faculty and researchers from related fields, gaining a broad perspective on materials chemistry, polymer science, and electrochemical applications. Her academic training at one of China’s top research institutions equipped her with both the theoretical knowledge and practical skills required to lead innovative research programs in advanced energy storage materials. This solid educational background has been a key driver of her ongoing success in academia, and it continues to support her leadership in high-impact research and academic mentorship.

Professional Experience

Dr. Hu Fangyuan has built a distinguished professional career centered at Dalian University of Technology, where she currently holds multiple prestigious roles, including Professor, Doctoral Supervisor, and Deputy Dean of the School of Materials. Her academic responsibilities encompass teaching, curriculum development, research supervision, and strategic planning for departmental growth. Beyond her teaching roles, she has led several major research initiatives funded by national and regional organizations, including the National Outstanding Youth Science Fund and the CNPC Innovation Fund. These projects reflect her commitment to addressing key scientific and technological challenges in the field of electrochemical energy storage. In addition to her university-based work, Dr. Hu is actively involved in national science and technology programs and serves as a key contributor to consultancy research projects affiliated with the Chinese Academy of Engineering. Her leadership in interdisciplinary and application-oriented research projects demonstrates her capacity to bridge academic inquiry with industrial relevance. Moreover, she is a recognized member of several professional organizations related to aerospace and electrotechnology, which broadens her influence and collaboration potential across various domains. Dr. Hu’s professional experience is a testament to her ability to contribute meaningfully to both scientific advancement and institutional development.

Research Interest

Dr. Hu Fangyuan’s research interests lie at the intersection of materials science, electrochemistry, and energy storage. Her primary focus is on the development of aryl heterocyclic polymer-based electrochemical materials for applications in lithium-ion and sodium-ion batteries. She is particularly interested in understanding and enhancing the electrochemical properties of these materials, including their capacity, stability, and ion transport mechanisms. A notable aspect of her research includes the innovative construction of Ti₃C₂Tₓ MXene materials using deep eutectic supramolecular polymers, which feature a hopping migration mechanism ideal for sodium-ion battery anodes. Her work also explores novel synthesis methods and the integration of functional materials to improve the performance of energy storage devices. In addition to fundamental studies, Dr. Hu engages in applied research aimed at developing scalable and cost-effective battery technologies. Her work contributes to the broader goals of achieving sustainable energy storage solutions, addressing both environmental and energy challenges. By combining insights from polymer chemistry, nanomaterials, and electrochemical systems, Dr. Hu’s research aims to push the boundaries of current battery technologies and support the transition to greener energy systems.

Research Skills

Dr. Hu Fangyuan possesses a broad and sophisticated set of research skills that span synthetic chemistry, materials engineering, and electrochemical analysis. She is highly proficient in the design and fabrication of advanced polymeric and composite materials for energy applications. Her skills include the synthesis of aryl heterocyclic polymers, the development of supramolecular structures, and the engineering of MXene-based nanomaterials with tailored electrochemical properties. Dr. Hu is also well-versed in advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and various spectroscopy methods to analyze material morphology and chemical composition. Furthermore, she employs electrochemical testing methods including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy to evaluate the performance of battery materials. Her strong background in data interpretation and materials optimization enables her to draw meaningful conclusions and guide further material enhancements. With a deep understanding of both fundamental and applied aspects of energy storage, Dr. Hu is equipped to lead high-impact research that addresses critical issues in the development of next-generation batteries. Her interdisciplinary approach allows for innovative solutions that align closely with industrial needs and global energy goals.

Awards and Honors

Dr. Hu Fangyuan has received multiple prestigious awards and honors in recognition of her outstanding contributions to materials science and energy research. Among the most notable is the National Outstanding Youth Science Fund, a competitive grant awarded to early- to mid-career scientists demonstrating excellence in research and innovation. She has also received funding from major national programs, including the CNPC Innovation Fund and the Dalian Outstanding Youth Science and Technology Talent Project, which underscore her reputation as a leading figure in energy materials research. Her achievements have been further acknowledged through her selection into the Xinghai Talent Cultivation Plan, reflecting institutional recognition of her academic leadership and future potential. In addition to research-based awards, Dr. Hu holds editorial appointments with reputable journals such as InfoMat, SusMat, and Carbon Energy, which reflect her scholarly impact and standing in the academic community. Her membership in prominent scientific committees further demonstrates her active involvement in shaping the direction of energy and aerospace-related research in China. These honors collectively affirm Dr. Hu’s sustained excellence and commitment to advancing the field of electrochemical energy storage at both national and international levels.

Conclusion

Dr. Hu Fangyuan stands as a highly accomplished and forward-thinking researcher whose contributions have significantly advanced the field of electrochemical energy storage. Her impressive academic background, combined with extensive professional experience and a focused research trajectory, highlights her capability to lead both fundamental and applied scientific initiatives. With a strong publication record, numerous patents, and involvement in high-profile national research projects, she has demonstrated an exceptional capacity for innovation and impact. Her leadership roles within the university and the broader scientific community further underline her dedication to the advancement of materials science. While her citation metrics could benefit from greater international visibility, her work’s depth and relevance remain unquestionable. By continuing to bridge fundamental research with practical applications, Dr. Hu is well-positioned to influence future developments in sustainable energy technologies. Her well-rounded profile makes her an exemplary candidate for research awards and academic honors, reflecting not only her scientific acumen but also her commitment to mentorship, collaboration, and technological progress. In conclusion, Dr. Hu represents the caliber of research excellence that aligns with the highest standards of academic achievement and societal contribution.

Publications Top Notes

  1. Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor
    Authors: Dongming Liu, Mengfan Pei, Xin Jin, Xigao Jian, Fangyuan Hu
    Year: 2025

  2. Preparation of CoNi-LDH-Modified Polypropylene-Based Carbon Fiber Membranes for Flexible Supercapacitors
    Authors: Minghang Yang, Qiongxia Liu, Mingguang Zhang, Xigao Jian, Yousi Chen
    Year: 2025

  3. Rapid Na⁺ Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries
    Authors: Chang Su, Yunpeng Qu, Naiwen Hu, Xigao Jian, Fangyuan Hu
    Year: 2025

  4. Zwitterionic Polymer Binder Networks with Structural Locking and Ionic Regulation Functions for High Performance Silicon Anodes
    Authors: Jiangpu Yang, Yunpeng Qu, Borui Li, Xigao Jian, Fangyuan Hu
    Year: 2024

  5. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries
    Authors: Lin M. Wang, Shugang Xu, Zihui Song, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 2

  6. Fluorine and Nitrogen Codoped Carbon Nanosheets In Situ Loaded CoFe₂O₄ Particles as High-Performance Anode Materials for Sodium Ion Hybrid Capacitors
    Authors: Jinfeng Zhang, Yunpeng Qu, Mengfan Pei, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 1

  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na⁺ Migration Kinetics for Advanced Sodium-Ion Batteries
    Authors: Yuxin Yao, Mengfan Pei, Chang Su, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 8

  8. Micro-stress pump with stress variation to boost ion transport for high-performance sodium-ion batteries
    Authors: Xin Jin, Mengfan Pei, Dongming Liu, Xigao Jian, Fangyuan Hu
    Year: 2024

Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Assoc. Prof. Dr. Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Associate Professor in Chemical and polymer Engineering Department from Yazd University, Iran

Dr. Mitra Tavakoli Ardakani is an Associate Professor in the Chemical and Polymer Engineering Group at Yazd University, Iran. With a career spanning over two decades, she has made significant contributions to the field of polymer engineering, particularly in the development and characterization of polymer nanocomposites. Her research encompasses areas such as rubber blends, polymer processing, tissue engineering, and hydrogels. Dr. Tavakoli has published extensively in reputable journals and has presented her work at numerous national and international conferences. Her academic endeavors are complemented by her commitment to teaching and mentoring, having supervised several master’s theses. Through her research and academic activities, Dr. Tavakoli continues to advance the field of polymer science, contributing to both academic knowledge and practical applications.

Professional Profile

Education

Dr. Tavakoli’s academic journey in polymer engineering began with a Bachelor of Science degree from Amirkabir University, followed by a Master of Science and a Ph.D. in the same field from the same institution. Her doctoral research focused on the development of polymer nanocomposites, laying the groundwork for her future research endeavors. This strong educational foundation has equipped her with the theoretical knowledge and practical skills necessary to excel in her field.

Professional Experience

Throughout her tenure at Yazd University, Dr. Tavakoli has held various administrative and academic positions. She served as the Deputy in the Yazd Standard Office from 2015 to 2020, where she was involved in setting and maintaining academic standards. Between 2012 and 2014, she was the Director of Educational Affairs, overseeing curriculum development and academic policies. Earlier, from 2002 to 2005, she managed the university’s publishing department. In addition to these roles, Dr. Tavakoli has been actively involved in teaching, offering courses such as Chemistry and Polymerization Kinetics, Energy and Mass Balance, and Advanced Physical Chemistry of Polymers.

Research Interests

Dr. Tavakoli’s research interests are diverse and interdisciplinary, focusing on the synthesis and characterization of polymer nanocomposites, rubber blends, and the irradiation of polymers. She is particularly interested in the application of these materials in tissue engineering and food packaging. Her work on hydrogels and aerogels explores their potential in biomedical applications, while her studies on polymer processing aim to enhance material properties for industrial use. By integrating principles from chemistry, materials science, and engineering, Dr. Tavakoli seeks to develop innovative solutions to contemporary challenges in health and sustainability.

Research Skills

Dr. Tavakoli possesses a comprehensive skill set in polymer science, including expertise in polymer synthesis, characterization techniques, and material testing. She is proficient in various analytical methods such as spectroscopy, rheology, and microscopy, which she employs to investigate the structural and mechanical properties of polymeric materials. Her experience with irradiation techniques, including electron beam processing, allows her to modify polymer structures for specific applications. Additionally, her proficiency in experimental design and statistical analysis enables her to optimize material properties effectively.

Awards and Honors

Dr. Tavakoli’s contributions to polymer engineering have been recognized through her involvement in scientific committees and editorial boards. She has served as a member of the scientific committee and jury for the 7th National Polymer Conference of Iran in 2023. Her research has been published in high-impact journals, reflecting the significance and quality of her work. Through her academic and professional achievements, Dr. Tavakoli has established herself as a respected figure in the field of polymer science.

Conclusion

Dr. Mitra Tavakoli Ardakani’s extensive experience in polymer engineering, combined with her dedication to research and education, positions her as a valuable contributor to advancements in material science. Her work on polymer nanocomposites and their applications in health and environmental sectors demonstrates her commitment to addressing global challenges. By fostering interdisciplinary collaborations and mentoring the next generation of scientists, Dr. Tavakoli continues to influence the field positively. Her achievements reflect a career dedicated to scientific excellence and societal impact.

Publications Top Notes

  • Title: NR/SBR/organoclay nanocomposites: Effects of molecular interactions upon the clay microstructure and mechano‐dynamic properties
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2012
    Citations: 37

  • Title: Effectiveness of maleic anhydride grafted EPDM rubber (EPDM-g-MAH) as compatibilizer in NR/organoclay nanocomposites prepared by melt compounding
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2011
    Citations: 35

  • Title: Surface modification of polymers to enhance biocompatibility
    Authors: M. Tavakoli
    Year: 2005
    Citations: 27

  • Title: Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites
    Authors: S. Jahandideh, M.J.S. Shirazi, M. Tavakoli
    Year: 2017
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites containing nanoclay and carbon black as fillers for application in tire-tread compounds
    Authors: S. Ahmadi Shooli, M. Tavakoli
    Year: 2016
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber/carbon filler nanocomposites: microstructural development and cure characterization
    Authors: S. Khalifeh, M. Tavakoli
    Year: 2019
    Citations: 12

  • Title: A Comparative Study of the Dynamic-Mechanical Properties of Styrene Butadiene Rubber/Epoxidized Natural Rubber Dual Filler Nanocomposites Cured by Sulfur or Electron Beam
    Authors: S.A.S.M. Tavakoli
    Year: 2019
    Citations: 11

  • Title: Enhancement in the mechanical property of NBR/PVC nanocomposite by using sulfur and electron beam curing in the presence of Cloisite 30B nanoclay
    Authors: A.S. Rad, E. Aali, S. Hallajian, D. Zangeneh, M. Tavakoli, K. Ayub, M. Peyravi
    Year: 2020
    Citations: 8

  • Title: Coincident optimization of specific volume and tensile strength at acrylic high-bulked yarn using Taguchi method
    Authors: M. Sadeghi-Sadeghabad, M. Tavakoli, A. Alamdar-Yazdia, H. Mashroteha
    Year: 2015
    Citations: 8