Jaemin Baek | Engineering | Best Researcher Award

Prof. Jaemin Baek | Engineering | Best Researcher Award

Professor at Gangneung-Wonju National University, South Korea

Prof. Jaemin Baek is a distinguished researcher and academician specializing in robotics, control theory, and mechatronics. He earned his B.S. degree in Mechanical Engineering from Korea University in 2012 and later completed his Ph.D. in IT Engineering through a joint M.S.-Ph.D. program at Pohang University of Science and Technology (POSTECH) in 2018. His doctoral research focused on time-delayed control schemes and their application to robotic systems. From 2018 to 2020, he served as a senior researcher at the Agency for Defense Development (ADD) in Daejeon, South Korea, where he worked on advanced control systems. Since 2020, he has been an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU). His expertise extends to adaptive and robust control, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. Prof. Baek has made significant contributions to academia through numerous high-impact journal articles and conference papers. His research is instrumental in developing advanced control methodologies for robotic and autonomous systems. With a passion for innovation and engineering excellence, he continues to drive advancements in control systems and robotics, contributing to both theoretical and applied aspects of these fields.

Professional Profile

Education

Prof. Jaemin Baek holds a Ph.D. in IT Engineering from Pohang University of Science and Technology (POSTECH), which he completed in 2018. His doctoral research focused on robotics, control theory, robot control, mechatronics, and artificial intelligence, culminating in his thesis titled “A Study on Time-delayed Control Schemes and Its Application to Robotic Systems.” His graduate studies emphasized adaptive control strategies and their real-world applications in robotic manipulation and autonomous systems. Prior to this, he earned his B.S. degree in Mechanical Engineering from Korea University in 2012, where he gained a strong foundation in advanced mechanical engineering principles. His undergraduate studies provided him with critical insights into mechanical design, system dynamics, and automation, forming the basis for his later work in robotics. His multidisciplinary academic background equips him with a comprehensive understanding of both the theoretical and practical aspects of control engineering. His rigorous training at two of South Korea’s top institutions has shaped his expertise in designing sophisticated robotic control systems. Through continuous research and academic contributions, Prof. Baek remains committed to pushing the boundaries of innovation in control theory and robotics.

Professional Experience

Prof. Jaemin Baek has an extensive professional background in academia and research. Since 2020, he has served as an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU), where he teaches and conducts research on advanced robotics, control systems, and signal processing. Prior to his current role, he was a Senior Researcher at the Agency for Defense Development (ADD) from 2018 to 2020, where he worked on defense-related control technologies and developed cutting-edge methodologies for autonomous systems. His tenure at ADD provided him with valuable experience in applying theoretical control concepts to practical defense applications. In addition to his academic and research responsibilities, Prof. Baek has contributed to numerous high-impact journal articles, furthering advancements in robotics and control engineering. His professional journey reflects his dedication to bridging the gap between theoretical research and practical implementation. He continues to mentor students, collaborate with industry experts, and contribute to the scientific community through his research in adaptive and robust control, robotic manipulation, and synthetic aperture radar (SAR) imaging. His expertise is highly regarded in both academic and industrial circles, making him a prominent figure in his field.

Research Interests

Prof. Jaemin Baek’s research interests encompass a broad range of topics in robotics and control systems. His primary focus areas include adaptive and robust control, time-delayed control schemes, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. He has extensively studied time-delayed control strategies and their applications in robotic systems, leading to the development of novel methodologies that enhance system stability and performance. His work on adaptive sliding-mode control has contributed to improvements in trajectory tracking and precision in robotic manipulators. Additionally, Prof. Baek is involved in research on signal processing for SAR imaging, optimizing radar-based imaging techniques for various applications. His interdisciplinary approach integrates elements of artificial intelligence and machine learning to refine control algorithms and enhance robotic functionality. Through his research, he aims to advance the efficiency and reliability of autonomous and robotic systems in diverse environments. His contributions have been widely recognized in the scientific community, with multiple publications in prestigious journals and conferences. Prof. Baek’s innovative work continues to shape the future of robotics and control engineering, making significant strides in both theoretical development and real-world applications.

Research Skills

Prof. Jaemin Baek possesses a diverse set of research skills that enable him to excel in control engineering and robotics. His expertise in adaptive and robust control design allows him to develop high-precision robotic control systems that function effectively under uncertain conditions. He is proficient in time-delayed control techniques, ensuring improved stability and performance in robotic applications. His skills extend to mechatronics and signal processing, particularly in synthetic aperture radar (SAR) imaging, where he applies advanced computational methods to enhance radar-based imaging systems. Prof. Baek has substantial experience in developing sliding-mode control algorithms, which have been successfully applied to robot manipulators and autonomous systems. Additionally, he has strong analytical skills in mathematical modeling and simulation, utilizing platforms like MATLAB and Simulink for system analysis and control design. His expertise in artificial intelligence and machine learning enables him to optimize control algorithms for enhanced automation. With a strong publication record in high-impact journals, Prof. Baek demonstrates his ability to conduct cutting-edge research and contribute to advancements in his field. His diverse skill set positions him as a leading researcher in robotics and control engineering.

Awards and Honors

Throughout his career, Prof. Jaemin Baek has received several awards and honors in recognition of his contributions to control engineering and robotics. His research on adaptive control, robot manipulator systems, and SAR imaging has earned him accolades from both academic and industry circles. He has been recognized for his high-impact journal publications in IEEE Transactions, Applied Sciences, and other top-tier journals, demonstrating his excellence in research. His contributions to sliding-mode control and time-delayed control methodologies have been widely cited, highlighting their significance in the field. In addition to his academic achievements, he has been invited to present at prestigious international conferences, where he has shared insights into advanced control strategies and robotics applications. His work at the Agency for Defense Development (ADD) also earned him commendations for his contributions to national defense research projects. As an influential figure in robotics and control engineering, Prof. Baek continues to receive recognition for his innovative research, solidifying his reputation as a leading expert in the field. His awards and honors underscore his commitment to advancing technology and engineering excellence.

Conclusion

Prof. Jaemin Baek is a highly accomplished researcher and educator whose contributions to robotics, control engineering, and mechatronics have significantly impacted the field. With a solid academic foundation from Korea University and POSTECH, he has built a career dedicated to advancing adaptive control systems, time-delayed control strategies, and robotic manipulation. His professional experience spans both academia and defense research, demonstrating his ability to apply theoretical innovations to practical applications. His research interests in robotics, artificial intelligence, and SAR imaging have led to groundbreaking developments in control methodologies. His extensive publication record and numerous accolades highlight his influence and expertise. As an Associate Professor at Gangneung-Wonju National University, he continues to mentor students, conduct pioneering research, and contribute to the scientific community. His diverse skill set and interdisciplinary approach make him a driving force in robotics and automation. Prof. Baek’s ongoing work promises to shape the future of intelligent control systems and robotics, ensuring continued advancements in engineering and technology. His dedication to innovation and excellence establishes him as a leading figure in his field, inspiring the next generation of researchers and engineers.

Publications Top Notes

  1. Compressive Sensing-Based Omega-K Algorithm for SAR Focusing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2025
  2. “Effective Denoising of InSAR Phase Images via Compressive Sensing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2024
    • Citations: 1
  3. “Dynamic Model Learning and Control of Robot Manipulator Based on Multi-layer Perceptron Neural Network”

    • Authors: S. Shin (Seungcheon), M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2023

 

 

Ayman AL-Quraan | Engineering | Best Researcher Award

Assoc. Prof. Dr. Ayman AL-Quraan | Engineering | Best Researcher Award

Associate Professor at Yarmouk University, Jordan

Dr. Ayman A. Al-Quraan, born in Abu Dhabi, UAE in 1986, is an Associate Professor in the Department of Electrical Power and Energy at Yarmouk University in Irbid, Jordan. He earned his Ph.D. in Electrical and Computer Engineering from Concordia University, Montreal, in 2016. After completing his doctoral studies, he undertook a brief postdoctoral position at Concordia University before joining Yarmouk University in 2017. He is the founder of the Power and Energy Research Lab at Yarmouk University and has significantly contributed to research in the fields of power systems and renewable energy. His research interests focus on optimizing hybrid renewable energy systems (HRES) and developing capacity determination and energy management strategies. Dr. Al-Quraan has served in various editorial roles for top-tier international journals and has received several research grants and funding for his projects. He is also recognized for his extensive academic contributions, having published several articles in well-respected journals and conferences. His work in renewable energy optimization and system modeling reflects his commitment to addressing global energy challenges through research and innovation.

Professional Profile

Education:

Dr. Ayman A. Al-Quraan completed his academic journey with a Ph.D. in Electrical and Computer Engineering from Concordia University in Montreal, Canada, in 2016. Prior to this, he obtained his Master’s degree in Electrical Power Engineering in 2011 and his Bachelor’s degree in Electrical Power Engineering in 2009, both from Yarmouk University, Jordan. His academic pursuits reflect a strong foundation in power engineering, with particular emphasis on energy systems and optimization. During his doctoral studies, Dr. Al-Quraan conducted advanced research in the field of urban wind energy estimation, contributing to the understanding of renewable energy potential in urban environments. His graduate studies at Yarmouk University were marked by excellence, as evidenced by scholarships and awards, including the King Abdullah Fund Grant during his undergraduate years. The combination of his diverse educational background and solid academic performance has positioned Dr. Al-Quraan as a leading figure in the power and energy sector, fostering significant contributions to both research and teaching. His doctoral research, in particular, allowed him to engage deeply with renewable energy technologies, a key area in his ongoing work at Yarmouk University.

Professional Experience:

Dr. Ayman A. Al-Quraan has extensive professional experience in both academic and industry settings. After completing his doctoral studies at Concordia University, he joined Yarmouk University in 2017, where he currently serves as an Associate Professor in the Department of Electrical Power and Energy. He has held various roles at Yarmouk University, including Assistant Professor and Research Assistant, and has contributed to the development of the university’s Power and Energy Research Lab. Additionally, he has participated as a Principal Investigator in several research projects, such as those focused on optimizing Hybrid Renewable Energy Systems (HRES), receiving funding from Yarmouk University for his innovative work. Dr. Al-Quraan’s professional background also includes industry experience at the National Electrical Power Company (NEPCO) in Jordan, where he worked as an Electrical Substation Engineer from 2008 to 2009. His industry experience complements his academic roles, allowing him to bridge the gap between theoretical research and practical application. Furthermore, Dr. Al-Quraan’s role as an editor and guest editor for several international journals, including those in the renewable energy field, further demonstrates his significant impact on the academic and professional community.

Research Interests:

Dr. Ayman A. Al-Quraan’s research interests lie at the intersection of renewable energy systems, power optimization, and energy management strategies. His work primarily focuses on the development and optimization of Hybrid Renewable Energy Systems (HRES), specifically addressing the challenges of integrating multiple energy sources, such as solar and wind, into a cohesive system for efficient power generation. He has conducted extensive research on predictive control and capacity determination strategies for renewable energy systems, aimed at maximizing energy yield and ensuring sustainability in both connected and isolated systems. Additionally, Dr. Al-Quraan is interested in the application of optimization techniques to solve complex energy management problems, such as those found in off-grid systems and urban energy solutions. His interdisciplinary approach combines electrical engineering, energy optimization, and control systems. As a Principal Investigator (PI) for a project related to n-layers optimization for HRES, Dr. Al-Quraan continues to push the boundaries of research in energy systems. His expertise in modeling and control has led to significant contributions to the understanding and development of efficient energy solutions that are critical to addressing global energy demands.

Research Skills:

Dr. Ayman A. Al-Quraan possesses a robust skill set that allows him to lead cutting-edge research in the fields of power engineering and renewable energy systems. His skills in modeling and optimization techniques have been critical in his work on Hybrid Renewable Energy Systems (HRES), where he applies advanced mathematical models to optimize energy production and consumption. Dr. Al-Quraan is proficient in the use of predictive control systems, which is central to his research on energy management strategies for renewable systems. He is also skilled in wind and solar energy estimation techniques, utilizing tools such as wind tunnels and data collection for urban energy analysis. As an academic editor and reviewer for several international journals, Dr. Al-Quraan demonstrates a keen eye for quality research and contributes his expertise to the scientific community. His ability to collaborate across disciplines, along with his strong knowledge of electrical power systems and renewable energy technologies, further enhances his research capabilities. Dr. Al-Quraan’s technical skills are complemented by his leadership in securing research funding, which has enabled him to spearhead innovative projects in energy optimization.

Awards and Honors:

Dr. Ayman A. Al-Quraan’s academic journey has been marked by numerous awards and honors that reflect his dedication and excellence in research and education. As a graduate student, he was awarded the Graduate Research Assistantship at Concordia University from 2012 to 2016, recognizing his outstanding research capabilities during his Ph.D. studies. He also received a Ph.D. scholarship from Yarmouk University, which supported his doctoral research in renewable energy. His undergraduate and graduate studies were funded by prestigious scholarships, including the King Abdullah Fund Grant, which allowed him to pursue his education with distinction. Dr. Al-Quraan was ranked first in both his Bachelor’s and Master’s degrees in Electrical Power Engineering at Yarmouk University, which is a testament to his academic excellence. These awards highlight Dr. Al-Quraan’s strong commitment to advancing the field of electrical power and energy systems, especially in the areas of renewable energy optimization and energy management strategies. His accomplishments have earned him recognition both locally and internationally, making him a prominent figure in the academic and professional energy sectors.

Conclusion:

Dr. Ayman A. Al-Quraan is an exemplary candidate for the Research for Best Researcher Award due to his profound contributions to the fields of electrical power engineering and renewable energy systems. His expertise in optimizing hybrid energy systems, coupled with his leadership in establishing research labs and securing funding, positions him as a leader in his field. Dr. Al-Quraan’s involvement in prestigious editorial roles and his publication record in top-tier journals further attests to his influence in the academic community. His work on energy management strategies, particularly in the context of hybrid renewable energy systems, has significant implications for sustainable energy solutions. While there are opportunities for further industry collaboration and public outreach, Dr. Al-Quraan’s research continues to drive innovation in energy systems, contributing to the global pursuit of sustainability. With a strong foundation in both academic research and practical experience, he is highly deserving of this prestigious award.

Publication Top Notes

  • Title: Urban wind energy: Some views on potential and challenges
    • Authors: T. Stathopoulos, H. Alrawashdeh, A. Al-Quraan, B. Blocken, A. Dilimulati, …
    • Journal: Journal of Wind Engineering and Industrial Aerodynamics
    • Volume: 179
    • Pages: 146-157
    • Citations: 229
    • Year: 2018
  • Title: Comparison of wind tunnel and on-site measurements for urban wind energy estimation of potential yield
    • Authors: A. Al-Quraan, T. Stathopoulos, P. Pillay
    • Journal: Journal of Wind Engineering and Industrial Aerodynamics
    • Volume: 158
    • Pages: 1-10
    • Citations: 80
    • Year: 2016
  • Title: Modelling, design and control of a standalone hybrid PV-wind micro-grid system
    • Authors: A. Al-Quraan, M. Al-Qaisi
    • Journal: Energies
    • Volume: 14 (16)
    • Article Number: 4849
    • Citations: 61
    • Year: 2021
  • Title: Active and reactive power control for wind turbines based DFIG using LQR controller with optimal Gain‐scheduling
    • Authors: A. Radaideh, M. Bodoor, A. Al-Quraan
    • Journal: Journal of Electrical and Computer Engineering
    • Year: 2021
    • Article Number: 1218236
    • Citations: 38
  • Title: Assessment of wind energy resources in Jordan using different optimization techniques
    • Authors: B. Al-Mhairat, A. Al-Quraan
    • Journal: Processes
    • Volume: 10 (1)
    • Article Number: 105
    • Citations: 29
    • Year: 2022
  • Title: Optimal coordination of wind power and pumped hydro energy storage
    • Authors: H. M. K. Al-Masri, A. Al-Quraan, A. AbuElrub, M. Ehsani
    • Journal: Energies
    • Volume: 12 (22)
    • Article Number: 4387
    • Citations: 25
    • Year: 2019
  • Title: Rolling horizon control architecture for distributed agents of thermostatically controlled loads enabling long-term grid-level ancillary services
    • Authors: A. Radaideh, A. Al-Quraan, H. Al-Masri, Z. Albataineh
    • Journal: International Journal of Electrical Power & Energy Systems
    • Volume: 127
    • Article Number: 106630
    • Citations: 22
    • Year: 2021
  • Title: Optimal prediction of wind energy resources based on WOA—A case study in Jordan
    • Authors: A. Al-Quraan, B. Al-Mhairat, A. M. A. Malkawi, A. Radaideh, H. M. K. Al-Masri
    • Journal: Sustainability
    • Volume: 15 (5)
    • Article Number: 3927
    • Citations: 20
    • Year: 2023
  • Title: Minimizing the utilized area of PV systems by generating the optimal inter-row spacing factor
    • Authors: A. Al-Quraan, M. Al-Mahmodi, K. Alzaareer, C. El-Bayeh, U. Eicker
    • Journal: Sustainability
    • Volume: 14 (10)
    • Article Number: 6077
    • Citations: 20
    • Year: 2022
  • Title: Machine learning classification and prediction of wind estimation using artificial intelligence techniques and normal PDF
    • Authors: H. H. Darwish, A. Al-Quraan
    • Journal: Sustainability
    • Volume: 15 (4)
    • Article Number: 3270
    • Citations: 19
    • Year: 2023