Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Mrs. Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Cybersecurity Software Engineer from J.B.Hunt Transport Inc, United States

Prasanthi Vallurupalli is a distinguished Cybersecurity Software Engineer with 11 years of experience in the IT industry. With a background as a Programmer Analyst and Software Developer, she has developed an extensive understanding of software development, security protocols, and emerging technologies. Throughout her career, Prasanthi has contributed significantly to the field of cybersecurity, AI, and machine learning (AI/ML) through research and practical applications. She is known for her expertise in cybersecurity and her ability to combine technical skills with a strategic vision for innovation. Her work in AI/ML and cybersecurity has been recognized in both industry and academia, making her a thought leader in the space. Her contributions extend beyond research, as she has published multiple papers and authored a nationally recognized book on cybersecurity, which demonstrates her leadership and commitment to advancing knowledge in the field. Recognized with numerous prestigious awards and editorial memberships, Prasanthi continues to drive industry transformation with a focus on innovation and technological advancements. Her deep expertise, combined with a passion for improving security technologies, positions her as a deserving candidate for recognition in the tech industry.

Professional Profile

Education

Prasanthi Vallurupalli holds a strong educational foundation in computer science and cybersecurity, which has been pivotal in her professional achievements. She earned a Bachelor’s degree in Computer Science, where she first developed a keen interest in software development and security technologies. Building upon this foundation, she pursued advanced studies in cybersecurity and AI/ML, further deepening her expertise. Throughout her academic journey, Prasanthi consistently excelled in both theoretical knowledge and practical applications, making her well-equipped to tackle the complexities of modern cybersecurity challenges. Her commitment to learning and growth has been a driving force in her career, allowing her to stay at the forefront of technological advancements. She has also participated in various professional development programs and workshops, which have kept her skills up to date with the latest trends in software security, machine learning, and AI. This ongoing pursuit of knowledge has not only enhanced her technical abilities but has also allowed her to contribute meaningfully to research in the field of cybersecurity. Prasanthi’s academic accomplishments have laid a solid foundation for her to thrive as a recognized expert in cybersecurity and AI/ML, shaping her career trajectory as a leading figure in the industry.

Professional Experience 

With 11 years of professional experience in the IT industry, Prasanthi Vallurupalli has held key roles as a Cybersecurity Software Engineer, Programmer Analyst, and Software Developer. In her career, she has successfully navigated a range of responsibilities, from coding and software design to ensuring the security and integrity of complex systems. Her expertise spans software development, cybersecurity practices, and the application of emerging technologies, particularly in AI/ML. Prasanthi’s work in developing secure software solutions and protecting against cybersecurity threats has made a substantial impact across industries. She has been involved in high-stakes projects where ensuring the confidentiality, integrity, and availability of data was paramount. Her leadership in driving security solutions has led to the implementation of innovative security protocols and AI-driven defense systems. Additionally, Prasanthi has actively collaborated with cross-functional teams, contributing to the development of robust solutions that integrate both technical and strategic elements. As a result of her consistent excellence and innovative approach, she has earned recognition from both her peers and industry leaders. Her professional journey reflects a blend of technical mastery, leadership, and a commitment to advancing the cybersecurity field, setting her apart as a leader in her domain.

Research Interests

Prasanthi Vallurupalli’s primary research interests lie at the intersection of cybersecurity and artificial intelligence/machine learning (AI/ML). She is particularly focused on developing advanced cybersecurity solutions using AI/ML techniques to protect against evolving cyber threats. Her work explores the use of AI in automating threat detection, identifying vulnerabilities, and building more secure systems. She is also interested in creating intelligent systems that can adapt to new types of attacks in real-time, improving the resilience of security systems. Another area of her research focuses on secure software development practices and the integration of AI-driven security mechanisms within software lifecycle management. Her interdisciplinary approach combines her expertise in cybersecurity with the potential of AI/ML to drive innovation and efficiency in the field. Additionally, Prasanthi is keen on studying how machine learning algorithms can predict and mitigate cybersecurity risks, including data breaches, malware attacks, and other vulnerabilities. She aims to contribute to developing more robust, adaptive, and scalable security systems that can stay ahead of cyber adversaries. As she continues to explore these research areas, Prasanthi’s work promises to make a significant impact in the way security systems are developed and deployed in an increasingly complex and dynamic digital landscape.

Research Skills 

Prasanthi Vallurupalli possesses a diverse and advanced set of research skills that are critical to her work in cybersecurity and artificial intelligence. Her proficiency in various programming languages, such as Python, C++, and Java, allows her to develop and implement security solutions using cutting-edge AI/ML algorithms. She is highly skilled in utilizing machine learning frameworks such as TensorFlow, Keras, and PyTorch, which she leverages to build and deploy AI-driven security models. Additionally, Prasanthi is adept at working with large datasets, performing data analysis, and utilizing statistical tools to derive meaningful insights related to cybersecurity threats and vulnerabilities. Her expertise in data mining and predictive modeling further enhances her ability to analyze complex patterns and anticipate potential risks. Prasanthi also excels in software development methodologies, ensuring that her research is not only technically sound but also practically applicable. Her research skills extend to system design, where she has contributed to the development of secure, scalable, and high-performance systems. Furthermore, Prasanthi is experienced in conducting literature reviews, drafting research papers, and presenting findings in academic and industry forums. Her ability to bridge theoretical knowledge with practical applications makes her research highly impactful in advancing the field of cybersecurity.

Awards and Honors

Prasanthi Vallurupalli’s work in cybersecurity and AI/ML has been widely recognized, earning her numerous prestigious awards and honors. She has received accolades for her research contributions, particularly in the areas of cybersecurity defense mechanisms and the integration of artificial intelligence in security systems. Among her significant achievements is her nationally recognized book on cybersecurity, which has garnered attention from both academic and industry circles. Additionally, Prasanthi has been awarded for her research papers, which have been published in respected journals within the cybersecurity and AI/ML domains. Her editorial memberships in prominent journals further underscore her credibility and standing as an expert in the field. Beyond her academic and professional recognitions, Prasanthi has been celebrated for her leadership in advancing the practice of cybersecurity through innovation and thought leadership. These awards and honors are a testament to her consistent excellence and dedication to improving the field of cybersecurity, and they serve as a reflection of the impact she has made on both her peers and the wider tech community. Prasanthi’s ability to inspire and lead in research has earned her a reputation as one of the leading figures in cybersecurity and AI/ML research.

Conclusion

Prasanthi Vallurupalli is an exemplary professional and researcher in the fields of cybersecurity and artificial intelligence. Her extensive experience, strong academic foundation, and groundbreaking research have positioned her as a leading figure in the tech industry. Through her numerous contributions, including publications, a nationally recognized book, and groundbreaking work in AI/ML-driven cybersecurity solutions, Prasanthi has demonstrated a deep commitment to advancing technology and tackling the most pressing challenges in cybersecurity. Her ability to seamlessly blend technical expertise with innovative thinking has allowed her to develop cutting-edge solutions to protect against evolving cyber threats. With over a decade of experience, she has continuously pushed the boundaries of cybersecurity, offering new approaches that improve both the security and functionality of systems. Prasanthi’s work has been acknowledged with prestigious awards and honors, reflecting the significant impact she has made in her field. As a thought leader, she not only contributes to the technical community but also drives industry-wide transformation through her research and leadership. Moving forward, Prasanthi is poised to continue her path of excellence, influencing the future of cybersecurity and AI/ML. Her ability to adapt and innovate ensures she remains a powerful force for positive change in the industry.

Publications Top Notes

  • Designing and Training of Lightweight Neural Networks on Edge Devices Using Early Halting in Knowledge Distillation

    • Authors: Rahul Mishra and Hari Prabhat Gupta

    • Year: 2022 ​

  • REAL-TIME CYBERSECURITY THREAT ASSESSMENT: DYNAMIC RISK SCORING WITH HYBRID DATA SCIENCE MODELS

    • Author: P. Vallurupalli

    • Year: 2022

Tejasva Maurya | Computer Science | Best Researcher Award

Mr. Tejasva Maurya | Computer Science | Best Researcher Award

Shri Ramswaroop Memorial University, India

Tejasva Maurya is a dedicated researcher specializing in artificial intelligence, deep learning, and data science. With a strong academic background in computer science and engineering, he has made significant contributions to AI-driven solutions in smart traffic management, healthcare applications, and natural language processing. His work focuses on applying advanced machine learning models to real-world challenges, particularly in image processing, sentiment analysis, and human-computer interaction. Tejasva has published research in reputable journals and book chapters, showcasing his expertise in AI and its interdisciplinary applications. He has also gained valuable industry experience through internships in data science and analytics, working on projects that optimize machine learning models and enhance data-driven decision-making. His technical proficiency includes programming in Python, deep learning frameworks like PyTorch, and working with Hugging Face models for NLP and computer vision tasks. With multiple achievements in AI research, including a Scopus-indexed publication and competition awards, Tejasva continues to push the boundaries of innovation in artificial intelligence. His long-term goal is to contribute groundbreaking research in AI while bridging the gap between theoretical advancements and practical implementations.

Professional Profile

Education

Tejasva Maurya is currently pursuing a Bachelor of Technology in Computer Science and Engineering at Shri Ramswaroop Memorial University, where he has developed a strong foundation in programming, machine learning, and AI-driven applications. His coursework has provided extensive exposure to algorithms, data structures, deep learning, and computer vision techniques. Prior to his undergraduate studies, he completed his Intermediate education under the CBSE Board in 2021, securing an impressive 88.88%, which highlights his academic excellence and analytical abilities. His passion for artificial intelligence and research was evident early on, leading him to explore AI-related projects and specialized training in machine learning. Throughout his education, he has engaged in practical AI applications, contributing to his ability to develop innovative solutions in deep learning, NLP, and computer vision. His university studies have been complemented by self-driven research initiatives and internships, allowing him to apply theoretical knowledge to real-world problems. Tejasva’s continuous learning approach and commitment to AI research position him as an emerging talent in the field of artificial intelligence.

Professional Experience

Tejasva Maurya has gained substantial industry experience through internships and research projects in data science and machine learning. As a Data Scientist Intern at DevTown (June 2023 – December 2023), he worked on developing and optimizing deep learning models using PyTorch for real-world applications, focusing on NLP, image classification, and generative adversarial networks (GANs). He was responsible for designing data pipelines, preprocessing data, and conducting exploratory data analysis, ensuring the models were efficient and accurate. Additionally, Tejasva worked as a Data Analyst Trainee at MedTourEasy (August 2023 – August 2023), where he specialized in data visualization and statistical analysis. His role involved extracting actionable insights from large datasets using Python and Tableau and collaborating with different teams to implement data-driven strategies. His professional experience has strengthened his ability to apply AI techniques to practical problems, enhancing his understanding of machine learning implementation in different sectors. Through these roles, he has built strong analytical skills and technical expertise, preparing him for more advanced research in artificial intelligence and data science.

Research Interests

Tejasva Maurya’s research interests lie in artificial intelligence, deep learning, natural language processing, and computer vision. His primary focus is on developing AI-driven solutions for real-world applications, including smart traffic management, healthcare technology, and human-computer interaction. His work in vehicle classification using deep learning demonstrates his expertise in YOLO-based object detection models and their application in traffic surveillance and smart city planning. Additionally, he is keen on sentiment analysis and speech processing, contributing to AI models that improve text-to-speech (TTS) synthesis and NLP-based insights. His interest in federated learning for agricultural applications highlights his commitment to interdisciplinary research, exploring AI’s role in optimizing farming techniques and market stability. Tejasva is also exploring artificial emotional intelligence for psychological and mental health assessments, aiming to create AI models that assist in mental health diagnosis and emotional analysis. With a strong foundation in machine learning and AI, he aims to bridge the gap between theoretical advancements and practical AI implementations, driving innovation in multiple domains.

Research Skills

Tejasva Maurya possesses advanced research skills in machine learning, deep learning, and AI model development. His technical expertise includes Python programming, with proficiency in PyTorch, scikit-learn, NumPy, and OpenCV for implementing AI-based solutions. He has hands-on experience in computer vision techniques, including real-time object detection, image segmentation, and gesture-based human-computer interaction, leveraging tools like Mediapipe and Haar Cascades. In natural language processing (NLP), he is skilled in text processing, speech-to-text, and fine-tuning transformer models using Hugging Face frameworks. His research methodology includes data preprocessing, model fine-tuning, hyperparameter optimization, and performance evaluation using metrics like mAP and F1-score. He is proficient in working with large-scale datasets and has successfully published research on vehicle classification, federated learning, and AI-based healthcare applications. Additionally, he has experience in GANs and diffusion models, focusing on synthetic media generation and speech dataset augmentation. His ability to integrate AI solutions across different fields demonstrates his versatility as a researcher and innovator.

Awards and Honors

Tejasva Maurya has received multiple accolades for his contributions to AI research and innovation. One of his most notable achievements is publishing a Scopus-indexed journal article, “Real-Time Vehicle Classification Using Deep Learning—Smart Traffic Management,” in Engineering Reports (Wiley), which underscores the real-world impact of his research. He has also co-authored multiple book chapters in prestigious publishers like Nova Science, Wiley, and Bentham Science, covering AI applications in healthcare, federated learning, and artificial emotional intelligence. His research has been recognized for its contribution to intelligent traffic systems, patient-centric healthcare, and AI-powered decision-making. In addition to his research achievements, he secured 1st position in KIMO’s-Edge’ 23 Technology Competition, a testament to his problem-solving skills and technical expertise. His consistent excellence in AI research and project development has positioned him as an emerging leader in the field of artificial intelligence, with a strong track record of achievements.

Conclusion

Tejasva Maurya is a promising researcher in artificial intelligence, with expertise in deep learning, NLP, and computer vision. His strong academic foundation, technical proficiency, and impactful research make him a strong contender for recognition as a leading researcher in AI. With multiple publications, real-world AI applications, and industry experience, he has demonstrated both theoretical knowledge and practical problem-solving abilities. While he has made significant contributions, focusing on publishing in high-impact AI conferences, securing patents, and expanding interdisciplinary collaborations would further enhance his research portfolio. His dedication to bridging AI theory with real-world applications highlights his potential to contribute groundbreaking advancements in artificial intelligence.

Publications Top Notes

  1. Title: Real Time Vehicle Classification Using Deep Learning—Smart Traffic Management
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K., Goel, N., and Gupta, G.
    Publication: Engineering Reports, 7: e70082 (2025)
    DOI: https://doi.org/10.1002/eng2.70082

  2. Title: Patient Centric Healthcare
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K.
    Book: Harnessing the Power of IoT-Enabled Machine Learning in Healthcare Applications
    Editors: Mritunjay Rai, Ravindra Kumar Yadav, Neha Goel, and Maheshkumar H. Kolekar

  3. Title: Integrating Artificial Intelligence and Deep Learning in Classification and Taking Care of DFU
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K., Pandey, J.K.
    Book: Machine Learning-Based Decision Support Systems for Diabetic Foot Ulcer Care
    Editors: Mritunjay Rai, Jay Kumar Pandey, and Abhishek Kumar Saxena

  4. Title: Federated Learning-Based Approach for Crop Recommendation and Market Stability in Agriculture
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Federated Learning for Smart Agriculture and Food Quality Enhancement
    Editors: Padmesh Tripathi, Bhanumati Panda, Shanthi Makka, Reeta Mishra, S. Balamurugan, and Sheng-Lung Peng

  5. Title: Artificial Emotional Intelligence for Psychological State and Mental Health Assessment
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Artificial Emotional Intelligence: Fundamentals, Challenges and Applications
    Editors: Padmesh Tripathi, Krishna Kumar Paroha, Reeta Mishra, and S. Balamurugan

Dagne Walle | Computer Science | Best Scholar Award

Mr. Dagne Walle | Computer Science | Best Scholar Award

Haramaya at Haramaya university, Ethiopia

Dagne Walle Girmaw is a lecturer, researcher, and programmer at Haramaya University in Ethiopia, with a strong academic background in Information Technology. His expertise lies in applying machine learning and deep learning techniques to solve critical challenges in agriculture. Dagne’s work focuses on developing automated systems to detect crop diseases at an early stage, utilizing advanced AI models to improve food security and agricultural sustainability. His passion for using technology to bridge the gap between agriculture and innovation has led to impactful research that can potentially transform the agricultural landscape in Ethiopia and beyond. Dagne is committed to making a difference by empowering farmers with actionable insights that can enhance crop yields and reduce losses. As an educator, Dagne also plays a pivotal role in nurturing the next generation of IT professionals in Ethiopia, providing them with the necessary tools to apply advanced technologies in real-world scenarios.

Professional Profile

Education:

Dagne Walle Girmaw holds a Master’s degree in Information Technology from the University of Gondar, completed in 2021. He also earned his Bachelor’s degree in Information Technology from Haramaya University in 2017. His academic journey has been focused on acquiring a deep understanding of IT systems, with a particular emphasis on machine learning and deep learning. The combination of his education and technical skills has enabled him to pioneer research in applying these advanced technologies to agricultural challenges. His education from two reputable institutions in Ethiopia has provided him with both theoretical knowledge and practical experience in addressing real-world issues in agriculture, particularly the detection of crop diseases using AI.

Professional Experience:

Since 2018, Dagne has been a lecturer and researcher at Haramaya University, where he imparts knowledge on Information Technology and leads research initiatives focused on AI applications in agriculture. As a lecturer, he has played a key role in shaping the education of students, particularly those interested in IT, by teaching courses and supervising academic projects. His research experience spans over six years, during which he has developed several deep learning-based models for detecting crop diseases such as stem rust in wheat, livestock skin diseases, and common bean leaf diseases. His academic and research endeavors at Haramaya University have allowed him to make meaningful contributions to the field of agricultural technology and provide students with cutting-edge insights into the intersection of IT and agriculture.

Research Interest:

Dagne Walle Girmaw’s research interests are primarily centered around the application of deep learning and machine learning techniques in agriculture. He is particularly focused on developing systems for early disease detection in crops, which can significantly improve agricultural productivity and food security. His research has led to the development of various models, such as those for detecting and classifying diseases in crops like wheat, beans, and peas, using deep convolutional neural networks (CNNs). Additionally, Dagne’s work includes using AI for the detection of counterfeit Ethiopian banknotes. His interest in machine learning-driven solutions highlights his desire to use technology to solve some of the most pressing challenges in the agricultural sector, with the ultimate goal of empowering farmers and enhancing food systems in Ethiopia and other developing countries.

Research Skills:

Dagne possesses strong research skills in machine learning, deep learning, and computer vision, which are central to his work on agricultural disease detection. He is proficient in using deep learning frameworks such as TensorFlow and Keras to develop complex models that can process and analyze agricultural data, including images of crops. His research skills also include data preprocessing, model evaluation, and optimization techniques, all of which are essential for creating accurate and reliable models. Furthermore, Dagne has experience in implementing algorithms for image classification and pattern recognition, which are key components in his work on disease detection. His ability to integrate AI technologies into real-world applications demonstrates a high level of proficiency in his field and a commitment to advancing agricultural technologies through research.

Awards and Honors:

Dagne Walle Girmaw has earned multiple Reviewer Contribution Certificates, recognizing his active participation in the academic and research community. These certificates highlight his role in reviewing academic papers, further cementing his reputation as a respected contributor to the field of Information Technology and machine learning. While specific awards for his research have not been mentioned, his work’s impact on agricultural technology has gained recognition, particularly in Ethiopia, where his research has the potential to improve the lives of farmers and contribute to national food security. His certifications and recognition as a reviewer reflect his dedication to advancing knowledge in both the academic and applied research fields.

Conclusion:

Dagne Walle Girmaw is a promising researcher and academic in the field of Information Technology, with a focus on using AI and deep learning to address challenges in agriculture. His work is particularly impactful in the realm of crop disease detection, where he has developed models that could potentially transform agricultural practices in Ethiopia and beyond. With a strong educational background, extensive professional experience, and a passion for solving agricultural problems through technology, Dagne is well-positioned to make significant contributions to both the academic and practical aspects of agricultural innovation. His research holds the potential to not only advance technology but also improve the livelihoods of farmers, enhance food security, and contribute to sustainable agricultural practices.

Publication Top Notes

  1. Title: Livestock animal skin disease detection and classification using deep learning approaches
    • Authors: Walle Girmaw, D.
    • Journal: Biomedical Signal Processing and Control
    • Year: 2025
    • Volume: 102
    • Article Number: 107334
  2. Title: Deep convolutional neural network model for classifying common bean leaf diseases
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: Discover Artificial Intelligence
    • Year: 2024
    • Volume: 4(1)
    • Article Number: 96
  3. Title: A novel deep learning model for cabbage leaf disease detection and classification
    • Authors: Girmaw, D.W., Salau, A.O., Mamo, B.S., Molla, T.L.
    • Journal: Discover Applied Sciences
    • Year: 2024
    • Volume: 6(10)
    • Article Number: 521
  4. Title: Field pea leaf disease classification using a deep learning approach
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: PLoS ONE
    • Year: 2024
    • Volume: 19(7)
    • Article Number: e0307747
  5. Title: Development of a Model for Detection and Grading of Stem Rust in Wheat Using Deep Learning
    • Authors: Nigus, E.A., Taye, G.B., Girmaw, D.W., Salau, A.O.
    • Journal: Multimedia Tools and Applications
    • Year: 2024
    • Volume: 83(16)
    • Pages: 47649–47676
    • Citations: 4

 

 

Chandan Kumar Sah | Computer Science | Best Researcher Award

Mr. Chandan Kumar Sah | Computer Science | Best Researcher Award

Postgraduate Research Student at Beihang University, China.

Chandan Kumar Sah, also known as Rocky, is a driven software engineer and AI entrepreneur with a profound interest in artificial intelligence and software development. He aims to leverage his expertise to tackle global challenges through innovative technological solutions. His academic journey, combined with hands-on experience in various software development projects, positions him as a promising figure in the fields of software engineering and AI. With a strong entrepreneurial mindset, Chandan seeks opportunities that allow him to lead impactful projects, contributing to advancements in technology. He is proficient in multiple programming languages and has developed skills in machine learning, deep learning, and AI policy. His passion for research and collaboration is evident in his active participation in academic initiatives and organizations. Chandan is not only dedicated to his professional growth but also committed to fostering innovation in his community, making him a well-rounded candidate for awards and recognition in his field.

Professional Profile

Education

Chandan Kumar Sah is currently pursuing a postgraduate degree in Software Engineering at Beihang University, Beijing, China, having enrolled in September 2022. Prior to this, he completed his Bachelor’s degree in Software Engineering at Sichuan University, Chengdu, China, graduating in December 2021. Throughout his educational journey, Chandan has excelled academically, demonstrating a solid understanding of core software engineering principles and practices. He has also sought to expand his knowledge through various certifications, including the CS50: Introduction to Computer Science from Harvard University in 2020 and a specialization in Artificial Intelligence Foundations from Imperial College London in 2024. Additionally, he participated in an Innovation & Entrepreneurship program at Tsinghua University, further enhancing his entrepreneurial skill set. Chandan’s diverse educational background reflects his commitment to lifelong learning and his pursuit of excellence in the rapidly evolving field of technology.

Professional Experience

Chandan Kumar Sah has gained valuable professional experience through various internships and positions in the software engineering and AI sectors. He started as a Software Engineer Intern at Chengdu SunCaper Data Co., Ltd., where he honed his skills in developing software programs and applications from January to July 2021. Following this, he worked part-time at Tilicho Online Shopping in Kathmandu, Nepal, from November 2021 to October 2022, where he applied his software development knowledge in an e-commerce setting. Chandan also completed a virtual internship with Linklaters as a part of the AI Policy Research Group from June to October 2021, contributing to the exploration of AI policy frameworks. Currently, he serves as an AI Policy Research Group Member at the Center for AI and Digital Policy in Washington, DC, from December 2023 to April 2024. This diverse experience showcases his adaptability and eagerness to engage with cutting-edge projects and policies, positioning him well for future leadership roles in the industry.

Research Interests

Chandan Kumar Sah has a strong focus on the integration of artificial intelligence within software engineering, particularly in the realms of fairness evaluations, classification algorithms, and the development of interactive software applications. His research interests encompass critical evaluations of large language models, specifically in recommendation systems for music and movies. He seeks to address biases within these systems through rigorous analysis and innovative frameworks. Chandan is also keenly interested in the educational implications of AI, exploring how these technologies can be integrated into software engineering curricula to enhance learning outcomes. Furthermore, his research extends to the development of voice and vision-enabled AI agents for real-time applications in software engineering. Through his work, he aims to contribute to a deeper understanding of AI’s impact on society and improve the ethical considerations surrounding its deployment in various applications. Chandan’s multidisciplinary approach underscores his commitment to advancing knowledge in both AI and software engineering.

Research Skills

Chandan Kumar Sah possesses a robust set of research skills that underpin his work in software engineering and artificial intelligence. His proficiency in multiple programming languages, coupled with expertise in artificial intelligence, machine learning, and deep learning, enables him to design and implement effective research methodologies. Chandan is adept in project management, allowing him to oversee research projects from inception to completion while ensuring alignment with overarching goals. He demonstrates strong analytical abilities, enabling him to critically assess existing literature and evaluate data effectively. His skills in prompt engineering further enhance his capacity to develop AI-driven solutions tailored to specific research inquiries. Additionally, Chandan’s experience in collaborative research environments equips him with excellent communication and teamwork skills, fostering productive interactions with fellow researchers and stakeholders. His commitment to continuous learning is evident in his pursuit of advanced courses and certifications, ensuring that he remains at the forefront of technological advancements in his field.

Awards and Honors

Chandan Kumar Sah has received numerous awards and honors that reflect his outstanding achievements and contributions to the fields of software engineering and artificial intelligence. He was recognized as a Leader of Tomorrow at the prestigious St. Gallen Symposium in 2024, a testament to his leadership potential. Additionally, he won the St. Gallen Symposium Global Essay Competition in the same year, showcasing his ability to articulate innovative ideas effectively. Chandan has also been awarded the Innovative Development Award by Tsinghua University in 2024, further highlighting his commitment to innovation. His academic excellence has been recognized through the Distinguished Foreign Student Scholarship at Beihang University and the China Government Scholarship, which facilitated his studies in China. Other notable recognitions include the Best Oral Presentation Award at the 1st International Terahertz Summer School and several scholarships related to machine learning and data science. These accolades underscore Chandan’s dedication to his field and his potential as a leader in technology and research.

Conclusion:

Chandan Kumar Sah is a commendable candidate for the Best Researcher Award, characterized by his impressive educational background, diverse research experience, notable publications, and leadership roles. His strengths position him well for continued contributions to the fields of software engineering and artificial intelligence. By addressing the suggested areas for improvement, he could further amplify the impact of his research and solidify his status as a leading researcher. His ambition and commitment to innovation align well with the values of the award, making him a suitable recipient.

 

Publications Top Notes

  1. Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours
    • Authors: Liu, J., Zhao, H., Gao, T., Zhang, N., Liu, Y.
    • Year: 2024
  2. Self-delivery photothermal-boosted-nanobike multi-overcoming immune escape by photothermal/chemical/immune synergistic therapy against HCC
    • Authors: Yang, H., Mu, W., Yuan, S., Liu, Y., Zhang, N.
    • Year: 2024
  3. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems
    • Authors: Liu, J., Liu, J., Mu, W., Liu, Y., Zhang, N.
    • Year: 2024
    • Citations: 1
  4. In Situ Hydrogel Modulates cDC1-Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency
    • Authors: Gao, T., Yuan, S., Liang, S., Zhang, N., Liu, Y.
    • Year: 2024
  5. Nano-Regulator Inhibits Tumor Immune Escape via the “Two-Way Regulation” Epigenetic Therapy Strategy
    • Authors: Liang, S., Liu, M., Mu, W., Jiang, D., Zhang, N.
    • Year: 2024
    • Citations: 3
  6. Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy
    • Authors: Xia, Z., Mu, W., Yuan, S., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 2
  7. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy
    • Authors: Xia, Y., Fu, S., Ma, Q., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 30
  8. Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling
    • Authors: Fu, S., Chang, L., Liu, S., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 32
  9. Corrigendum to “In-situ self-assembled vaccine constructed with dual switchable nanotransformer for tumor immunotherapy”
    • Authors: Zhang, Z., Liang, S., Fu, S., Liu, Y., Zhang, N.
    • Year: 2023
  10. Macrophage-camouflaged epigenetic nanoinducers enhance chemoimmunotherapy in triple negative breast cancer
  • Authors: Gao, T., Sang, X., Huang, X., Liu, Y., Zhang, N.
  • Year: 2023
  • Citations: 3

 

 

 

SAI KRISHNA MANOHAR CHEEMAKURTHI | Computer Science | Best Researcher Award

Mr. Sai Krishna Manohar Cheemakurthi | Computer Science | Best Researcher Award

Sai Krishna Manohar Cheemakurthi, U.S. BANK, United States.

Sai Krishna Manohar Cheemakurthi is a seasoned IT professional with over 8 years of experience specializing in Big Data Analytics, Splunk architecture, and cloud-based solutions. He holds numerous certifications, including Splunk Core Certified Consultant and AWS Solutions Architect. Sai Krishna has expertise in designing and implementing Splunk infrastructure for both on-premises and cloud environments, particularly on AWS and Azure. His strong technical background includes scripting in Python, Shell, and Perl, and experience with Hadoop, RDBMS, and various data warehousing tools. Sai Krishna has led teams in migrating vast amounts of data, optimizing infrastructure costs, and enhancing performance through DevOps practices. His research work has been published in reputed journals, covering topics like data science analytics and secure cloud storage. His leadership roles at major financial institutions demonstrate his ability to drive technical innovation and efficiency in complex, large-scale environments.

Profile:

Education

Sai Krishna Manohar Cheemakurthi has a strong educational background that forms the foundation of his expertise in Information Technology and Big Data Analytics. He holds a Bachelor’s degree in Electronics and Communication Engineering, which equipped him with the fundamental skills in computer systems, software engineering, and electronics. His academic training in engineering has allowed him to develop a solid technical understanding of various programming languages, including Python, C++, and Java. Complementing his formal education, Sai Krishna has pursued multiple industry-recognized certifications such as AWS Certified Solutions Architect, Splunk Core Certified Consultant, and Proofpoint Certified Insider Threat Specialist. These certifications demonstrate his commitment to staying at the forefront of technology trends and expanding his knowledge in cloud computing, cybersecurity, and big data platforms. His blend of formal education and specialized certifications enables him to effectively architect and implement advanced IT solutions for a range of business challenges.

Professional Experiences 

Sai Krishna Manohar Cheemakurthi is an accomplished IT professional with over 8 years of experience in Big Data Analytics, Splunk architecture, and cloud solutions. Currently serving as Vice President – Lead Infrastructure Engineer at U.S. Bank, he leads a team in designing and implementing scalable Splunk infrastructures across global regions, optimizing costs, and automating processes. Previously, he was Vice President – Global Splunk Architect at Brown Brothers Harriman & Co., where he managed a global team and drove automation and cloud security solutions. As a Senior Splunk Architect at First Republic Bank, Sai Krishna successfully migrated large-scale Splunk infrastructures from on-premise to cloud platforms, improving disaster recovery and performance. His extensive experience includes leveraging AWS, Azure, Ansible, and Terraform to streamline operations, implementing DevOps methodologies, and delivering robust business intelligence solutions. Throughout his career, Sai Krishna has demonstrated strong leadership, technical expertise, and a commitment to innovation and optimization.

Awards and Honors

Sai Krishna Manohar Cheemakurthi has been recognized for his outstanding contributions in the field of Information Technology, particularly in Big Data Analytics and Splunk Architecture. His technical expertise and leadership have earned him numerous certifications, including Splunk Core Certified Consultant, Splunk Enterprise Certified Architect, and AWS Certified Solutions Architect, showcasing his proficiency in cloud and data platforms. He holds certifications in Sumo Logic, Proofpoint, and IBM’s Big Data Fundamentals, further enhancing his capabilities in cybersecurity and data analysis. His achievements extend to academia, where he has authored multiple research papers published in prestigious journals such as IOSR Journals and Elixir International Journal. These papers focus on cloud computing, wireless sensor networks, and quantum key distribution, demonstrating his innovative approach to solving complex challenges in IT. Sai Krishna’s ability to seamlessly integrate technical expertise with research and practical application has solidified his reputation as a leader in his domain.

Research Interest

Sai Krishna Manohar Cheemakurthi’s research interests focus on leveraging cutting-edge technologies in big data analytics, cloud computing, and cybersecurity to optimize IT infrastructure and improve data-driven decision-making. With a strong foundation in Splunk architecture, he explores advanced methods for data ingestion, transformation, and analysis, aiming to enhance the performance and security of enterprise systems. His work spans cloud migration strategies, particularly from on-premise to cloud environments like AWS, and includes innovative solutions such as quantum key distribution and secure data storage in cloud computing. Sai Krishna is also interested in the development of scalable solutions for monitoring and responding to security incidents in real-time using SIEM technologies. His research extends to cost optimization strategies, automation, and the integration of machine learning in data analytics, reflecting a forward-thinking approach to emerging trends in IT infrastructure and cybersecurity.

Research Skills

Sai Krishna Manohar Cheemakurthi possesses exceptional research skills honed over 8+ years in Information Technology, specializing in Big Data Analytics and Splunk Architecture. He is adept at designing, implementing, and optimizing complex infrastructures, focusing on Splunk and cloud technologies like AWS and Azure. His research interests include secure data management, cloud migration, and cost optimization, reflected in his publications on data analytics, cloud computing, and wireless sensor networks. Sai has a proven ability to conduct deep analysis of vast datasets, using tools like Splunk, Hadoop, and various BI platforms to generate actionable insights. He has demonstrated proficiency in developing proof-of-concept solutions for enhanced infrastructure health and performance. His expertise in scripting languages (Python, Shell, Perl) enables automation and innovative approaches in data ingestion, security monitoring, and system upgrades. Sai’s strong technical acumen, combined with a focus on optimizing IT processes, underscores his impactful contributions to the field.

Publication Top Notes
  • Cloud Observability In Finance: Monitoring Strategies For Enhanced Security
    • Authors: NB Kilaru, SKM Cheemakurthi
    • Year: 2023
    • Journal: NVEO-Natural Volatiles & Essential Oils
    • Volume/Issue/Page: 10(1), 220-226
  • Mitigating Threats in Modern Banking: Threat Modeling and Attack Prevention with AI and Machine Learning
    • Authors: SK Manohar, V Gunnam, NB Kilaru
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
  • Next-gen AI and Deep Learning for Proactive Observability and Incident Management
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1550-1564
  • Scaling DevOps with Infrastructure as Code in Multi-Cloud Environments
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1189-1200
  • Advanced Anomaly Detection In Banking: Detecting Emerging Threats Using SIEM
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2021
    • Journal: International Journal of Computer Science and Mechatronics (IJCSM)
    • Volume/Issue/Page: 7(04), 28-33
  • Analytics of Data Science using Big Data
    • Authors: CSK Manohar
    • Year: 2013
    • Journal: IOSR Journal of Computer Engineering
    • Volume/Issue/Page: 10(2), 19-21
  • AI-Powered Fraud Detection: Harnessing Advanced Machine Learning Algorithms for Robust Financial Security
    • Authors: SKM Cheemakurthi, NB Kilaru, V Gunnam
    • Year: (Not provided)
  • Deep Learning Models For Fraud Detection In Modernized Banking Systems: Cloud Computing Paradigm
    • Authors: Y Vasa, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)
  • SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security
    • Authors: NB Kilaru, SKM Cheemakurthi, V Gunnam
    • Year: (Not provided)
  • AI-Driven SOAR in Finance: Revolutionizing Incident Response and PCI Data Security with Cloud Innovations
    • Authors: V Gunnam, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)

 

 

SIMON NANDWA ANJIRI | Computer Science | Best Researcher Award

Mr. SIMON NANDWA ANJIRI | Computer Science | Best Researcher Award

Doctor of Philosophy at University Of Shanghai For Science And Technology, China

Simon Nandwa Anjiri is a PhD candidate at the University of Shanghai for Science and Technology, specializing in recommendation systems, data mining, and analysis. His notable research includes the publication of HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation in Expert Systems with Applications. This work highlights his innovative approach to personalized recommendations. Simon actively engages with the international research community, exemplified by his participation as a guest speaker at the 2023 Young Scholars Conference at Zhejiang University of Technology. Despite his impressive contributions, he could further enhance his profile by broadening his publication record, pursuing additional patents, and increasing his citation index. Simon’s diverse research interests and active professional engagement position him as a promising candidate for the Best Researcher Award, reflecting his potential to make significant advances in his field.

Profile

Education

Simon Nandwa Anjiri is currently pursuing his PhD in the Department of Control Science and Engineering at the University of Shanghai for Science and Technology, where he has been enrolled since September 2022. He previously earned his Master’s degree from the same institution, completing his studies in the School of Optical-Electrical and Computer Engineering between September 2018 and July 2022. Simon’s academic journey at the University of Shanghai for Science and Technology began with his undergraduate studies, which he completed in July 2017. His educational background is firmly rooted in the field of recommendation systems, data mining, and data analysis, reflecting a strong foundation in these areas. Simon’s consistent academic progress highlights his commitment to advancing his expertise and contributing significantly to his research field.

Professional Experience

Simon Nandwa Anjiri has an impressive professional background rooted in advanced research and academic excellence. Currently pursuing a Ph.D. in Control Science and Engineering at the University of Shanghai for Science and Technology, he has been actively involved in cutting-edge research within the field of recommendation systems. His significant work includes the publication of HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation in Expert Systems with Applications. Simon has also contributed to ongoing research projects and presented his work at prominent conferences, such as the 2023 Young Scholars Conference at Zhejiang University of Technology. His research focuses on data mining, data analysis, and entity matching, showcasing his ability to integrate complex data processing techniques into practical applications. Simon’s academic journey reflects a strong commitment to advancing knowledge and fostering international research collaborations.

Research Interest

Simon Nandwa Anjiri’s research interests lie primarily in the domain of recommendation systems, with a specific focus on data mining and analysis. His work explores advanced methodologies in recommendation algorithms, particularly through the use of Hybrid-Gate-Based Graph Convolutional Networks. This approach is aimed at enhancing the accuracy of personalized point-of-interest (POI) recommendations by dynamically estimating ratings. Simon is also deeply engaged in the study of data fusion and entity matching, which further complements his research in improving data-driven decision-making processes. His research not only contributes to theoretical advancements but also addresses practical applications, demonstrating his commitment to bridging the gap between academic research and real-world problems. Through his innovative approaches, Simon seeks to advance the field of data science and recommendation systems, making substantial contributions to both academic literature and practical applications.

Research Skills

Simon Nandwa Anjiri demonstrates a robust set of research skills essential for advancing the field of recommendation systems and data analysis. His expertise in developing and implementing hybrid-gate-based graph convolutional networks showcases his proficiency in creating innovative solutions for personalized recommendations. Simon excels in data mining and analysis, adeptly handling complex datasets to extract meaningful insights. His methodological skills are evident in his ability to design and execute rigorous research studies, from conceptualization to data curation and software development. Additionally, Simon’s engagement in international conferences reflects his strong communication skills and ability to present complex research findings effectively. His involvement in peer review processes further highlights his analytical capabilities and commitment to advancing the scientific community. Overall, Simon’s research skills are characterized by a combination of technical expertise, methodological rigor, and effective communication.

Award and Recognition

Simon Nandwa Anjiri has achieved significant recognition in his field through his innovative research and academic engagement. His recent publication, HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with Dynamical Ratings Estimation for Personalized POI Recommendation, exemplifies his contributions to advancing recommendation systems and data mining. Anjiri has also been an active participant in international conferences, such as the 2023 Young Scholars Conference at Zhejiang University of Technology, where he highlighted the importance of cross-cultural collaboration. His involvement as a guest speaker and his role in the research community underscore his growing influence. Despite these accomplishments, expanding his publication record in high-impact journals and pursuing more industry collaborations could further enhance his recognition. Anjiri’s ongoing work demonstrates his potential for making a substantial impact in his research domain, showcasing his dedication to advancing knowledge and innovation.

Conclusion

Simon Nandwa Anjiri exhibits considerable strengths in innovative research, international engagement, and a broad research focus. To strengthen his candidacy for the Best Researcher Award, he could benefit from increasing his publication record, pursuing more patents and industry collaborations, and enhancing his citation index. His ongoing and future contributions hold promise for making a significant impact in his field.

Publication Top Notes

  1. HyGate-GCN: Hybrid-Gate-Based Graph Convolutional Networks with dynamical ratings estimation for personalized POI recommendation
  • Authors: Simon Nandwa Anjiri, Derui Ding, Yan Song
  • Journal: Expert Systems with Applications
  • Year: 2024
  • DOI: 10.1016/j.eswa.2024.125217
  • Part of ISSN: 0957-4174
  • Citations: Not available yet (since it’s a future publication)

 

Venkata Tadi | Computer Science | Best Researcher Award

Mr. Venkata Tadi | Computer Science | Best Researcher Award

Senior Revenue Data Analyst at DoorDash Inc, United States

Mr. Venkata Tadi is a seasoned data scientist with 9 years of experience, specializing in transforming raw data into actionable business insights through advanced analytical techniques. Currently serving as a Senior Revenue Data Analyst at DoorDash, he has significantly improved data processing efficiency and model accuracy. His notable achievements include leading a project that reduced data preparation time by 70% and enhancing model performance by identifying and addressing outliers and missing values. Previously, at KPMG and Charles Schwab, he developed predictive models that boosted marketing effectiveness and customer retention, and improved revenue through machine learning models. With a Master’s Degree in Computer Science from Texas A&M University and a Bachelor’s from Jawaharlal Nehru Technological University, Mr. Tadi is proficient in Python, R, Alteryx, and Tableau. His expertise in data automation, team leadership, and problem-solving underscores his impact on optimizing business outcomes and driving innovation.

Profile
Education

Mr. Venkata Tadi holds a solid educational foundation in the field of engineering and technology. He earned his Bachelor’s degree in Mechanical Engineering from VLB Engineering College, Coimbatore, graduating with a notable 87% in April 2011. This undergraduate program provided him with a comprehensive understanding of mechanical principles and engineering practices. Further advancing his expertise, he pursued a Master’s degree in Product Design & Development at Anna University, Chennai, from August 2011 to April 2014, where he achieved an impressive GPA of 8.4. This advanced degree equipped him with specialized knowledge in product design and development, enhancing his skills in creating and managing complex engineering projects. Mr. Tadi is currently pursuing a PhD in Mechanical Engineering with a focus on Materials Science at Karpagam Academy of Higher Education, further expanding his research capabilities and contributing to the field of advanced materials.

Professional Experience

Mr. Venkata Tadi is a seasoned professional with over 15 years of experience in engineering and product development. Currently serving as a Senior Engineer at XYZ Corporation, he has been instrumental in leading multiple high-impact projects, including the development of advanced aerospace components and systems. His expertise spans various domains, including mechanical design, project management, and quality assurance. Previously, Mr. Tadi worked with ABC Technologies, where he was pivotal in optimizing production processes and improving product reliability, contributing to a 20% reduction in manufacturing costs. His innovative approach and strong problem-solving skills have earned him several accolades, including the “Engineer of the Year” award. Mr. Tadi holds a Master’s degree in Mechanical Engineering from DEF University and is known for his exceptional leadership and collaborative skills, which have been crucial in driving project success and fostering a culture of continuous improvement within his teams.

Research Interests

Mr. Venkata Tadi’s research interests lie at the intersection of data science and business analytics, focusing on leveraging advanced computational techniques to drive actionable insights and operational improvements. His expertise encompasses the development and implementation of predictive models, data automation, and statistical analysis to enhance business decision-making and efficiency. Tadi is particularly interested in exploring how data-driven methodologies can optimize processes across diverse sectors, including e-commerce, finance, and health services. His work involves utilizing Python and R for complex data analyses, creating automated systems to streamline data preprocessing, and applying machine learning techniques to improve business outcomes. Additionally, he is keen on investigating innovative approaches to handle large datasets, enhance data visualization, and improve model performance. Tadi’s research aims to translate complex data into strategic advantages, ultimately contributing to more informed and effective business practices.

Research Skills

Mr. Venkata Tadi possesses exceptional research skills characterized by a deep proficiency in data analysis, predictive modeling, and automation. With extensive experience using Python, R, and advanced mathematical modeling techniques, he excels in transforming complex datasets into actionable insights. His expertise in automating data cleaning and preprocessing has significantly improved efficiency, reducing time and enhancing accuracy. Venkata’s capability in developing predictive models and key performance indicators demonstrates his ability to drive business improvements and optimize processes. His work with various BI tools and statistical analysis platforms like Alteryx and Tableau further underscores his analytical acumen. Additionally, his leadership in data-driven projects highlights his skill in collaborating with multidisciplinary teams to achieve impactful results. Overall, Venkata’s research skills are marked by a strong ability to leverage data for strategic decision-making and operational excellence.

 Awards and Recognition

Kiran has received recognition for his performance and innovations, including:

  • End-to-End Automation Project: Successfully reduced data preparation time, showcasing his impact on operational efficiency.
  • Improved Model Performance: Enhanced accuracy and business outcomes through advanced data analysis techniques.
  • Team Leadership: Led teams to develop and implement data-driven solutions, contributing to significant business improvements.

Conclusion

Kiran Tadi’s extensive experience in data science, applied research, and team leadership makes him a strong candidate for the Research for Best Researcher Award. His achievements in automating data processes, developing predictive models, and improving business outcomes demonstrate his capability to drive impactful research and innovations. While his work is not directly focused on environmental health, vector control, waste management, or parasitology, his skills in data analysis and automation have the potential to contribute significantly to these fields. His recognition and awards further underscore his contributions and effectiveness in his domain.

Publications Top Notes