Xuanhua Li | Materials Science | Best Researcher Award

Prof. Xuanhua Li | Materials Science | Best Researcher Award

Group Leader at Northwestern Polytechnical University, China

Xuanhua Li is a distinguished professor and project leader at Northwestern Polytechnical University (NPU), China. His research focuses on advanced materials, particularly 2D materials, photocatalytic water splitting, and perovskite solar cells. With a prolific publication record in prestigious journals such as Science, Nature Energy, Nature Communications, and Science Advances, he has established himself as a leading researcher in materials science and renewable energy. His innovative contributions to high-efficiency solar cells, photocatalysis, and energy conversion systems have gained national and international recognition. As a fellow of the International Union of Materials Research Societies and a recipient of multiple youth talent support programs, he has demonstrated strong leadership in his field. His work is characterized by groundbreaking advancements in optoelectronics, energy materials, and nanotechnology.

Professional Profile

Education

Xuanhua Li holds a Bachelor’s degree in Materials Science from Wuhan University of Technology (2003–2007). He earned his Master’s degree in ChemistryfromPh.D. in Optoelectronics at the University of Hong Kong (2010–2014), where he specialized in advanced materials and energy conversion technologies. His academic journey reflects a strong foundation in multidisciplinary research, integrating materials science, chemistry, and optoelectronics to address challenges in sustainable energy solutions.

Professional Experience

Since 2014, Xuanhua Li has been a Professor at Northwestern Polytechnical University (NPU), Xi’an, China, where he leads innovative research in materials science. In 2019, he took on the role of Project Leader and Group Leader at the Center of Nano Energy and Materials at NPU, where he directs cutting-edge research on energy materials and nanotechnology. His leadership has contributed significantly to the advancement of photocatalysis, perovskite solar cells, and nanomaterials for energy applications. His professional experience includes mentoring young researchers, securing competitive research funding, and collaborating with international scientists to push the boundaries of renewable energy research.

Research Interests

Xuanhua Li’s research interests center on the design and fabrication of 2D materials, photocatalytic water splitting, and perovskite solar cells. His work focuses on developing highly efficient and stable materials for solar energy conversion and hydrogen production. He explores innovative techniques to enhance the performance of perovskite solar cells, quantum efficiency in photocatalysis, and hydrovoltaic energy systems. His interdisciplinary research integrates nanotechnology, chemistry, and materials engineering to solve challenges in sustainable energy generation and storage. His work contributes to the development of next-generation renewable energy solutions with potential applications in clean energy and environmental sustainability.

Research Skills

Xuanhua Li possesses expertise in materials synthesis, nanofabrication, and advanced characterization techniques. His skills include photocatalysis, thin-film deposition, optoelectronic device fabrication, and energy conversion efficiency analysis. He is proficient in spectroscopy, electron microscopy, and electrochemical testing, which are crucial for evaluating the properties and performance of nanomaterials. His ability to integrate experimental and computational approaches allows him to develop novel materials with enhanced functionalities. His strong analytical skills and deep understanding of optoelectronic materials and energy harvesting systems enable him to design high-performance solar cells and hydrogen production technologies.

Awards and Honors

Xuanhua Li has received several prestigious recognitions for his contributions to materials science. He is a Fellow of the International Union of Materials Research Societies, an honor that highlights his leadership in the field. He has been selected for the National Youth Talent Support Program and the Youth Talent Support Program in Shaanxi, China, acknowledging his exceptional research achievements. Additionally, he is a recipient of the National Science Fund for Distinguished Young Scholars in Shaanxi, China, which supports outstanding young scientists conducting groundbreaking research. These accolades reflect his scientific excellence, research impact, and leadership in the field of advanced energy materials.

Conclusion

Xuanhua Li is a highly accomplished researcher in the field of materials science, with a strong emphasis on renewable energy applications. His prolific publication record, leadership in high-impact research, and recognition through national and international awards establish him as a leading scientist. His expertise in 2D materials, photocatalysis, and perovskite solar cells contributes to the development of sustainable energy technologies. While his research output is exceptional, expanding his industrial collaborations and mentorship initiatives could further enhance his profile. Overall, his contributions make him a strong candidate for prestigious research awards in the field of materials science and energy research.

Publication To Notes

  1. Title: “Tailoring the Configuration of Polymer Passivators in Perovskite Solar Cells”

      • Authors: Yaohua Li, Qi Cao, Xuanhua Li
      • Year: 2024
      • Journal: Chinese Journal of Structural Chemistry
      • DOI: 10.1016/j.cjsc.2024.100413
  2. Title: “Enhanced Corrosion Resistance of Ag Electrode Through Ionized 2‐Mercaptobenzothiazole in Inverted Perovskite Solar Cells”

    • Authors: Yaohua Li, Xilai He, Ruiqi Zhu, Xingyuan Chen, Tong Wang, Xingyu Pu, Hui Chen, Qi Cao, Xuanhua Li
    • Year: 2024
    • Journal: Advanced Functional Materials
    • DOI: 10.1002/adfm.202413245
  3. Title: “Locking Organic Solvents by Crystallization-Induced Polymer Network”

    • Authors: Jinmeng Zhu, Jinghan Ding, Yuke Li, Zhang He, Zhenzhen Ma, Wenqiang Dong, Xichen Zhao, Xuanhua Li
    • Year: 2024
    • Journal: Construction and Building Materials
    • DOI: 10.1016/j.conbuildmat.2024.138844
  4. Title: “π-Interactions Suppression of Buried Interface Defects for Efficient and Stable Inverted Perovskite Solar Cells”

    • Authors: Hui Chen, Jiabao Yang, Qi Cao, Tong Wang, Xingyu Pu, Xilai He, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Nano Energy
    • DOI: 10.1016/j.nanoen.2023.108883
  5. Title: “One‐Step Construction of a Perovskite/TiO₂ Heterojunction Toward Highly Stable Inverted All‐Layer‐Inorganic CsPbI₂Br Perovskite Solar Cells with 17.1% Efficiency”

    • Authors: Xingyu Pu, Qi Cao, Jie Su, Jiabao Yang, Tong Wang, Yixin Zhang, Hui Chen, Xilai He, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Advanced Energy Materials
    • DOI: 10.1002/aenm.202301607
  6. Title: “Internal Quantum Efficiency Higher Than 100% Achieved by Combining Doping and Quantum Effects for Photocatalytic Overall Water Splitting”

    • Authors: Youzi Zhang, Yuke Li, Xu Xin, Yijin Wang, Peng Guo, Ruiling Wang, Bilin Wang, Wenjing Huang, Ana Jorge Sobrido, Xuanhua Li
    • Year: 2023
    • Journal: Nature Energy
    • DOI: 10.1038/s41560-023-01242-7
  7. Title: “Hydrovoltaic Effect-Enhanced Photocatalysis by Polyacrylic Acid/Cobaltous Oxide–Nitrogen Doped Carbon System for Efficient Photocatalytic Water Splitting”

    • Authors: Xu Xin, Youzi Zhang, Ruiling Wang, Yijin Wang, Peng Guo, Xuanhua Li
    • Year: 2023
    • Journal: Nature Communications
    • DOI: 10.1038/s41467-023-37366-3
  8. Title: “Room Temperature Nondestructive Encapsulation via Self-Crosslinked Fluorosilicone Polymer Enables Damp Heat-Stable Sustainable Perovskite Solar Cells”

    • Authors: Tong Wang, Jiabao Yang, Qi Cao, Xingyu Pu, Yuke Li, Hui Chen, Junsong Zhao, Yixin Zhang, Xingyuan Chen, Xuanhua Li
    • Year: 2023
    • Journal: Nature Communications
    • DOI: 10.1038/s41467-023-36918-x
  9. Title: “Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?”

    • Authors: Qian Guo, Qi Zhao, Rachel Crespo-Otero, Devis Di Tommaso, Junwang Tang, Stoichko D. Dimitrov, Maria-Magdalena Titirici, Xuanhua Li, Ana Belén Jorge Sobrido
    • Year: 2023
    • Journal: Journal of the American Chemical Society
    • DOI: 10.1021/jacs.

Peng Geng | Materials Science | Best Researcher Award

Dr. Peng Geng | Materials Science | Best Researcher Award

Lecturer at China Three Gorges University, China

Peng Geng is a highly motivated and innovative researcher in the field of materials science, currently serving as a Lecturer at the College of Material and Chemical Engineering at China Three Gorges University. With a strong academic and research background, Peng has made significant contributions in the development of multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications. His groundbreaking work on single-component nano-fiber organogels for multi-level anti-counterfeiting has attracted considerable attention in the academic and industrial spheres. With a Doctorate in Materials Science from Donghua University (2022), Peng Geng continues to explore novel materials and technologies that address real-world challenges, exemplifying a commitment to advancing scientific knowledge.

Professional Profile

Education:

Peng Geng obtained his Ph.D. in Materials Science from Donghua University in 2022, specializing in the development of multifunctional materials with applications in advanced technologies such as tumor theranostics and anti-counterfeiting. Prior to his doctoral studies, he completed his undergraduate and master’s degrees at prestigious institutions, further honing his skills in the areas of material science and chemical engineering. His educational journey has provided him with a solid foundation in the principles of materials science, equipping him with the expertise to conduct cutting-edge research in this field.

Professional Experience:

Peng Geng currently holds the position of Lecturer at the College of Material and Chemical Engineering at China Three Gorges University, where he contributes to both teaching and research. His professional journey has been marked by a continuous pursuit of innovative solutions in the realm of materials science. As a faculty member, Peng Geng is deeply involved in guiding students and conducting high-level research. His professional experience also includes involvement in various research projects, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, positioning him as a key contributor to academic advancements in his field.

Research Interests:

Peng Geng’s primary research interests lie in the development of advanced nanomaterials with specific applications in tumor theranostics and anti-counterfeiting. His work focuses on the creation of multifunctional materials capable of addressing critical challenges in both medical and industrial sectors. One of his notable contributions is the development of single-component nano-fiber organogels, which have been engineered to offer color-tunable and “on-off” switchable afterglow, contributing significantly to multi-level anti-counterfeiting measures. Additionally, he is interested in exploring the potential of nanomaterials in other fields, including sensors and advanced drug delivery systems.

Research Skills:

Peng Geng possesses strong research skills in the development and synthesis of multifunctional materials, particularly nanomaterials, and the application of computational models for material prediction. His expertise includes advanced techniques in organic chemistry and materials engineering, particularly in the creation of organogels and phosphorescent materials. Peng is skilled in the use of AMDS (Advanced Molecular Design System) for predicting gelation tendencies of organic molecules, a tool that has proven invaluable in his research. His technical skills also extend to a deep understanding of nanomaterials’ properties, particularly their tunable optical characteristics, which are crucial for the applications in anti-counterfeiting and tumor theranostics.

Awards and Honors:

While Peng Geng’s career is still in its early stages, his innovative research has already gained recognition through various research grants and funded projects. He has secured support from prominent institutions, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, reflecting the value and potential of his work. His contributions to the fields of nanomaterials and anti-counterfeiting have garnered attention in academic journals, such as Adv. Optical Mater., and his work is increasingly seen as having the potential for broad industrial and scientific applications.

Conclusion:

Peng Geng is an emerging researcher with significant promise in the field of materials science. His innovative work in multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications, is a testament to his creativity and scientific rigor. Although he is still building his academic career, his research has already made a strong impact, demonstrated by his published work and involvement in high-level projects. With continued focus on enhancing collaborations and increasing his industry engagement, Peng Geng’s future contributions to materials science are likely to be transformative. He is well-positioned for further academic success and is a strong candidate for the Research for Best Researcher Award.

Publication Top Notes

  1. Title: Non-conventional luminescent π-organogels with a rigid chemical structure
    • Authors: Chen, S., Luo, D., Geng, P., Lan, H., Xiao, S.
    • Citations: 1
    • Year: 2024
  2. Title: From elementary to advanced: rational design of single component phosphorescence organogels for anti-counterfeiting applications
    • Authors: Lin, H., Shi, Y., Li, Y., Yan, J., Xiao, S.
    • Citations: 2
    • Year: 2024
  3. Title: Amorphous MnO2 Lamellae Encapsulated Covalent Triazine Polymer-Derived Multi-Heteroatoms-Doped Carbon for ORR/OER Bifunctional Electrocatalysis
    • Authors: Huo, L., Lv, M., Li, M., Zheng, Y., Ye, L.
    • Citations: 43
    • Year: 2024
  4. Title: Design and Synthesis of Nanoscale Zr-Porphyrin IX Framework for Synergistic Photodynamic and Sonodynamic Therapy of Tumors
    • Authors: Li, Y., Wang, W., Zhang, Y., Lan, H., Geng, P.
    • Citations: 2
    • Year: 2024
  5. Title: One Stone, Three Birds: Design and Synthesis of “All-in-One” Nanoscale Mn-Porphyrin Coordination Polymers for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Sonodynamic Therapy
    • Authors: Geng, P., Li, Y., Macharia, D.K., Lan, H., Xiao, S.
    • Citations: 9
    • Year: 2024
  6. Title: From biomaterials to biotherapy: cuttlefish ink with protoporphyrin IX nanoconjugates for synergistic sonodynamic-photothermal therapy
    • Authors: Li, Y., Huang, L., Li, X., Lan, H., Xiao, S.
    • Citations: 2
    • Year: 2024
  7. Title: Rational Design of Low-Molecular-Weight Organogels with Ultralong Room-Temperature Phosphorescence for Security
    • Authors: Shi, Y., Lin, H., Geng, P., Luo, D., Xiao, S.
    • Citations: 0
    • Year: 2024
  8. Title: Hollow copper sulfide loaded protoporphyrin for photothermal⁃sonodynamic therapy of cancer cells
    • Authors: Geng, P., Xiang, G., Zhang, W., Lan, H., Xiao, S.
    • Citations: 0
    • Year: 2024
  9. Title: One-pot Synthesis of Room Temperature Phosphorescent Boron-difluoride Derivative for Printing
    • Authors: Zhang, X., Geng, P., Xiang, J., Mao, M., Xiao, S.
    • Citations: 1
    • Year: 2024
  10. Title: Naphthalimide-based probe as an in situ indicator of photochemical reaction for self-reporting imidazole ring formation
    • Authors: Yang, B., Yan, X., Lan, H., Fang, Y., Xiao, S.
    • Citations: 1
    • Year: 2023

 

 

Kouider MADANI | Materials Science | Excellence in Research

Prof. Kouider MADANI | Materials Science | Excellence in Research

Teacher/Researcher at Djillali Liabès University of Sidi Bel Abbès, Algeria.

Kouider Madani is a distinguished Professor at Université de Sidi Bel Abbes, specializing in materials science and mechanical engineering. His academic journey includes a Doctorate in Material Sciences and significant roles in the university, including Head of the Mechanical Engineering Department and various curriculum responsibilities. Madani’s research focuses on the characterization, durability, and repair of composite materials, with notable contributions published in high-impact journals such as the Journal of Composite and Journal of Failure Analysis and Prevention. His work addresses critical areas like the effect of aging on composites and adhesive technologies. Madani has demonstrated strong leadership and organizational skills through his administrative roles, including overseeing curriculum development and departmental management. For enhanced recognition, expanding international collaborations and diversifying publication venues could further amplify his research impact. His achievements reflect a strong potential for the Research for Excellence in Research award.

Profile

Education

Kouider Madani’s educational background reflects a strong foundation in materials science and mechanical engineering. He earned his Habilitation à Diriger des Recherches from Université de Sidi Bel Abbes in December 2008, signifying his advanced qualifications for supervising doctoral research. Prior to this, he completed his Doctorate in Materials Science at the same institution in September 2007, graduating with high honors. His academic journey began with a Magister in Materials Science in November 1998 and an Engineering Degree in Mechanical Engineering in October 1994, both from Université Djillali Liabes de Sidi Bel Abbes. These degrees established his expertise in mechanical and materials engineering, providing a solid base for his subsequent research and academic career.

Professional Experience

Kouider Madani has a distinguished career in academia, currently serving as a Professor at Université de Sidi Bel Abbes. His professional journey began in October 1994 as an Assistant Technical Lecturer at Institut de Génie Mécanique, Université Djillali Liabes, progressing through roles such as Maître-Assistant and Maître de Conférences. Since December 2013, he has held the position of Professor in the Department of Mechanical Engineering. Madani’s expertise lies in material sciences, focusing on the characterization, durability, and repair of composite materials. He has led several administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. His leadership extends to managing the Science and Technology domain, reflecting his broad influence in academia. Throughout his career, Madani has been involved in significant research projects and has published extensively in reputable journals, demonstrating his commitment to advancing knowledge in his field.

Research Interest

Kouider Madani’s research interests primarily focus on the characterization and durability of adhesive and composite materials. His work explores the mechanics of bonded joints, including the repair of damaged structures using composite patch techniques. He is particularly interested in understanding the effects of aging on the mechanical and physical properties of composites and adhesives, as well as studying delamination and debonding phenomena in these materials. His research contributes to improving the reliability and performance of composite structures in various engineering applications. Noteworthy areas of his investigation include the impact of environmental conditions on adhesive strength and the development of advanced analytical methods to assess failure mechanisms. Through his studies, Madani aims to enhance the longevity and efficiency of composite materials, addressing critical challenges in materials science and engineering. His research has been published in leading journals and significantly impacts the field of mechanical engineering.

 Research Skills

Kouider Madani’s research skills are characterized by his deep expertise in materials science and mechanical engineering. His research primarily focuses on the characterization and durability of adhesive bonds and composite materials, including the repair of damaged structures using composite patching techniques. Madani has demonstrated proficiency in studying the effects of aging on the mechanical and physical properties of composites, as well as investigating delamination and adhesion failures. His technical skills are evidenced by his significant publications in reputable journals, where he applies advanced analytical methods such as isogeometric analysis and parametric cohesive zone modeling. Additionally, Madani’s extensive experience in experimental and numerical investigations, including impact behavior studies and energy release rate variations, highlights his ability to integrate theoretical knowledge with practical applications. His methodological rigor and innovative approaches underscore his capabilities in advancing the field of materials science and engineering.

Award and Recognition

Kouider Madani has garnered significant recognition throughout his distinguished career in mechanical engineering and materials science. As a Professor at Université de Sidi Bel Abbes, his research has notably advanced the fields of composite materials and adhesive technologies. His contributions are highlighted by impactful publications in renowned journals, including the Journal of Composite and the Journal of Failure Analysis and Prevention. His leadership extends beyond research; he has effectively managed various administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. These roles underscore his dedication to both academic excellence and institutional development. His consistent pursuit of innovative solutions in material characterization and durability, coupled with his administrative acumen, reflects his commitment to advancing scientific knowledge and education. Madani’s achievements affirm his position as a leading figure in his field, deserving of recognition for his exceptional contributions and leadership.

Conclusion

Kouider Madani is a strong candidate for the Research for Excellence in Research award due to his extensive experience, impactful research, and leadership in academic administration. His work in materials science, particularly in composites and adhesives, is both relevant and innovative. To further enhance his candidacy, he could focus on expanding international collaborations, diversifying his publication outlets, and seeking additional funding opportunities. Overall, his contributions to the field and leadership roles position him as a deserving candidate for this award.

Publications Top Notes
  1. Title: Predicting Damage in Notched Functionally Graded Materials Plates Through Extended Finite Element Method Based on Computational Simulations
    • Authors: Siguerdjidjene, H., Houari, A., Madani, K., Merah, A., Campilho, R.D.S.G.
    • Journal: Frattura ed Integrita Strutturale
    • Year: 2024
    • Volume: 18
    • Issue: 70
    • Pages: 1–23
  2. Title: Numerical Analysis of the Geometrical Modifications Effects on the Tensile Strength of Bonded Single-Lap Joints
    • Authors: Metehri, A., Madani, K., Campilho, R.D.S.G.
    • Journal: International Journal of Adhesion and Adhesives
    • Year: 2024
    • Volume: 134
    • Article ID: 103814
  3. Title: Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024-T3 Plates Using Hybrid Bonding/Riveting
    • Authors: Merah, A., Houari, A., Madani, K., Yahia, C.Z., Campilho, R.D.S.G.
    • Journal: Acta Mechanica et Automatica
    • Year: 2024
    • Volume: 18
    • Issue: 3
    • Pages: 514–525
  4. Title: Experimental and Numerical Investigation of Impact Behavior in Honeycomb Sandwich Composites
    • Authors: Djellab, A., Chellil, A., Lecheb, S., Kebir, H., Madani, K.
    • Journal: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
    • Year: 2024
    • Volume: 238
    • Issue: 7
    • Pages: 1342–1357
    • Citations: 2
  5. Title: Experimental and Numerical Analysis of the Fracture Behavior of an Epoxy-Based Marine Coating Under Static Tension and Accelerated Aging Effect in NaCl Solution
    • Authors: Madani, Y., Madani, K., Touzain, S., Cohendoz, S., Peraudeau, B.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 379
  6. Title: Analysis of the Performance of Carbon Fiber Patches on Improving the Failure Strength of a Damaged and Repaired Plate
    • Authors: Sebaibi, N.H., Mhamdia, R., Madani, K., Djabbar, S.C.H., Campilho, R.D.S.G.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 347
  7. Title: Experimental and Numerical Studies of Bonded Repair of Notched Laminates Composites
    • Authors: Belhouari, M., Benkheira, A., Madani, K., Campilho, R.D.S.G., Gong, X.L.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 195–220
  8. Title: Introduction to Fracture Mechanics
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 1–15
  9. Title: Analysis of the Performance of the Composite Repair Patch for the Mechanical Resistance in Fatigue and in Tension of a Damaged Plate
    • Authors: Madani, K., Djebbar, S.C., Amin, H., Feaugas, X., Campilho, R.D.S.G.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 155–194
  10. Title: Fracture Mechanics: Advances in Research and Applications
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Year: 2024
    • Pages: 1–409

 

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali, Shahrood University of technology, Iran.

Assist. Prof. Dr. Meysam Jalali is a prominent researcher in Materials Science, with a focus on innovative materials and their applications. His academic journey is marked by a commitment to excellence, culminating in significant contributions to the field. Dr. Jalali’s research interests include the development and characterization of advanced materials with a particular emphasis on their industrial applications. His work has been recognized through numerous publications in high-impact journals, reflecting his dedication to advancing the frontiers of Materials Science. Dr. Jalali’s expertise and commitment to research make him a leading figure in his field.

Profile
Education

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he focused on cutting-edge research in structural integrity and resilience. He completed his MSc in Civil/Earthquake Engineering at the University of Tehran, specializing in the study of seismic effects on structures. Dr. Jalali began his academic journey with a BSc in Civil Engineering from Shahrood University of Technology, laying a solid foundation for his expertise in civil engineering. His educational background underpins his extensive research and contributions to the field of Materials Science.

Professional Experience

Assist. Prof. Dr. Meysam Jalali is a Professional Engineer certified by the Tehran Engineering Organization in Iran. He has served as a consultant engineer with the Iran Water & Power Resources Development Company (IWPCO) and the Tehran Engineering and Technical Consultant Organization (TETCO), focusing on underground structures. His project management expertise includes leading the Hakim Twin Tunnels project in Tehran and overseeing the engineering efforts for Tehran Metro Line 7, East-West Lot. Additionally, Dr. Jalali has played a crucial role in the design of various structural projects, leveraging his extensive knowledge and experience to drive engineering excellence.

Research Project

Assist. Prof. Dr. Meysam Jalali has made significant contributions to the field of Civil/Structural Engineering through his research and innovations. His work includes the invention of novel fibers for reinforcing Ultra High-Performance Cementitious Composites (UHPC) and Engineered Cementitious Composites (ECC), which is currently under patent and will be detailed in a forthcoming paper for the Cement and Concrete Composites journal. Dr. Jalali has also published a study on the mechanical behavior of spiral fibers for concrete reinforcement in the Construction and Building Materials journal (2022).

His research extends to the development of an innovative apparatus and molds for direct tension testing of fibrous composites, with a patent nearing finalization. Dr. Jalali’s work on predicting fiber pull-out from cement-based composites using advanced soft computing methods (ANN, GEP, ANFIS, GMDH) has been accepted for publication in the Journal of Building Engineering. Additionally, he has explored ECC behavior prediction using adaptive network-based fuzzy inference systems.

Other notable research includes improvements in ductility for FRP RC beams, with papers accepted for the Journal of Composite Materials. He has proposed innovative geometry for precast RC tunnel linings under high concentrated loads, with his findings accepted in the Saze va Sakht Persian journal. His experimental studies on bond behavior of headed bars in FRC/UHPC and numerical investigations into rebar pull-out from cement-based matrices further demonstrate his expertise. Lastly, his work on the effects of steel and polypropylene fibers, as well as recycled aggregates, on concrete’s mechanical properties, has been accepted for publication in the Sharif University Persian journal.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research encompasses a broad range of experimental investigations in construction materials and structures. His work includes the study of various cement-based materials such as Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly focused on the development of innovative fiber types for enhancing the performance of cementitious composites.

His expertise extends to the application of soft computing methods in Civil Engineering, including the use of advanced numerical modeling and multi-scale testing techniques. Dr. Jalali is also committed to exploring net-zero construction practices and the integration of additive manufacturing technologies, such as 3D concrete printing, into construction processes. His comprehensive research addresses both the theoretical and practical aspects of modern construction materials and methods.

 Publications Top Notes
  1. Pull-out Behavior of Twin-Twisted Steel Fibers from Various Strength Cement-Based Matrices
    1. Construction and Building Materials
    2. 2024-09
    3. DOI: 10.1016/j.conbuildmat.2024.137855
    4. Source: Crossref
  2. Experimental Investigation of Ductility in GFRP RC Beams by Confining the Compression Zone
    1. Advances in Civil Engineering
    2. 2024-05-18
    3. DOI: 10.1155/2024/4268615
    4. Source: Crossref
  3. Machine Learning Prediction of Fiber Pull-Out and Bond-Slip in Fiber-Reinforced Cementitious Composites
    1. Journal of Building Engineering
    2. 2023-01
    3. DOI: 10.1016/j.jobe.2022.105474
    4. Source: Crossref
  4. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. Construction and Building Materials
    2. 2022-09
    3. DOI: 10.1016/j.conbuildmat.2022.128569
    4. Source: Crossref
  5. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. SSRN
    2. 2022
    3. EID: 2-s2.0-85130694443
    4. Source: Meysam Jalali via Scopus – Elsevier
  6. Flexural Characteristics of Fibre Reinforced Concrete with an Optimised Spirally Deformed Steel Fibre
    1. International Journal of Engineering Transactions C: Aspects
    2. 2021
    3. DOI: 10.5829/ije.2021.34.06c.01
    4. EID: 2-s2.0-85107745927
    5. Source: Meysam Jalali via Scopus – Elsevier
  7. Performance of Reinforced Concrete Shear Wall Equipped with an Innovative Hybrid Damper
    1. International Journal of Engineering, Transactions A: Basics
    2. 2021
    3. DOI: 10.5829/IJE.2021.34.07A.08
    4. EID: 2-s2.0-85110294151
    5. Source: Meysam Jalali via Scopus – Elsevier
  8. Effect of Seawater on Micro-Nano Air Bubbles Concrete for Repair of Coastal Structures
    1. Journal of Rehabilitation in Civil Engineering
    2. 2020
    3. DOI: 10.22075/JRCE.2018.13791.1252
    4. EID: 2-s2.0-85103080479
    5. Source: Meysam Jalali via Scopus – Elsevier
  9. Experimental and Analytical Investigations on Seismic Behavior of Ductile Steel Knee Braced Frames
    1. Steel and Composite Structures
    2. 2014
    3. DOI: 10.12989/scs.2014.16.1.001
    4. EID: 2-s2.0-84893868990
    5. Source: Meysam Jalali via Scopus – Elsevier
  10. Novel Manually Made NSM FRP (MMFRP) Bars for Shear Strengthening of RC Beams
    1. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012)
    2. 2012
    3. EID: 2-s2.0-84924368581
    4. Source: Meysam Jalali via Scopus – Elsevier
  11. Shear Strengthening of RC Beams Using Innovative Manually Made NSM FRP Bars
    1. Construction and Building Materials
    2. 2012
    3. DOI: 10.1016/j.conbuildmat.2012.06.068
    4. EID: 2-s2.0-84864359512
    5. Source: Meysam Jalali via Scopus – Elsevier

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.