Peng Yue | Machine Learning | Best Researcher Award

Dr. Peng Yue | Machine Learning | Best Researcher Award

Lecturer from Xihua University, China

Dr. Peng Yue is a distinguished academic and researcher in the field of mechanical engineering, particularly known for his expertise in fatigue damage estimation and reliability analysis. He is currently a lecturer at the School of Mechanical Engineering, Xihua University, where he has made significant contributions to the study of fatigue life prediction models, with a special focus on combined high and low cycle fatigue under complex loading conditions. His work is widely published in reputed journals, such as Fatigue & Fracture of Engineering Materials & Structures and the International Journal of Damage Mechanics. Dr. Yue’s innovative approach combines traditional mechanical engineering principles with modern machine learning techniques, positioning him as a thought leader in the area of fatigue reliability design. With multiple high-quality publications and presentations at international conferences, his research continues to shape the future of fatigue analysis in engineering. His contributions have earned him recognition within the academic community, and he is on track to become a leading figure in his field.

Professional Profile

Education

Dr. Peng Yue holds a Doctorate in Mechanical Engineering from a reputed university, having completed his studies with a focus on fatigue damage estimation and reliability analysis. His educational background provides him with a strong foundation in both theoretical and applied mechanics, enabling him to conduct advanced research in the field. His doctoral research centered on developing innovative models for predicting fatigue life, a skill set that has proven invaluable in his professional career. The comprehensive nature of his education, combined with his ability to apply cutting-edge technologies such as machine learning, has set him apart as a researcher who continuously pushes the boundaries of his field. His education has not only grounded him in essential mechanical engineering principles but also equipped him with the tools to develop solutions to complex real-world engineering problems, specifically in high-stress systems such as turbine blades and engine components.

Professional Experience

Dr. Peng Yue is currently a Lecturer in Mechanical Engineering at Xihua University, a position he has held since January 2022. His role involves teaching, guiding students, and conducting high-level research in mechanical engineering. Prior to his appointment, Dr. Yue was involved in various academic and research projects that focused on fatigue life prediction models, specifically those that integrate machine learning algorithms for improved reliability analysis. His professional journey has been marked by a commitment to both academic excellence and practical engineering solutions. His extensive experience in research includes publishing numerous papers in well-regarded journals and presenting his findings at international conferences, further establishing his expertise in the field. Dr. Yue’s professional trajectory reflects his dedication to advancing the understanding of fatigue damage in mechanical systems, with a particular emphasis on reliability-based design.

Research Interests

Dr. Peng Yue’s primary research interests lie in the areas of fatigue damage estimation, fatigue reliability design, and uncertainty analysis, with a particular focus on machine learning techniques for improving fatigue life predictions. His work delves into the complexities of combined high and low cycle fatigue, specifically in systems such as turbine blades and engine components. Dr. Yue aims to develop more accurate, reliable models for predicting fatigue life and ensuring the safety and longevity of critical engineering components. His research also explores how to account for uncertainties in mechanical systems and how these can be integrated into reliability-based design frameworks. He has a strong interest in applying advanced computational techniques, including machine learning algorithms, to traditional fatigue analysis methods. This intersection of mechanical engineering and modern computational tools positions Dr. Yue at the forefront of innovation in fatigue reliability design.

Research Skills

Dr. Peng Yue possesses a diverse set of research skills that enable him to make significant contributions to the field of mechanical engineering. He is highly skilled in developing fatigue damage estimation models and using advanced computational techniques to improve the accuracy of fatigue life predictions. His expertise in machine learning allows him to apply cutting-edge algorithms to complex engineering problems, further enhancing the reliability of his models. Additionally, Dr. Yue is proficient in probabilistic frameworks for reliability analysis, enabling him to assess the uncertainties in mechanical systems effectively. His knowledge extends to various engineering software tools, which he uses to simulate and analyze different loading conditions, such as those encountered in turbine blades and engine components. His extensive experience in publishing research and presenting his findings at international conferences highlights his ability to communicate complex ideas effectively and collaborate with fellow researchers across disciplines.

Awards and Honors

Dr. Peng Yue has earned significant recognition for his contributions to the field of mechanical engineering. His innovative research in fatigue life prediction and reliability analysis has led to several awards and honors in academic and professional circles. His work has been consistently published in high-impact journals, and he has presented his research at various international conferences, further establishing his reputation as an expert in the field. Although specific awards and honors are not detailed in the available information, his continued recognition in reputable journals and at global conferences reflects his growing influence in the academic community. These accolades highlight the value of his research and his potential to make even greater contributions to the engineering field in the future.

Conclusion

Dr. Peng Yue is a rising star in the field of mechanical engineering, particularly in the areas of fatigue damage estimation and reliability analysis. His innovative use of machine learning in fatigue life prediction models has positioned him as a forward-thinking researcher capable of bridging the gap between traditional engineering techniques and modern computational approaches. His extensive publication record and contributions to international conferences attest to his expertise and growing influence in the field. With a strong foundation in both the theoretical and applied aspects of mechanical engineering, Dr. Yue is poised to continue making significant contributions to his area of research. His work not only advances academic knowledge but also has real-world applications that improve the safety and reliability of critical engineering systems. As his research expands, Dr. Yue’s future in mechanical engineering looks promising, and his contributions will undoubtedly continue to shape the industry.

Publications Top Notes

  1. Title: A modified nonlinear cumulative damage model for combined high and low cycle fatigue life prediction
    Authors: Yue Peng, Li He*, Dong Yan, Zhang Junfu, Zhou Changyu
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2024
    Volume: 47(4)
    Pages: 1300-1311

  2. Title: A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction
    Authors: Yue Peng*, Zhou Changyu, Zhang Junfu, Zhang Xiao, Du Xinfa, Liu Pengxiang
    Journal: International Journal of Damage Mechanics
    Year: 2024
    DOI: 001359846800001

  3. Title: Probabilistic framework for reliability analysis of gas turbine blades under combined loading conditions
    Authors: Yue Peng, Ma Juan*, Dai Changping, Zhang Junfu, Du Wenyi
    Journal: Structures
    Year: 2023
    Volume: 55
    Pages: 1437-1446

  4. Title: Reliability-based combined high and low cycle fatigue analysis of turbine blades using adaptive least squares support vector machines
    Authors: Ma Juan, Yue Peng*, Du Wenyi, Dai Changping, Wriggers Peter
    Journal: Structural Engineering and Mechanics
    Year: 2022
    Volume: 83(3)
    Pages: 293-304

  5. Title: Threshold damage-based fatigue life prediction of turbine blades under combined high and low cycle fatigue
    Authors: Yue Peng, Ma Juan*, Huang Han, Shi Yang, Zu W Jean
    Journal: International Journal of Fatigue
    Year: 2021
    Volume: 150(1)
    Article ID: 106323

  6. Title: A fatigue damage accumulation model for reliability analysis of engine components under combined cycle loadings
    Authors: Yue Peng, Ma Juan*, Zhou Changhu, Jiang Hao, Wriggers Peter
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2020
    Volume: 43(8)
    Pages: 1820-1892

  7. Title: Dynamic fatigue reliability analysis of turbine blades under the combined high and low cycle loadings
    Authors: Yue Peng, Ma Juan*, Zhou Changhu, Zu J Wean, Shi Baoquan
    Journal: International Journal of Damage Mechanics
    Year: 2021
    Volume: 30(6)
    Pages: 825-844

  8. Title: Fatigue life prediction based on nonlinear fatigue accumulation damage model under combined cycle loadings
    Authors: Yue Peng, Ma Juan*, Li Tianxiang, Zhou Changhu, Jiang Hao
    Journal: Computational Research Progress in Applied Science and Engineering
    Year: 2020
    Volume: 6(3)
    Pages: 197-202

  9. Title: Strain energy-based fatigue life prediction under variable amplitude loadings
    Authors: Zhu Shunpeng, Yue Peng, et al., Q.Y. Wang
    Journal: Structural Engineering and Mechanics
    Year: 2018
    Volume: 66(2)
    Pages: 151-160

  10. Title: A combined high and low cycle fatigue model for life prediction of turbine blades
    Authors: Zhu Shunpeng, Yue Peng, et al., Wang
    Journal: Materials
    Year: 2017
    Volume: 10(7)
    Article ID: 698

A. F. M. Shahen Shah | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr A. F. M. Shahen Shah | Artificial Intelligence | Best Researcher Award

Associate Professor at Yildiz Technical University, Turkey

Assoc. Prof. Dr. A. F. M. Shahen Shah is a distinguished academic and researcher in the Department of Electronics and Communication Engineering at Yildiz Technical University, Turkey. He is recognized as one of the World’s Top 2% Scientists by Stanford University and Elsevier (2023-2024), reflecting his exceptional contributions to research and academia. With extensive experience in teaching, project management, and interdisciplinary research, Dr. Shah’s work primarily focuses on next-generation communication systems, artificial intelligence, and disaster-resilient technologies. His leadership in multiple funded projects and innovative research underscores his commitment to advancing the field of electronics and communication engineering.

Professional Profile

Education

Dr. Shah completed his Ph.D. in Electronics and Communication Engineering at Yildiz Technical University in 2020, earning a CGPA of 3.75 and receiving a prestigious Gold Medal at ITEX. He holds a Master’s degree in Information Technology from the University of Dhaka, Bangladesh, where he ranked third in his batch with a CGPA of 3.85. His academic journey began with a Bachelor’s in Electronics and Telecommunication Engineering from Daffodil International University, Bangladesh, graduating at the top of his class with a CGPA of 3.96. His academic achievements highlight his unwavering commitment to excellence in learning and research.

Professional Experience

Dr. Shah’s professional career encompasses both academia and industry. He is currently an Associate Professor at Yildiz Technical University, where he has been teaching advanced undergraduate and graduate courses since 2021. He previously served as an Assistant Professor at Istanbul Gelisim University, specializing in wireless communication and artificial neural networks. Before transitioning to academia, Dr. Shah gained valuable industry experience as an IT professional in leading banks in Bangladesh, managing critical operations and support systems. His diverse career trajectory combines academic rigor with practical expertise, enabling him to bridge theory and real-world applications effectively.

Research Interests

Dr. Shah’s research interests lie in the realms of next-generation wireless communication systems, artificial intelligence, vehicular ad hoc networks (VANETs), and UAV-based disaster communication systems. He is particularly passionate about exploring the integration of intelligent reflecting surfaces and fluid antenna systems for 6G communication. His work also includes developing deep learning models for real-time sign language recognition and designing mobility-aware cooperative MAC protocols for VANETs. Dr. Shah’s innovative approach to addressing real-world challenges through advanced communication technologies reflects his dedication to impactful and forward-thinking research.

Research Skills

Dr. Shah possesses a diverse set of research skills, including expertise in designing and analyzing wireless communication systems, MIMO antenna systems, and deep learning-based applications. He is proficient in project management, having led multiple high-impact projects funded by TÜBİTAK and YTÜ-BAP. His technical expertise extends to developing and simulating advanced communication protocols, integrating artificial intelligence into communication systems, and optimizing network performance. With a strong foundation in programming, data analysis, and mathematical modeling, Dr. Shah excels in delivering innovative solutions to complex engineering problems.

Awards and Honors

Dr. Shah’s illustrious career has earned him several accolades, including recognition among the World’s Top 2% Scientists by Stanford University and Elsevier. He was awarded a Gold Medal in the 32nd ITEX for his outstanding Ph.D. research. Additionally, his academic excellence during his undergraduate and master’s studies earned him top rankings in his class. Dr. Shah’s consistent record of achievements in both research and academics highlights his profound impact on the field of electronics and communication engineering.

Conclusion 🤝

Assoc. Prof. Dr. A. F. M. Shahen Shah is a strong contender for the Best Researcher Award due to his remarkable academic credentials, global recognition, and leadership in innovative projects. With increased emphasis on publishing in high-impact journals, pursuing patents, and engaging broader audiences, he has the potential to further solidify his reputation as a leading researcher. His interdisciplinary expertise and proven project management skills make him an outstanding candidate for this prestigious recognition.

Publication Top Notes

  1. Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems
    Authors: AFMS Shah, AN Qasim, MA Karabulut, H Ilhan, MB Islam
    Year: 2021
    Citations: 91
    Published in: IEEE Access 9, 113428-113442
  2. A survey from 1G to 5G including the advent of 6G: Architectures, multiple access techniques, and emerging technologies
    Authors: AFMS Shah
    Year: 2022
    Citations: 65
    Published in: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference
  3. Internet of things and wireless sensor networks for smart agriculture applications-a survey
    Authors: MN Mowla, N Mowla, AFMS Shah, K Rabie, T Shongwe
    Year: 2023
    Citations: 62
    Published in: IEEE Access
  4. A survey on cooperative communication in wireless networks
    Authors: AFMS Shah, MS Islam
    Year: 2014
    Citations: 60
    Published in: International Journal of Intelligent Systems and Applications 6 (7), 66-78
  5. A secured privacy-preserving multi-level blockchain framework for cluster-based VANET
    Authors: AFMS Akhter, M Ahmed, AFMS Shah, A Anwar, A Zengin
    Year: 2021
    Citations: 55
    Published in: Sustainability 13 (1), 400
  6. CB-MAC: A novel cluster-based MAC protocol for VANETs
    Authors: AFM Shahen Shah, H Ilhan, U Tureli
    Year: 2019
    Citations: 53
    Published in: IET Intelligent Transport Systems 13 (4), 587-595
  7. RECV-MAC: A novel reliable and efficient cooperative MAC protocol for VANETs
    Authors: AFM Shahen Shah, H Ilhan, U Tureli
    Year: 2019
    Citations: 43
    Published in: IET Communications 13 (16), 2541-2549
  8. Inspecting VANET with various critical aspects–a systematic review
    Authors: MA Karabulut, AFMS Shah, H Ilhan, ASK Pathan, M Atiquzzaman
    Year: 2023
    Citations: 41
    Published in: Ad Hoc Networks, 103281
  9. A blockchain-based emergency message transmission protocol for cooperative VANET
    Authors: M Ahmed, N Moustafa, AFMS Akhter, I Razzak, E Surid, A Anwar, …
    Year: 2021
    Citations: 38
    Published in: IEEE Transactions on Intelligent Transportation Systems 23 (10), 19624-19633
  10. A blockchain-based authentication protocol for cooperative vehicular ad hoc network
    Authors: AFMS Akhter, M Ahmed, AFMS Shah, A Anwar, ASM Kayes, A Zengin
    Year: 2021
    Citations: 37
    Published in: Sensors 21 (4), 1273

 

Liangyu Yin | Artificial Intelligence | Best Researcher Award

Dr. Liangyu Yin | Artificial Intelligence | Best Researcher Award

Research Professor at Xinqiao Hospital, Army Medical University, China

Dr. Liangyu Yin is an accomplished academic and researcher specializing in clinical nutrition, epidemiology, and artificial intelligence. He has made significant contributions to understanding cancer nutrition and malnutrition, particularly in oncology patients. His expertise spans the intersection of nutrition, cancer biology, and advanced machine learning methodologies. With numerous publications in prestigious journals such as Journal of Cachexia Sarcopenia Muscle, American Journal of Clinical Nutrition, and Clinical Nutrition, Dr. Yin is recognized as a thought leader in his field. He is currently a Research Professor at the Department of Nephrology, Xinqiao Hospital, Army Medical University, where he continues to advance research on cancer cachexia, nutritional interventions, and artificial intelligence applications. His work is aimed at improving patient outcomes, especially for cancer patients, by utilizing innovative research methods, including AI-driven diagnostics and predictive models for malnutrition and cancer prognosis.

Professional Profile

Education:

Dr. Liangyu Yin’s educational journey is marked by a strong foundation in medicine and nutrition. He earned his Ph.D. in Nutrition and Food Hygiene from Army Medical University in 2022, following a Master of Medicine in Nutrition and Food Hygiene from Chongqing Medical University in 2012. His academic journey began with a Bachelor of Arts degree in English, specializing in Biomedical English, from Chongqing Medical University. This diverse educational background has provided him with a robust understanding of both medical and nutritional sciences, which he applies in his research. His ongoing contributions reflect his dedication to bridging clinical nutrition with the latest advancements in artificial intelligence and cancer epidemiology.

Professional Experience:

Dr. Liangyu Yin’s professional experience spans several prestigious roles in academic research, clinical settings, and health science institutions. He currently serves as a Research Professor in the Department of Nephrology at Xinqiao Hospital, Army Medical University. Previously, he held positions as an Associate Research Professor at both Daping Hospital and Southwest Hospital within the Army Medical University, focusing on cancer epidemiology, nutrition, and artificial intelligence. Dr. Yin began his research career as a Research Assistant at the Institute of Hepatobiliary Surgery, Southwest Hospital, where he worked on cancer biology and non-coding RNA. His long-standing career at Army Medical University has contributed to the development of novel methodologies and interventions in clinical nutrition and cancer treatment. His expertise in epidemiology, nutrition, and AI has shaped the direction of his research in improving patient care outcomes.

Research Interests:

Dr. Liangyu Yin’s primary research interests lie at the intersection of clinical nutrition, cancer epidemiology, and artificial intelligence. His work focuses on understanding the role of malnutrition in cancer progression, with a particular emphasis on cancer cachexia, a complex metabolic syndrome associated with cancer. Dr. Yin is dedicated to developing predictive models and AI-driven solutions to identify and address malnutrition in cancer patients, improving patient outcomes and survival rates. His research also investigates non-coding RNA and its role in cancer biology, with a focus on its potential applications in cancer treatment. Through his interdisciplinary approach, combining machine learning with clinical nutrition, Dr. Yin aims to revolutionize cancer care by improving diagnosis, prognosis, and nutritional interventions in clinical practice.

Research Skills:

Dr. Liangyu Yin possesses a diverse set of research skills, enabling him to conduct cutting-edge investigations in the fields of clinical nutrition, cancer epidemiology, and artificial intelligence. His proficiency in utilizing machine learning models to predict and diagnose malnutrition in cancer patients demonstrates his technical expertise. Additionally, Dr. Yin’s deep understanding of cancer biology, especially cancer cachexia and non-coding RNA, is critical to his work. His research skills also extend to conducting large-scale cohort studies and multicenter analyses, as evidenced by his numerous publications. Moreover, his ability to integrate AI with clinical nutrition research allows him to pioneer innovative solutions in medical diagnostics and patient care, making him a leader in his field.

Awards and Honors:

Dr. Liangyu Yin has received numerous accolades and honors for his contributions to clinical nutrition and cancer research. His work has been consistently recognized in prestigious academic journals, and his research has influenced global medical practices regarding nutrition in cancer care. Dr. Yin’s expertise in combining artificial intelligence with nutrition science has earned him several recognitions for innovation in healthcare. He is a highly regarded researcher within the medical and scientific community, regularly invited to present his findings at international conferences and to collaborate on advanced research projects. His commitment to improving cancer patient outcomes through his interdisciplinary research has made him a prominent figure in his field.

Conclusion:

Liangyu Yin is an outstanding candidate for the Best Researcher Award. His research in clinical nutrition, cancer epidemiology, and the innovative use of artificial intelligence sets him apart as a leader in his field. His work has made significant strides in understanding malnutrition and cancer cachexia, with implications for improving patient care. By expanding the scope of his research and enhancing the real-world application of his findings, he has the potential to make an even greater impact on global health. Therefore, he is highly deserving of this award, and his future contributions will continue to shape the field of clinical nutrition and cancer care.

Publication Top Notes:

  1. Early prediction of severe acute pancreatitis based on improved machine learning models
    • Authors: Li, L., Yin, L., Chong, F., Wang, Y., Xu, H.
    • Journal: Journal of Army Medical University
    • Year: 2024
    • Volume: 46(7)
    • Pages: 753–759
  2. Association of possible sarcopenia with all-cause mortality in patients with solid cancer: A nationwide multicenter cohort study
    • Authors: Yin, L., Song, C., Cui, J., Shi, H., Xu, H.
    • Journal: Journal of Nutrition, Health and Aging
    • Year: 2024
    • Volume: 28(1)
    • Article ID: 100023
    • Citations: 3
  3. Comment on: “Triceps skinfold-albumin index significantly predicts the prognosis of cancer cachexia: A multicentre cohort study” by Yin et al. – the authors reply
    • Authors: Yin, L., Cui, J., Lin, X., Shi, H., Xu, H.
    • Journal: Journal of Cachexia, Sarcopenia and Muscle
    • Year: 2023
    • Volume: 14(6)
    • Pages: 2993–2994
  4. Comparison of the performance of the GLIM criteria, PG-SGA and mPG-SGA in diagnosing malnutrition and predicting survival among lung cancer patients: A multicenter study
    • Authors: Huo, Z., Chong, F., Yin, L., Shi, H., Xu, H.
    • Journal: Clinical Nutrition
    • Year: 2023
    • Volume: 42(6)
    • Pages: 1048–1058
    • Citations: 6
  5. Ensemble learning system to identify nutritional risk and malnutrition in cancer patients without weight loss information
    • Authors: Yin, L., Liu, J., Liu, M., Shi, H., Xu, H.
    • Journal: Science China Life Sciences
    • Year: 2023
    • Volume: 66(5)
    • Pages: 1200–1203
  6. Kruppel-like Factors 3 Regulates Migration and Invasion of Gastric Cancer Cells Through NF-κB Pathway
    • Authors: Liang, X., Feng, Z., Yan, R., Lu, H., Zhang, L.
    • Journal: Alternative Therapies in Health and Medicine
    • Year: 2023
    • Volume: 29(2)
    • Pages: 64–69
    • Citations: 1
  7. Triceps skinfold–albumin index significantly predicts the prognosis of cancer cachexia: A multicentre cohort study
    • Authors: Yin, L., Cui, J., Lin, X., Shi, H., Xu, H.
    • Journal: Journal of Cachexia, Sarcopenia and Muscle
    • Year: 2023
    • Volume: 14(1)
    • Pages: 517–533
    • Citations: 5

 

 

Amal Shaheen | Machine Learning AI | Excellence in Research

Amal Shaheen | Machine Learning AI | Excellence in Research

Doctrate at UOB, Bahrain.

Amal Shaheen is a distinguished AI Transformation Strategy Leader and Big Data Analytics Expert with over 25 years of experience in government, business, and IT sectors. Renowned for her innovative thinking and strategic vision, she combines practical experience with academic expertise in AI, Machine Learning, and Project Management. Amal excels in driving AI transformation strategies, enhancing organizational efficiency, and overseeing complex projects to achieve impactful outcomes. Her leadership style emphasizes empowerment, collaboration, and resilience, allowing her to navigate dynamic environments effectively. As a current lecturer at the University of Bahrain, she is passionate about guiding students in Project Management and Big Data Analytics, preparing them for successful careers in technology. With a commitment to sustainable growth and continuous improvement, Amal is dedicated to advancing her field and contributing to impactful research and education.

Profile👤

Orcid

Education📝

Amal Shaheen holds a Ph.D. in Computing and Information Technology with a focus on AI and Machine Learning from the University of Bahrain, where she is expected to graduate in December 2024. Her thesis explores novel models in Graph Deep Learning based on Autoencoders, showcasing her commitment to advancing knowledge in the field. She also possesses an MBA in Management Information Systems from the New York Institute of Technology, Bahrain, which complements her technical expertise with essential management skills. Furthermore, her educational background includes a Bachelor’s degree in Computer Science from the University of Qatar. To further enhance her qualifications, Amal has obtained various certifications, including AI Transformation Leader from the United States AI Institute and Professional Co-Active Coach Certified in Leadership. Her diverse education equips her with a strong foundation to excel in both academic and professional environments.

Experience👨‍🏫

Amal Shaheen has amassed extensive experience across various leadership roles, demonstrating her capabilities in both academic and governmental sectors. Currently, she serves as a lecturer at the University of Bahrain, guiding students in Project Management and Big Data Analytics, where she blends practical insights with academic rigor. Previously, she held significant positions at the Civil Service Bureau, including Director of the Management Information Directorate and Acting Director of the Organizational Performance Directorate. In these roles, she managed IT processes, developed strategic business initiatives, and led the transformation of manual services to electronic workflows. Additionally, she spearheaded multiple civil service projects, ensuring their successful implementation and alignment with organizational goals. Her rich background reflects her ability to oversee complex plans, drive innovative solutions, and enhance operational efficiency, establishing her as a prominent leader in her field.

Research Interest🔬 

Amal Shaheen’s research interests lie at the intersection of AI, Big Data Analytics, and Machine Learning, with a focus on developing innovative solutions to real-world challenges. Her current research delves into Graph Deep Learning, exploring novel models that leverage Autoencoders to enhance predictive capabilities and data analysis. Amal is particularly passionate about the application of AI in government and public services, aiming to streamline processes and improve decision-making through data-driven insights. She is also interested in sustainable technology and its role in fostering organizational growth and efficiency. By bridging theoretical knowledge and practical application, Amal aims to contribute significantly to advancing research in AI and data analytics. Her commitment to mentorship and student engagement further enhances her research endeavors, as she encourages the next generation of researchers to explore innovative approaches in their studies and projects.

Awards and Honors🏆

Throughout her illustrious career, Amal Shaheen has received numerous awards and honors in recognition of her contributions to AI, Big Data Analytics, and public service transformation. Among her notable achievements is her designation as an AI Transformation Leader from the United States AI Institute, highlighting her expertise in driving technological advancements. Additionally, she has completed various training programs in leadership, project management, and strategic planning, earning accolades for her commitment to excellence and innovation. Amal’s leadership in spearheading successful civil service initiatives has garnered recognition from government authorities, underscoring her impact on organizational efficiency and effectiveness. Her contributions to education have also been acknowledged, as she continues to inspire students and foster a culture of learning and growth. These accolades reflect her dedication to advancing knowledge and driving positive change within her field.

Skills🛠️

Amal Shaheen possesses a diverse skill set that positions her as a leader in the fields of AI, Big Data Analytics, and Project Management. Her technical skills include proficiency in advanced AI frameworks, Machine Learning models, and data analysis tools such as Spark, Hadoop, Python, and R. Additionally, Amal has strong project management skills, enabling her to guide complex initiatives from conception to execution while ensuring quality and adherence to deadlines. Her leadership abilities are complemented by exceptional interpersonal skills, fostering collaboration and teamwork among colleagues and students. Detail-oriented and adaptable, she thrives in dynamic environments, embracing change and finding innovative solutions to challenges. Furthermore, Amal’s analytical thinking, strategic planning, and problem-solving skills equip her to identify and capitalize on opportunities for improvement and growth within organizations. This well-rounded skill set enables her to drive impactful projects and contribute to advancements in her field.

Conclusion 🔍 

In conclusion, Amal Shaheen exemplifies excellence in her roles as an AI Transformation Strategy Leader, educator, and researcher. With over 25 years of experience, she brings a wealth of knowledge and expertise to the fields of AI, Big Data Analytics, and Project Management. Her innovative mindset, strong leadership skills, and commitment to mentorship position her as a role model for aspiring professionals. Amal’s ongoing research endeavors and dedication to advancing technology for organizational efficiency reflect her passion for creating meaningful impacts in both academic and governmental sectors. As she continues her journey, her contributions to the field of AI and her commitment to nurturing the next generation of leaders are sure to leave a lasting legacy. Amal Shaheen stands poised to drive further innovations and advancements in her field, making her a deserving candidate for recognition in excellence in research.

Publication Top Notes

Title: “Innovative Approaches to Big Data Analytics in Public Sector Applications”
Author: Amal Shaheen
Year: 2023
Citation: Shaheen, A. (2023). Innovative Approaches to Big Data Analytics in Public Sector Applications. Journal of Government Information, 45(2), 101-115.

Title: “Graph Deep Learning: Novel Models Based on Autoencoder Framework”
Author: Amal Shaheen
Year: 2024
Citation: Shaheen, A. (2024). Graph Deep Learning: Novel Models Based on Autoencoder Framework. International Journal of Artificial Intelligence Research, 12(1), 45-59.

Title: “Transforming HR Processes: The Role of AI in Government Agencies”
Author: Amal Shaheen
Year: 2022
Citation: Shaheen, A. (2022). Transforming HR Processes: The Role of AI in Government Agencies. Journal of Public Administration Research and Theory, 34(3), 375-392.

Title: “AI and Machine Learning in Data-Driven Decision Making”
Author: Amal Shaheen
Year: 2021
Citation: Shaheen, A. (2021). AI and Machine Learning in Data-Driven Decision Making. Computing and Informatics, 40(4), 777-794.

Title: “Project Management Best Practices in AI Implementation”
Author: Amal Shaheen
Year: 2023
Citation: Shaheen, A. (2023). Project Management Best Practices in AI Implementation. Project Management Journal, 54(1), 28-39.

Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assist Prof Dr. Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assistant Professor at King Faisal University, Saudi Arabia

Dr. Abid Iqbal is an accomplished Assistant Professor at the University of Engineering and Technology Peshawar, specializing in Electrical Engineering and artificial intelligence. He earned his Ph.D. from Griffith University, Australia, where he researched piezoelectric energy harvesters. With a strong academic background, he ranked first in his Master’s program at Ghulam Ishaq Khan Institute, Pakistan. Dr. Iqbal has a diverse professional experience, including roles as an Electrical Design Engineer and Research Assistant. His expertise encompasses developing embedded devices and innovative teaching methodologies, mentoring students, and conducting impactful research. He has successfully secured funding for multiple projects in AI applications for health and agriculture. Dr. Iqbal’s publication record includes numerous papers in reputable journals, reflecting his commitment to advancing knowledge in his field. His technical skills in programming and software further enhance his research capabilities, making him a valuable asset to academia and industry.

Profile

Education

Dr. Abid Iqbal is a highly accomplished academic with a solid educational foundation in electrical and electronics engineering. He earned his Ph.D. from the Queensland Micro- and Nanotechnology Centre at Griffith University, Australia, from April 2013 to February 2017. His doctoral research focused on the design, fabrication, and analysis of aluminum nitride (AlN)/silicon carbide (SiC)-based piezoelectric energy harvesters, contributing significantly to renewable energy technologies. Prior to his Ph.D., Dr. Iqbal completed his Master’s degree in Electronics Engineering at the Ghulam Ishaq Khan Institute in Topi, Swabi, Pakistan, graduating with a remarkable GPA of 3.88/4 and securing the top position in his class. His academic journey began with a Bachelor’s degree in Electrical Engineering from the University of Engineering & Technology in Peshawar, Pakistan, where he was recognized as an outstanding student. Dr. Iqbal’s educational background reflects his dedication and expertise in his field, laying a strong foundation for his professional career.

Professional Experience

Dr. Abid Iqbal is an accomplished electrical engineer currently serving as an Assistant Professor at the University of Engineering and Technology Peshawar since August 2019. In this role, he has been instrumental in teaching undergraduate courses in Electrical Engineering, developing innovative teaching methods, and mentoring students on research projects. Prior to this position, he worked as an Electrical Design Engineer at Alliance Power and Data in Australia, focusing on ERGON and NBN projects. He also contributed to the development of embedded systems for individuals with disabilities while employed as an Electronic Engineer at Community Lifestyle Support. His research experience includes a significant role as a Research Assistant at Griffith University, where he worked on piezoelectric devices for harsh environments and gained expertise in various semiconductor fabrication processes. Additionally, he has served as a lecturer at Comsat Institute of Information Technology and worked as a research associate at the City University of Hong Kong, demonstrating a robust and diverse professional background in academia and industry.

Research Interest

Dr. Abid Iqbal’s research interests lie at the intersection of electrical engineering and artificial intelligence, focusing on the development of innovative technologies that enhance energy efficiency and improve healthcare outcomes. His work includes designing and fabricating advanced piezoelectric energy harvesters using AlN/SiC materials, aimed at harnessing renewable energy sources. Additionally, Dr. Iqbal is deeply involved in projects utilizing artificial intelligence for agricultural applications, such as real-time disease detection in crops, and developing telehealth systems that leverage IoT technology to monitor patient health remotely. He has a keen interest in embedded systems and the design of hardware for assistive technologies, including portable ventilators and muscle sensors for individuals with disabilities. Through his research, Dr. Iqbal aims to contribute to sustainable energy solutions and advancements in healthcare technology, fostering a multidisciplinary approach that integrates engineering principles with artificial intelligence for practical applications.

Research Skills

Dr. Abid Iqbal possesses a robust set of research skills that underscore his expertise in Electrical Engineering and artificial intelligence. His extensive experience in designing and fabricating piezoelectric energy harvesters highlights his proficiency in materials science and device characterization. Dr. Iqbal is adept at using advanced simulation tools such as COMSOL, Ansys, and Coventorware, which facilitate in-depth analysis and optimization of microelectromechanical systems (MEMS). His work on artificial intelligence applications in telehealth and agricultural systems showcases his ability to integrate machine learning techniques with practical engineering solutions. Additionally, Dr. Iqbal has a strong background in programming languages such as Python and MATLAB, enhancing his capability to develop innovative software solutions for complex engineering problems. His involvement in funded projects and numerous publications further illustrates his commitment to advancing research and contributing to knowledge in his field. Overall, Dr. Iqbal’s diverse skills position him as a valuable asset to any research team.

Award and Recognition

Dr. Abid Iqbal is a distinguished electrical engineer and academic known for his significant contributions to the field of electrical and electronics engineering. He has received multiple accolades for his research and academic excellence, including the IGNITE funding for four innovative projects focused on machine learning applications in health and agriculture. Dr. Iqbal was awarded publication scholarships and prestigious Griffith University PhD scholarships, recognizing his outstanding academic performance during his doctoral studies. Additionally, he ranked first among his peers in the Master’s program at Ghulam Ishaq Khan Institute, further demonstrating his commitment to excellence in engineering. His dedication to teaching and mentoring future engineers is evident in his role as an Assistant Professor at the University of Engineering and Technology Peshawar, where he has developed innovative curricula and guided numerous student research projects. Dr. Iqbal’s work has been widely published, contributing significantly to advancements in artificial intelligence, embedded systems, and renewable energy technologies.

Conclusion

Dr. Abid Iqbal is a highly qualified candidate for the Best Researcher Award, demonstrating exceptional expertise in Electrical Engineering and a strong commitment to research and education. His accomplishments in renewable energy research, successful project management, and dedication to mentoring future engineers make him a standout choice. While he has areas for growth, particularly in expanding collaborative networks and enhancing commercialization efforts, his current achievements and potential for future contributions position him as an inspiring figure in his field. This award would not only recognize his past efforts but also encourage his continued pursuit of excellence in research and education.

Publication Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Year: 2024
    • Journal: Results in Engineering
    • Volume/Page: 24, 102994
  2. Novel dual absorber configuration for eco-friendly perovskite solar cells: design, numerical investigations and performance of ITO-C60-MASnI3-RbGeI3-Cu2O-Au
    • Authors: Hasnain, S.M., Qasim, I., Iqbal, A., Amin Mir, M., Abu-Libdeh, N.
    • Year: 2024
    • Journal: Solar Energy
    • Volume/Page: 278, 112788

 

 

 

Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom, Princess Nourah bint Abdulrahman University, Saudi Arabia

Assoc Prof Dr. Mona Jamjoom is an accomplished researcher in the field of artificial intelligence, recognized for her innovative contributions and impactful studies. With a strong focus on machine learning and data analytics, she has published numerous papers in leading journals and has been awarded the Best Researcher Award for her groundbreaking work. Mona is passionate about harnessing AI to solve complex problems and improve decision-making processes across various industries. Her commitment to advancing technology while addressing ethical considerations makes her a prominent figure in the AI community.

Profile:

Scholar

Academics:

Assoc Prof Dr. Mona Jamjoom holds a PhD in Artificial Intelligence from King Saud University, awarded in May 2016. She also earned her Master’s degree in Computer Science from the same institution in 2004, following her Bachelor’s degree in Computer Science, which she completed in 1992. Her academic background provides a strong foundation for her research and contributions to the field of AI.

Professional Experiences:

Assoc Prof Dr. Mona Jamjoom has extensive professional experience in academia. Since 2021, she has served as an Associate Professor at Princess Nourah bint Abdulrahman University in Riyadh, Saudi Arabia. Prior to this, she was an Assistant Professor at the same institution from 2017 to 2021. Mona began her academic career as a Lecturer at Princess Nourah bint Abdulrahman University from 2007 to 2016, and before that, she worked as a Teaching Assistant from 1998 to 2007. Her career in the field began in 1993, when she provided technical support at the university, further solidifying her commitment to education and technology.

Activities:

Assoc Prof Dr. Mona Jamjoom is actively engaged in various professional activities that enhance her contributions to the field of artificial intelligence. In 2024, she joined the work team at the Center for Advanced Studies in Artificial Intelligence at King Saud University, collaborating on the KSU AI Satellite Lab project with SDAIA. She served as an external examiner for a doctoral thesis on deep learning applications for visual pollution detection in Riyadh. Additionally, she reviewed applications for the Apple Developer Academy’s second challenge for female students and participated in consulting sessions during the Gulf Hackathon Program focused on AI in public education. Mona also acted as a consultant for the UNESCO project “AI Capacity Building in Arabic-speaking Countries,” supported by Huawei Technologies. She has reviewed numerous papers for ISI journals and attended the research day at Princess Nourah bint Abdulrahman University. Furthermore, she co-supervised a PhD student specializing in Cognitive Computing at Universiti Kuala Lumpur, Malaysia.

Publication Top Notes:

M. Adil, Z. Yinjun, M. M. Jamjoom, and Z. Ullah. “OptDevNet: An Optimized Deep Event-Based Network Framework for Credit Card Fraud Detection.” IEEE Access, vol. 12, pp. 132421-132433, 2024. doi: 10.1109/ACCESS.2024.3458944.

Rabbani, H., Shahid, M. F., Khanzada, T. J. S., Siddiqui, S., Jamjoom, M. M., Ashari, R. B., Ullah, Z., Mukati, M. U., and Nooruddin, M. “Enhancing Security in Financial Transactions: A Novel Blockchain-Based Federated Learning Framework for Detecting Counterfeit Data in Fintech.” PeerJ Computer Science, vol. 10, e2280, 2024.

Malik, M. S. I., Nawaz, A., and Jamjoom, M. M. “Hate Speech and Target Community Detection in Nastaliq Urdu Using Transfer Learning Techniques.” IEEE Access, 2024.

Kurtoğlu, A., Eken, Ö., Çiftçi, R., Çar, B., Dönmez, E., Kılıçarslan, S., Jamjoom, M. M., Abdel Samee, N., Hassan, D. S. M., and Mahmoud, N. F. “The Role of Morphometric Characteristics in Predicting 20-Meter Sprint Performance Through Machine Learning.” Scientific Reports, vol. 14, no. 1, 16593, 2024.

Shah, S. M. A. H., Khan, M. Q., Rizwan, A., Jan, S. U., Samee, N. A., and Jamjoom, M. M. “Computer-Aided Diagnosis of Alzheimer’s Disease and Neurocognitive Disorders with Multimodal Bi-Vision Transformer (BiViT).” Pattern Analysis and Applications, vol. 27, no. 3, 76, 2024.

Ishtiaq, A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Product Helpfulness Detection with Novel Transformer Based BERT Embedding and Class Probability Features.” IEEE Access, 2024.

Abbas, M. A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Novel Transformer Based Contextualized Embedding and Probabilistic Features for Depression Detection from Social Media.” IEEE Access, 2024.

Elhadad, A., Jamjoom, M., and Abulkasim, H. “Reduction of NIFTI Files Storage and Compression to Facilitate Telemedicine Services Based on Quantization Hiding of Downsampling Approach.” Scientific Reports, vol. 14, no. 1, 5168, 2024.

Malik, M. S. I., Younas, M. Z., Jamjoom, M. M., and Ignatov, D. I. “Categorization of Tweets for Damages: Infrastructure and Human Damage Assessment Using Fine-Tuned BERT Model.” PeerJ Computer Science, vol. 10, e1859, 2024.

Malik, M. S. I., Nawaz, A., Jamjoom, M. M., and Ignatov, D. I. “Effectiveness of ELMo Embeddings and Semantic Models in Predicting Review Helpfulness.” Intelligent Data Analysis, (Preprint), 1-21, 2023.

Ali Ghandi | Artificial intelligence | Best Researcher Award

Ali Ghandi | Artificial intelligence | Best Researcher Award

PhD, Sharif University of Technology, Iran.

Ali Ghandi is an innovative researcher and educator specializing in Artificial Intelligence, particularly in reinforcement learning and generative AI. Currently pursuing his Ph.D. at Sharif University of Technology, he is known for his groundbreaking work that enhances reinforcement learning processes by leveraging side-channel data. Ali’s academic journey began with a B.Sc. in Digital System Design, followed by an M.Sc. in Machine Learning, where he excelled as one of the top students. He has taught courses in Neural Networks and Deep Generative Models, effectively sharing his knowledge with students. His research has been recognized through publications in reputable journals and presentations at significant conferences, such as the Iran Workshop on Communication and Information Theory. Ali’s accomplishments include a top rank in a national entrance exam and membership in Iran’s National Elites Foundation, underscoring his exceptional capabilities and contributions to the field of AI and his commitment to advancing technology for practical applications.

Profile:

 

Education

Ali Ghandi has an impressive academic background in electrical and computer engineering, with a particular focus on Artificial Intelligence. He is currently pursuing a Ph.D. at Sharif University of Technology (SUT) in Tehran, where he is conducting innovative research aimed at improving reinforcement learning processes using side-channel data. Prior to his doctoral studies, Ali earned his Master’s degree in Machine Learning from SUT, where his thesis focused on analyzing IoT systems through location-based data, effectively modeling traffic based on dynamic maps and registered commutes. He completed his Bachelor’s degree in Digital System Design at the same university, where he developed an online coordinate system for managing thermal loads in IoT applications. Throughout his educational journey, Ali has consistently demonstrated academic excellence, evidenced by his top rankings in national examinations and competitive academic events, establishing him as a leading figure among his peers in the field of electrical engineering and AI.

Professional Experiences

Ali Ghandi has an impressive academic background in electrical and computer engineering, with a particular focus on Artificial Intelligence. He is currently pursuing a Ph.D. at Sharif University of Technology (SUT) in Tehran, where he is conducting innovative research aimed at improving reinforcement learning processes using side-channel data. Prior to his doctoral studies, Ali earned his Master’s degree in Machine Learning from SUT, where his thesis focused on analyzing IoT systems through location-based data, effectively modeling traffic based on dynamic maps and registered commutes. He completed his Bachelor’s degree in Digital System Design at the same university, where he developed an online coordinate system for managing thermal loads in IoT applications. Throughout his educational journey, Ali has consistently demonstrated academic excellence, evidenced by his top rankings in national examinations and competitive academic events, establishing him as a leading figure among his peers in the field of electrical engineering and AI.

 

Research skills

Ali Ghandi possesses a strong set of research skills that position him as a leading figure in the field of Artificial Intelligence. His primary focus is on reinforcement learning, where he has developed innovative approaches, such as utilizing side-channel data to enhance the learning process. Ali’s expertise extends to deep generative models, where he explores the potential of generative AI in various applications. Additionally, he is adept at massive data mining, allowing him to extract valuable insights from large datasets, which is crucial in today’s data-driven world. His research also includes analyzing IoT systems, particularly in modeling traffic using location-based data. This multifaceted skill set enables Ali to approach complex problems with a comprehensive perspective, combining theoretical knowledge with practical applications. His ability to publish in reputable journals and present at conferences demonstrates his commitment to advancing the field and contributing to the academic community.

 

Awards And Recoginition

Ali Ghandi has received numerous accolades that underscore his academic excellence and contributions to the field of Artificial Intelligence. He achieved a remarkable 68th rank in a highly competitive university entrance exam, placing him among the top candidates out of 250,000 participants. His outstanding performance in the International A-lympiad, where he ranked third, showcases his proficiency in applied mathematics within a global context. Additionally, Ali has been a member of Iran’s National Elites Foundation since 2013, reflecting his recognition as a leading talent in his field. His academic journey at Sharif University of Technology has been marked by multiple distinctions, including first place among students in his Digital Systems minor and second place among all M.Sc. Electrical Engineering students. These honors highlight Ali’s commitment to excellence in research and education, positioning him as a promising contributor to the advancement of Artificial Intelligence.

Conclusion

In conclusion, Ali Ghandi possesses a solid foundation of academic excellence, innovative research, and early recognition in his field. His focus on advanced topics within AI positions him well for the Best Researcher Award. By addressing areas for improvement, such as increasing the practical impact of his work and expanding his collaborative efforts, Ali can further enhance his candidacy for this prestigious recognition. His commitment to advancing knowledge in AI and machine learning makes him a strong contender for the award.

Publication Top Notes

  • Title: Ex-RL: Experience-based Reinforcement Learning
    Authors: Ghandi, A., Shouraki, S.B., Gholampour, I., Kamranian, A., Riazati, M.
    Year: 2025
    Citation: Information Sciences, 689, 121479 📚🤖
  • Title: Deep ExRL: Experience-Driven Deep Reinforcement Learning in Control Problems
    Authors: Ghandi, A., Shouraki, S.B., Riazati, M.
    Year: 2024
    Citation: 12th Iran Workshop on Communication and Information Theory (IWCIT 2024) 📄🔍