Mohamed Saber | Energy | Best Researcher Award

Mr. Mohamed Saber | Energy | Best Researcher Award

Lecturer Assistant from Zagazig University, Egypt

Mohammed Al-Desouky is a dedicated early-career researcher and civil hydraulic engineer currently serving as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University, Egypt. His academic and professional journey reflects a strong commitment to advancing sustainable hydraulic systems, energy harvesting technologies, and computational fluid dynamics (CFD) applications. Mohammed’s work integrates theoretical research with hands-on experimentation and simulation, making significant strides in optimizing hydraulic structures for renewable energy production. His notable contribution includes a publication in the high-impact journal Renewable Energy, where he introduced a novel design for pico-hydropower generation using Dethridge waterwheels. His work addresses real-world challenges in low-head energy generation systems and demonstrates both academic rigor and practical relevance. In addition to his academic responsibilities, he is actively engaged in professional engineering practices as a civil hydraulic engineer and co-founder of a construction company. Mohammed’s multidisciplinary expertise spans water resources engineering, structural analysis, fluid mechanics, and advanced CFD modeling. His diverse experience, technical proficiency, and innovative mindset position him as a valuable contributor to the fields of renewable energy and hydraulic engineering. While still early in his research career, he displays notable potential for future impact through expanded collaborations, further publications, and international academic engagement.

Professional Profile

Education

Mohammed Al-Desouky holds a Bachelor of Science (B.Sc.) degree in Civil Engineering from Zagazig University, Egypt, earned in 2019 with an outstanding academic record, graduating with an overall grade of “Excellent with Honor” (88.65%). His undergraduate studies provided a comprehensive foundation in structural mechanics, fluid dynamics, and water resources engineering. He is currently pursuing a Master of Science (M.Sc.) degree in Water and Water Structures Engineering at the same university, with an expected completion year of 2025. His master’s thesis, titled “Investigation of Energy Harvesting by Water Wheels at Low-head Heading up Structures,” reflects a focused research interest in renewable energy applications within hydraulic engineering. This work combines field experimentation with computational analysis to evaluate the feasibility and efficiency of waterwheel systems for small-scale hydropower generation. His educational journey is characterized by a strong integration of theory and practice, reinforced by involvement in laboratory work, project supervision, and engineering simulations. Mohammed’s academic progression demonstrates a clear trajectory toward research excellence and technical innovation in civil and environmental engineering. As he continues to expand his scholarly contributions through graduate research and peer-reviewed publications, his education equips him with the necessary skills to address global challenges in sustainable water infrastructure.

Professional Experience

Mohammed Al-Desouky has built a multifaceted professional background in academia, research, and engineering practice. Since December 2019, he has worked as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University. In this role, he supports the delivery of undergraduate courses and laboratory sessions in fluid mechanics, hydraulics, and water structures, while also supervising student projects and contributing to curriculum development. Concurrently, he serves as a Civil Hydraulic Engineer at the university’s Irrigation and Hydraulics Lab, conducting both experimental and computational research on flow behavior and hydraulic systems. Beyond academia, Mohammed has pursued various freelance roles. Between 2020 and 2021, he worked as a structural design freelancer, providing engineering solutions using SAP2000, ETABS, and SAFE. Since 2022, he has been engaged as a general contracting engineer, managing on-site construction, quality control, and stakeholder coordination. He also operates as a freelance CFD engineer, delivering fluid dynamics simulations and technical assessments using ANSYS Fluent and FLOW-3D. In addition, Mohammed co-founded CIVIC, a construction company specializing in design-build services and real estate. His experience across academic, research, and industry domains illustrates his versatility, leadership potential, and commitment to translating engineering theory into practical applications.

Research Interests

Mohammed Al-Desouky’s research interests lie at the intersection of civil engineering, hydraulics, and sustainable energy technologies. His primary focus is on the development and optimization of low-head hydropower systems, particularly the use of waterwheels in energy harvesting applications. Through his M.Sc. research, he explores the integration of traditional hydraulic structures with modern energy generation techniques to create efficient and eco-friendly solutions. This includes experimental investigations and computational modeling of flow behavior in open channels and water passage systems. His interest in Computational Fluid Dynamics (CFD) has led him to apply advanced simulation tools such as ANSYS Fluent and FLOW-3D to study fluid-structure interactions, energy dissipation, and turbine performance under varying hydraulic conditions. Mohammed is also interested in techno-economic assessments of renewable energy systems, aiming to ensure not only the technical feasibility but also the economic sustainability of engineering solutions. In addition, his work touches upon the structural analysis and design of civil infrastructure, with particular attention to how structural and hydraulic systems interact. He is motivated by the potential for interdisciplinary research to address global challenges in clean energy, water scarcity, and resilient infrastructure, and seeks to expand his contributions through international collaboration and high-impact publications.

Research Skills

Mohammed Al-Desouky possesses a comprehensive set of research skills that span theoretical analysis, computational modeling, and experimental evaluation. He is proficient in conducting Computational Fluid Dynamics (CFD) simulations using advanced platforms such as ANSYS Fluent and FLOW-3D. These tools allow him to analyze complex flow fields, pressure distributions, and energy conversion mechanisms within hydraulic structures. He is also skilled in 3D modeling for CFD pre-processing using AutoCAD 3D and SOLIDWORKS, enabling the creation of accurate geometrical inputs for simulation. In structural engineering, he is adept at using SAP2000, ETABS, SAFE, and CSI Column for load analysis, system modeling, and structural detailing. His research capabilities extend to numerical analysis and data interpretation, where he can derive velocity vectors, pressure contours, and turbulence profiles to assess fluid behavior. Mohammed is equally comfortable with physical experimentation, having worked extensively in hydraulic labs on open channel flow setups. He is experienced in technical report writing, academic presentations, and collaboration on multidisciplinary projects. His ability to bridge simulation with real-world engineering scenarios enhances the practical impact of his research. Combined with his knowledge of productivity tools like Microsoft Office and Adobe Photoshop, he is well-prepared to deliver high-quality research outcomes with technical precision.

Awards and Honors

Mohammed Al-Desouky has been recognized for his academic excellence and early contributions to engineering research. He graduated with honors from Zagazig University in 2019, earning a B.Sc. in Civil Engineering with an “Excellent with Honor” distinction, reflecting consistent academic performance throughout his undergraduate studies. His high GPA and class ranking earned him a teaching assistant position immediately after graduation, enabling him to contribute to both education and research activities within the university. Although still in the early stages of his professional and academic career, he has already secured a significant research publication in the prestigious Renewable Energy journal, which in itself represents a notable milestone and demonstrates peer-recognized research output. Additionally, his membership in the Egyptian Engineers Syndicate since 2024 reflects his professional standing within the engineering community in Egypt. While he has not yet accumulated a broad list of national or international awards, his current achievements highlight a trajectory of growing impact and recognition. His combination of academic excellence, publication success, and professional engagement position him well for future honors and research-based awards as his career develops. With continued output and wider visibility, he is poised to earn more distinguished recognition in the field of sustainable civil engineering.

Conclusion

Mohammed Al-Desouky exemplifies the profile of a promising early-career researcher in the field of civil and hydraulic engineering. With a strong foundation in both theoretical and applied aspects of engineering, he demonstrates a clear focus on integrating renewable energy concepts into water infrastructure systems. His work on pico-hydropower systems using waterwheels represents an innovative approach to sustainable energy generation, supported by robust CFD modeling and experimental validation. His publication in a reputable international journal signifies a high level of academic credibility, and his technical skill set equips him to tackle complex engineering problems. Beyond his research, Mohammed is active in teaching, lab supervision, and engineering consultancy, reflecting a well-rounded professional identity. Although his research output is still emerging, the quality and relevance of his work suggest significant future potential. Areas for further development include expanding his publication record, increasing international collaborations, and pursuing competitive research grants. With continued commitment and strategic engagement in the research community, Mohammed is well-positioned to become a leading figure in water and energy systems engineering. His current accomplishments serve as a strong foundation for long-term academic and professional success in addressing global sustainability challenges.

Publication Top Note

  1. Title: Techno-economic Assessment of the Dethridge Waterwheel under Sluice Gates in a Novel Design for Pico Hydropower Generation
    Journal: Renewable Energy
    Publication Date: August 2024
    Type: Journal Article
    DOI: 10.1016/j.renene.2024.121206
    ISSN: 0960-1481
    Authors: Mohamed Saber, Gamal Abdelall, Riham Ezzeldin, Ahmed Farouk AbdelGawad, Reda Ragab

 

Hu Fangyuan | Energy | Best Researcher Award

Prof. Dr. Hu Fangyuan | Energy | Best Researcher Award

Professor from Dalian University of Technology, China

Dr. Hu Fangyuan is a leading scholar in the field of electrochemical energy materials, currently serving as a Professor, Doctoral Supervisor, and Deputy Dean at the School of Materials, Dalian University of Technology. Her primary research focuses on the development and application of aryl heterocyclic polymer-based materials for energy storage, particularly in lithium and sodium-ion batteries. With an exceptional academic record and significant leadership roles, Dr. Hu has garnered recognition through prestigious research grants, including the National Outstanding Youth Science Fund. Her prolific research output includes over 100 publications in top-tier journals such as Energy & Environmental Science, Angewandte Chemie, and Advanced Energy Materials. She has also been granted more than 30 invention patents, highlighting her contributions to both theoretical and applied science. Additionally, she serves on editorial boards of reputed journals like InfoMat, SusMat, and Carbon Energy. Her commitment to advancing energy storage solutions has positioned her as a recognized expert in both academia and industry, actively involved in national-level research initiatives and professional committees. Dr. Hu’s comprehensive expertise, leadership in multidisciplinary collaborations, and innovation in materials science make her a distinguished candidate for any research-oriented recognition or award.

Professional Profile

Education

Dr. Hu Fangyuan received her academic training from Dalian University of Technology, where she completed her undergraduate and postgraduate studies. Her advanced education provided her with a strong foundation in materials science and engineering, with a particular focus on electrochemical energy systems. Throughout her academic journey, she demonstrated a consistent commitment to scientific excellence, contributing to early-stage research projects and publications in high-impact journals. Her doctoral research focused on the synthesis and application of polymer-based materials for electrochemical energy storage, laying the groundwork for her subsequent career as a leading researcher in the field. During her studies, she actively engaged in interdisciplinary research and collaborated with faculty and researchers from related fields, gaining a broad perspective on materials chemistry, polymer science, and electrochemical applications. Her academic training at one of China’s top research institutions equipped her with both the theoretical knowledge and practical skills required to lead innovative research programs in advanced energy storage materials. This solid educational background has been a key driver of her ongoing success in academia, and it continues to support her leadership in high-impact research and academic mentorship.

Professional Experience

Dr. Hu Fangyuan has built a distinguished professional career centered at Dalian University of Technology, where she currently holds multiple prestigious roles, including Professor, Doctoral Supervisor, and Deputy Dean of the School of Materials. Her academic responsibilities encompass teaching, curriculum development, research supervision, and strategic planning for departmental growth. Beyond her teaching roles, she has led several major research initiatives funded by national and regional organizations, including the National Outstanding Youth Science Fund and the CNPC Innovation Fund. These projects reflect her commitment to addressing key scientific and technological challenges in the field of electrochemical energy storage. In addition to her university-based work, Dr. Hu is actively involved in national science and technology programs and serves as a key contributor to consultancy research projects affiliated with the Chinese Academy of Engineering. Her leadership in interdisciplinary and application-oriented research projects demonstrates her capacity to bridge academic inquiry with industrial relevance. Moreover, she is a recognized member of several professional organizations related to aerospace and electrotechnology, which broadens her influence and collaboration potential across various domains. Dr. Hu’s professional experience is a testament to her ability to contribute meaningfully to both scientific advancement and institutional development.

Research Interest

Dr. Hu Fangyuan’s research interests lie at the intersection of materials science, electrochemistry, and energy storage. Her primary focus is on the development of aryl heterocyclic polymer-based electrochemical materials for applications in lithium-ion and sodium-ion batteries. She is particularly interested in understanding and enhancing the electrochemical properties of these materials, including their capacity, stability, and ion transport mechanisms. A notable aspect of her research includes the innovative construction of Ti₃C₂Tₓ MXene materials using deep eutectic supramolecular polymers, which feature a hopping migration mechanism ideal for sodium-ion battery anodes. Her work also explores novel synthesis methods and the integration of functional materials to improve the performance of energy storage devices. In addition to fundamental studies, Dr. Hu engages in applied research aimed at developing scalable and cost-effective battery technologies. Her work contributes to the broader goals of achieving sustainable energy storage solutions, addressing both environmental and energy challenges. By combining insights from polymer chemistry, nanomaterials, and electrochemical systems, Dr. Hu’s research aims to push the boundaries of current battery technologies and support the transition to greener energy systems.

Research Skills

Dr. Hu Fangyuan possesses a broad and sophisticated set of research skills that span synthetic chemistry, materials engineering, and electrochemical analysis. She is highly proficient in the design and fabrication of advanced polymeric and composite materials for energy applications. Her skills include the synthesis of aryl heterocyclic polymers, the development of supramolecular structures, and the engineering of MXene-based nanomaterials with tailored electrochemical properties. Dr. Hu is also well-versed in advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and various spectroscopy methods to analyze material morphology and chemical composition. Furthermore, she employs electrochemical testing methods including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy to evaluate the performance of battery materials. Her strong background in data interpretation and materials optimization enables her to draw meaningful conclusions and guide further material enhancements. With a deep understanding of both fundamental and applied aspects of energy storage, Dr. Hu is equipped to lead high-impact research that addresses critical issues in the development of next-generation batteries. Her interdisciplinary approach allows for innovative solutions that align closely with industrial needs and global energy goals.

Awards and Honors

Dr. Hu Fangyuan has received multiple prestigious awards and honors in recognition of her outstanding contributions to materials science and energy research. Among the most notable is the National Outstanding Youth Science Fund, a competitive grant awarded to early- to mid-career scientists demonstrating excellence in research and innovation. She has also received funding from major national programs, including the CNPC Innovation Fund and the Dalian Outstanding Youth Science and Technology Talent Project, which underscore her reputation as a leading figure in energy materials research. Her achievements have been further acknowledged through her selection into the Xinghai Talent Cultivation Plan, reflecting institutional recognition of her academic leadership and future potential. In addition to research-based awards, Dr. Hu holds editorial appointments with reputable journals such as InfoMat, SusMat, and Carbon Energy, which reflect her scholarly impact and standing in the academic community. Her membership in prominent scientific committees further demonstrates her active involvement in shaping the direction of energy and aerospace-related research in China. These honors collectively affirm Dr. Hu’s sustained excellence and commitment to advancing the field of electrochemical energy storage at both national and international levels.

Conclusion

Dr. Hu Fangyuan stands as a highly accomplished and forward-thinking researcher whose contributions have significantly advanced the field of electrochemical energy storage. Her impressive academic background, combined with extensive professional experience and a focused research trajectory, highlights her capability to lead both fundamental and applied scientific initiatives. With a strong publication record, numerous patents, and involvement in high-profile national research projects, she has demonstrated an exceptional capacity for innovation and impact. Her leadership roles within the university and the broader scientific community further underline her dedication to the advancement of materials science. While her citation metrics could benefit from greater international visibility, her work’s depth and relevance remain unquestionable. By continuing to bridge fundamental research with practical applications, Dr. Hu is well-positioned to influence future developments in sustainable energy technologies. Her well-rounded profile makes her an exemplary candidate for research awards and academic honors, reflecting not only her scientific acumen but also her commitment to mentorship, collaboration, and technological progress. In conclusion, Dr. Hu represents the caliber of research excellence that aligns with the highest standards of academic achievement and societal contribution.

Publications Top Notes

  1. Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor
    Authors: Dongming Liu, Mengfan Pei, Xin Jin, Xigao Jian, Fangyuan Hu
    Year: 2025

  2. Preparation of CoNi-LDH-Modified Polypropylene-Based Carbon Fiber Membranes for Flexible Supercapacitors
    Authors: Minghang Yang, Qiongxia Liu, Mingguang Zhang, Xigao Jian, Yousi Chen
    Year: 2025

  3. Rapid Na⁺ Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries
    Authors: Chang Su, Yunpeng Qu, Naiwen Hu, Xigao Jian, Fangyuan Hu
    Year: 2025

  4. Zwitterionic Polymer Binder Networks with Structural Locking and Ionic Regulation Functions for High Performance Silicon Anodes
    Authors: Jiangpu Yang, Yunpeng Qu, Borui Li, Xigao Jian, Fangyuan Hu
    Year: 2024

  5. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries
    Authors: Lin M. Wang, Shugang Xu, Zihui Song, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 2

  6. Fluorine and Nitrogen Codoped Carbon Nanosheets In Situ Loaded CoFe₂O₄ Particles as High-Performance Anode Materials for Sodium Ion Hybrid Capacitors
    Authors: Jinfeng Zhang, Yunpeng Qu, Mengfan Pei, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 1

  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na⁺ Migration Kinetics for Advanced Sodium-Ion Batteries
    Authors: Yuxin Yao, Mengfan Pei, Chang Su, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 8

  8. Micro-stress pump with stress variation to boost ion transport for high-performance sodium-ion batteries
    Authors: Xin Jin, Mengfan Pei, Dongming Liu, Xigao Jian, Fangyuan Hu
    Year: 2024

Chenxu Zhang | Energy | Best Researcher Award

Dr. Chenxu Zhang | Energy | Best Researcher Award

Postdoctoral Fellow from Shenzhen University, China

Dr. Chenxu Zhang is a dedicated materials scientist specializing in electrocatalysis, particularly focusing on hydrogen evolution reactions (HER) and water splitting technologies. His academic journey encompasses a bachelor’s and master’s degree from Shijiazhuang Tiedao University, a Ph.D. from Jilin University, and postdoctoral research at Shenzhen University and the City University of Hong Kong. Dr. Zhang’s research emphasizes the development of advanced catalysts, including high-entropy alloys and pentlandite-based materials, aiming to enhance the efficiency and stability of HER processes. His contributions are evidenced by multiple publications in high-impact journals and several granted patents, reflecting his commitment to advancing sustainable energy solutions through innovative materials design.

Professional Profile

Education

Dr. Zhang commenced his academic pursuits with a Bachelor of Engineering in Materials Science and Engineering at Shijiazhuang Tiedao University (2012–2016). He continued at the same institution for his master’s degree in Material Engineering (2016–2019), where he investigated the photocatalytic properties of graphite phase carbon nitride-based catalysts. Pursuing further specialization, he obtained his Ph.D. in Material Physics and Chemistry from Jilin University (2019–2022), focusing on transition metal chalcogenide catalysts for hydrogen production via water electrolysis. Currently, he is engaged in postdoctoral research at Shenzhen University and the City University of Hong Kong, exploring high-entropy alloy-based porous structures for electrocatalytic water splitting.

Professional Experience

Dr. Zhang’s professional trajectory is marked by significant research engagements across esteemed institutions. During his doctoral studies at Jilin University, he delved into the synthesis and application of transition metal chalcogenides for HER. His postdoctoral tenure at Shenzhen University and the City University of Hong Kong involves designing high-entropy alloy-based porous materials to improve electrocatalytic water splitting efficiency. Throughout his career, Dr. Zhang has led and contributed to multiple research projects, demonstrating his ability to manage complex scientific inquiries and collaborate effectively within multidisciplinary teams.

Research Interests

Dr. Zhang’s research interests are centered on the development of advanced materials for energy conversion processes. He focuses on electrocatalysis, particularly the hydrogen evolution reaction, aiming to design catalysts that are both efficient and stable across various pH environments. His work involves exploring high-entropy alloys, pentlandite-based materials, and transition metal chalcogenides to enhance water splitting technologies. By integrating experimental techniques with theoretical insights, Dr. Zhang seeks to address the challenges in sustainable hydrogen production, contributing to the broader goal of clean energy advancement.

Research Skills

Dr. Zhang possesses a robust skill set in materials synthesis, characterization, and performance evaluation. He is proficient in fabricating nanostructured catalysts and employing techniques such as X-ray diffraction, electron microscopy, and electrochemical measurements to assess material properties. His expertise extends to designing experiments that elucidate the mechanisms underlying catalytic processes, enabling the optimization of material performance. Additionally, Dr. Zhang demonstrates strong capabilities in scientific writing and project management, facilitating the dissemination of research findings and the successful execution of research initiatives.

Awards and Honors

Throughout his academic and professional journey, Dr. Zhang has received numerous accolades recognizing his contributions to materials science. His honors include national scholarships, provincial awards for outstanding graduates, and multiple prizes in innovation and entrepreneurship competitions. Notably, he has been acknowledged for his leadership and academic excellence during his tenure at Jilin University. These awards reflect Dr. Zhang’s dedication to research excellence and his impact within the scientific community.

Conclusion

Dr. Chenxu Zhang exemplifies a researcher with a profound commitment to advancing materials science for energy applications. His comprehensive education, extensive research experience, and consistent recognition through awards underscore his qualifications for the Best Researcher Award. Dr. Zhang’s work addresses critical challenges in sustainable energy, and his ongoing contributions continue to influence the field of electrocatalysis. His profile reflects a trajectory of excellence and innovation, making him a deserving candidate for recognition in his domain.

Publications Top Notes

  • A high-entropy oxyhydroxide with a graded metal network structure for efficient and robust alkaline overall water splitting
    Authors: Chenxu Zhang, et al.
    Journal: Advanced Science, 2024, Article ID: 2406008

  • Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH‐universal hydrogen evolution reaction
    Authors: Chenxu Zhang#, Yanan Cui#, et al.
    Journal: Advanced Functional Materials, 2021, 31, 2105372

  • Structure-catalytic functionality of size-facet-performance in pentlandite nanoparticles
    Authors: Chenxu Zhang, et al.
    Journal: Journal of Energy Chemistry, 2023, 78, 438

  • Ruthenium nanoparticles/pentlandite composite for efficient and stable pH-universal hydrogen evolution reaction: The enhanced interfacial interaction
    Authors: Chenxu Zhang, et al.
    Journal: Small, 2024, 19, 2301721

  • Recent advances in pentlandites for electrochemical water splitting: A short review
    Authors: Chenxu Zhang, et al.
    Journal: Journal of Alloys and Compounds, 2020, 838, 155685

  • The charge transport double-channel structure facilitating Fe₅Ni₄S₈/Ni₃S₂ nanoarray for efficient and stable overall water splitting
    Authors: Yanan Cui#, Chenxu Zhang#, et al.
    Journal: Applied Surface Science, 2022, 604, 154473

 

Shukur Nasirov | Energy | Best Researcher Award

Assoc. Prof. Dr. Shukur Nasirov | Energy | Best Researcher Award

Chief of Department at Azerbaijan State Oil and Industry University, Azerbaijan 

Shukur Nasirov is an Associate Professor and Head of the Energy Production Technologies Department at Azerbaijan State Oil and Industry University (ASOIU). Born on June 1, 1962, in Masis District, Armenian SSR, he is an expert in industrial thermal power engineering with over 30 years of academic and professional experience. His contributions span teaching, research, and leadership, and he has authored more than 100 scientific, educational, and methodological works, including 10 study guides and 3 textbooks. His research focuses on renewable energy, gas turbine technologies, and thermal power plants. Dr. Nasirov is also an active member of various academic and dissertation councils, highlighting his dedication to advancing education and research in energy technologies.

Professional Profile

Education

Dr. Nasirov graduated with honors in 1985 from the Azerbaijan Institute of Oil and Chemistry (now ASOIU), specializing in “Industrial Heat Power Engineering.” He later earned the degree of Candidate of Technical Sciences (equivalent to Ph.D.) with a thesis on the thermal properties of gasoline fractions in offshore oil fields of Azerbaijan. His academic foundation in heat engineering and industrial energy systems has shaped his career as a leading expert in the field, providing a strong base for his teaching and research endeavors.

Professional Experience

Since 1990, Dr. Nasirov has held several academic and research roles at ASOIU. Starting as a junior researcher, he progressed to senior researcher and associate professor, conducting classes at the undergraduate and graduate levels. In 2021, he was appointed Head of the Department of Energy Production Technologies. He also served as chairman of the Student Scientific Society and has been a member of ASOIU’s Academic and Scientific Councils since 2018. Dr. Nasirov has contributed to numerous industry-focused projects, including designing new steam boilers for ships and developing strategies for the energy sector, showcasing his blend of academic and practical expertise.

Research Interests

Dr. Nasirov’s research interests include industrial thermal power engineering, gas turbine technologies, renewable energy systems, thermal physical properties of petroleum products, and the intensification of heat exchange in oil refining equipment. His work addresses the challenges of improving efficiency and sustainability in energy production and refining processes. He is also deeply engaged in theoretical aspects of heating techniques, ensuring that his research contributes to both applied and foundational knowledge in the field.

Research Skills

Dr. Nasirov possesses a wide array of research skills, including the design and analysis of thermal power systems, optimization of heat exchange processes, and evaluation of thermal physical properties of petroleum products. His expertise in gas and steam turbines, as well as his ability to perfect turbine cycles, underscores his proficiency in advancing energy technologies. He is adept at mentoring students and conducting applied research that bridges academic knowledge with industrial applications, making him a leader in his field.

Awards and Honors

Dr. Nasirov’s achievements have been recognized with numerous awards, including the Jubilee Medal for the 100th anniversary of ASOIU in 2021. He has received grants for innovative projects such as the development of energy sector strategies and designing steam boilers for marine applications. His contributions to academic and industrial research have earned him respect and recognition as a key figure in energy technologies.

Conclusion

Dr. Shukur Nasirov is a distinguished academic and researcher whose work in energy technologies has significantly advanced the field of industrial thermal power engineering. With decades of experience, extensive scientific output, and leadership in academia, he has made notable contributions to teaching, research, and industrial projects. His dedication to innovation, coupled with his focus on training future energy professionals, positions him as a respected figure in the global energy research community.

Publication Top Notes

  1. Title: Hydrogen technologies: Optical properties of hydrogenated amorphous thin films for solar cells
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 101, pp. 47–53
  2. Title: Production of thin-layer silicon alloys and their application in solar-hydrogen energy
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N., Verdiyev, N.M.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 926–938
  3. Title: HYDROGEN technologies for the manufacture of solar-hydrogen Energy objects
    Authors: Najafov, B.A., Nasirov, S.N., Neymetov, S.R.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 328–339
  4. Title: Analysis of the Efficiency of the Bivalent Parallel Mode of Operation of Heat Pumps in an Individual Residential Building: A Study of the Operating Modes of the Heat Supply System
    Authors: Babayeva, S., Nasirov, S.
    Journal: Przeglad Elektrotechniczny
    Year: 2024
    Volume & Pages: (9), pp. 235–238

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Madalin Costin | Energy | Best Researcher Award

Mr. Madalin Costin | Energy | Best Researcher Award

Lecturer at Lower Danube” University of Galati, Romania

Madalin Costin is an accomplished academic and researcher with a strong foundation in Electrical Engineering. He specializes in electric drives, renewable energy systems, and the use of advanced control strategies for electromagnetic energy conversion processes. Currently a lecturer at “Dunarea de Jos” University of Galati, Romania, Madalin has consistently demonstrated a passion for teaching and research. His work spans both theoretical and applied aspects of energy efficiency and control systems, with a particular focus on improving performance through innovative methods. His ongoing projects, such as the evaluation of novel control strategies for PMSM motors, highlight his commitment to advancing the field. As a multilingual academic, Madalin is well-positioned to engage in international collaborations, furthering the impact of his research.

Professional Profile

Education

Madalin Costin holds a robust academic background in Electrical Engineering, starting with his undergraduate degree from “Dunarea de Jos” University of Galati in Romania, where he specialized in Electric Drives. He continued his education with a Master’s degree in Electrical Engineering, focusing on the Rational Use of Energy and Renewable Sources. Furthering his expertise, he completed his PhD at the same institution, where his research focused on energy-efficient control strategies. Currently, Madalin is pursuing a second PhD at Gheorghe Asachi Technical University of Iasi, demonstrating his commitment to continued academic growth.

Professional Experience

Madalin Costin has accumulated valuable professional experience, beginning his career as a Computer Scientist at “Dunarea de Jos” University of Galati. Over the years, he progressed to Assistant and then Lecturer positions, where he has been responsible for teaching both theoretical and practical aspects of Electrical Engineering. His experience in academic settings is complemented by his involvement in project management. As of June 2024, he is managing a significant research project focused on evaluating a novel control strategy for electromagnetic energy conversion. His professional journey reflects his evolving expertise and leadership in both academia and research.

Research Interests

Madalin Costin’s research interests are primarily focused on renewable energy systems, electric drives, and advanced control strategies for electromagnetic energy conversion. He has a strong interest in improving the efficiency of electric motors and developing new control methods that are both energy-efficient and adaptable to real-world applications. His ongoing work on Radial Basis Function Neural Networks (RBF-NN) and Model Predictive Control (MPC) for Permanent Magnet Synchronous Motors (PMSM) is aimed at optimizing energy conversion processes. He is particularly interested in how these technologies can be applied to renewable energy sources and contribute to more sustainable engineering solutions.

Research Skills

Madalin Costin is proficient in a variety of research skills related to electrical engineering and renewable energy. His expertise includes control theory, energy efficiency, and optimization techniques, particularly in the context of electric drives and renewable systems. He is skilled in using advanced computational methods, including neural networks and predictive control algorithms, to model and optimize energy systems. Madalin also possesses solid skills in project management, demonstrating an ability to lead and coordinate complex research initiatives. Additionally, his proficiency in academic writing and presenting research ensures that his work reaches both scientific and industrial audiences.

Awards and Honors

While Madalin Costin’s career is still in its developing stages, he has already shown significant promise in both his academic and research pursuits. His work on energy efficiency and control strategies for electric drives has been recognized within his university and research community. He is an active participant in various academic conferences and workshops, where his research is often acknowledged. His ongoing contributions to research on renewable energy systems, particularly in the context of electromagnetic energy conversion, are likely to garner more formal recognition as his research advances and his academic portfolio expands.

Conclusion

Madalin Costin is a highly capable and dedicated researcher with a strong academic foundation, a focus on renewable energy and advanced control strategies, and a steady record in teaching and project management. His current research and his approach to advanced energy systems place him in a strong position for the Best Researcher Award. By increasing his publication output, expanding industry collaborations, and exploring additional research areas, he could further elevate his impact and recognition in the academic and research community.

Publication Top Notes

  1. Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization
    • Authors: Costin, M., Lazar, C.
    • Year: 2024
    • Journal: Energies, 17(4), 875
  2. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Journal: Machines, 11(7), 682
    • Citations: 5
  3. Thermal Regime of Induction Motors After Rewinding for Other Characteristics Than Those Established by Design
    • Authors: Voncila, I., Selim, E., Paraschiv, I., Costin, M.
    • Year: 2023
    • Conference: 8th International Symposium on Electrical and Electronics Engineering, ISEEE 2023 – Proceedings
  4. Constrained Predictive Current Control in dq Frame for a Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Conference: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2023
  5. Comparative Study of Predictive Current Control Structures for a Synchronous Reluctance Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2022
    • Conference: 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 – Proceedings
    • Citations: 1
  6. Predictive Control of a Two-Input Two-Output Current System for Permanent Magnet Synchronous Machines
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on Methods and Models in Automation and Robotics, MMAR 2021
    • Citations: 1
  7. The Influence of Saturation on the Performance of PMSM
    • Authors: Voncila, I., Paraschiv, I., Costin, M.
    • Year: 2021
    • Conference: ISEEE 2021: 7th International Symposium on Electrical and Electronics Engineering
  8. Predictive dq Current Control of an Induction Motor
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on System Theory, Control and Computing, ICSTCC 2021
    • Citations: 1
  9. Active Flux Based Predictive Control of Interior Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2020
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020
    • Citations: 1
  10. Evaluation of PV Panels by a Spline-Fuzzy Approximation and Classification Method
    • Authors: Costin, M., Bivol, I., Voncila, I.
    • Year: 2018
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

 

Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack, University of Yaoundé I, Cameroon

Based on the details provided, Armel Zambou Kenfack appears to be a strong candidate for the Research for Young Scientist Award. Here are a few reasons why:

Publication profile

Academic Background

Armel holds a Master’s degree in Energy and Environment from the University of Yaoundé 1, Cameroon, with a commendable “Very Good” distinction. His academic path also includes a Bachelor’s degree in Physics, specializing in Mechanics and Energetics, showcasing his foundational knowledge in energy-related fields.

Research Experience

He has actively contributed to research in renewable energy, particularly focusing on photovoltaic/thermal (PV/T) hybrid systems, solar energy optimization, and thermal storage. His involvement in multiple projects, including designing AI models for optimizing PV/T systems, demonstrates his commitment to advancing renewable energy technologies.

Publications 

  • Sensitivity analysis of the thermal performance of a parabolic trough concentrator using Al2O3 and SiO2/Vegetable oil as heat transfer fluid 🌡️🌞 – Cited by 6, 2024
  • Exergetic optimization of some design parameters of the hybrid photovoltaic/thermal collector with bi-fluid air/ternary nanofluid (CuO/MgO/TiO2) 🔋🔧 – Cited by 4, 2023
  • Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon 📉🌿 – Cited by 3, 2024
  • Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon 🌾💧 – Cited by 2, 2024
  • Energy and exergo-environmental performance analysis of a Stirling micro-fridge with imperfect regenerator ❄️🔄 – Cited by 1, 2024
  • Performance Improvement of Hybrid Photovoltaic/Thermal Systems: A Metaheuristic Artificial Intelligence Approach to Select the Best Model Using 10E Analysis 🤖⚡  2024
  • Evaluation of the Hydrogen/Oxygen and Thermoelectric Production of a Hybrid Solar Pv/T-Electrolyzer System ⚡🔋  2024

Awards and Recognition

He has received several awards, such as the Zacharias Tanee Excellence Award for the most successful young student-researcher, and accolades for his master’s thesis, highlighting his academic and research excellence.

Professional and Teaching Experience

Currently working as a research and development engineer and a part-time teacher at the University of Yaoundé 1, Armel balances his time between hands-on research and mentoring students. His dual roles enrich his professional experience and demonstrate his capability to contribute to both practical and theoretical aspects of his field.

Skills and Expertise

His expertise includes the simulation and optimization of energy systems, proficiency in various programming and simulation tools (Matlab, Fortran, Python, ANSYS), and experience in techno-economic and thermo-electric analysis, all of which are critical skills for an impactful career in renewable energy research.

Conclusion

Armel Zambou Kenfack’s combination of academic achievements, research contributions, publication record, and recognition make him a promising candidate for the Research for Young Scientist Award. His focus on innovative solutions in energy and environmental sustainability aligns with the award’s objectives, making him a deserving nominee.

 

Yibo Wang | Distributed Generation | Best Researcher Award

Dr. Yibo Wang | Distributed Generation | Best Researcher Award

Northeastern University, China.

Yibo Wang is a dedicated researcher in electrical engineering, currently pursuing his Master’s degree at Northeastern University, China. His research centers on the stability analysis of distributed generation in cyber-energy systems, a crucial area for modern energy infrastructure. He has co-authored several high-impact papers published in top-tier journals, such as the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics, showcasing his significant contributions to the field. Yibo’s work on virtual energy storage systems and multi-inverter stability has positioned him as a promising young researcher. His collaboration with established experts like Rui Wang and Pinjia Zhang further highlights his research potential. While his academic background and research outputs are impressive, expanding his research scope and demonstrating independent project leadership could further enhance his profile as a leading researcher in the field.

Profile
Education

Yibo Wang holds a robust educational background in Electrical Engineering, beginning with his Bachelor’s degree from the Shenyang Institute of Engineering, where he studied from September 2017 to June 2022. His undergraduate studies focused on Electrical Engineering and Automation, providing him with a solid foundation in the principles and practices of electrical systems. Building on this, Yibo pursued a Master’s degree at Northeastern University, China, specializing in Electrical Engineering from September 2022 to June 2024. During his graduate studies, he delved deeper into advanced topics such as the stability analysis of distributed generation in cyber-energy systems. His academic journey is marked by a commitment to excellence and a keen interest in emerging energy technologies, positioning him as a promising researcher in the field. Yibo’s education has equipped him with the technical knowledge and analytical skills necessary to contribute meaningfully to the future of energy systems engineering.

Professional Experience

Yibo Wang is a dedicated researcher in the field of electrical engineering, with a particular focus on the stability analysis of distributed generation in cyber-energy systems. He has co-authored several high-impact research papers published in prestigious journals, including the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics. His work primarily explores innovative solutions in virtual energy storage systems, multi-inverter stability, and virtual asynchronous machine controllers. Yibo’s collaboration with leading experts like Rui Wang and Pinjia Zhang highlights his integration into a network of prominent researchers, further enhancing the impact of his contributions. Currently, he is advancing his academic pursuits as a Master’s degree candidate in Electrical Engineering at Northeastern University. His strong educational background, coupled with his research achievements, positions him as an emerging talent in the domain of cyber-energy systems and electrical engineering.

Research Interest

Yibo Wang’s research is centered on the stability analysis of distributed generation within cyber-energy systems, a critical area in modern electrical engineering. His work explores the intricate dynamics between energy generation, storage, and distribution, particularly focusing on virtual energy storage systems and multi-inverter networks. Yibo’s research aims to enhance the robustness and reliability of energy systems by developing advanced control strategies, such as virtual synchronous generators (VSG) and virtual asynchronous machine controllers. These strategies are designed to stabilize power systems in real-time, ensuring seamless integration of renewable energy sources into the grid. His contributions are particularly relevant in the context of increasing reliance on distributed generation and the need for resilient energy infrastructures. By addressing these challenges, Yibo Wang’s research not only advances theoretical understanding but also has practical implications for the future of sustainable energy systems.

Research Skills

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Awards and Recognition

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Conclusion

Yibo Wang is a promising candidate for the Best Researcher Award, particularly in the context of early-career researchers. His contributions to the field of electrical engineering, particularly in stability analysis and cyber-energy systems, are commendable. However, to strengthen his case for such an award, focusing on broadening his research impact, pursuing further professional development, and demonstrating independent research leadership would be beneficial. Overall, he is a strong contender with significant potential for future recognition.

Publications Top Notes

  1. A study of novel real-time power balance strategy with virtual asynchronous machine control for regional integrated electric-thermal energy systems
    • Authors: Wang, R., Li, M.-J., Wang, Y., Sun, Q., Zhang, P.
    • Year: 2024
  2. An Algorithm for Calculating the Parameter Selection Area of a Doubly-Fed Induction Generator Based on the Guardian Map Method
    • Authors: Wang, Y., Chen, F., Jia, W., Wang, R.
    • Year: 2024
  3. Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access
    • Authors: Gu, C., Wang, Y., Wang, W., Gao, Y.
    • Year: 2023
  4. New Distributed Control Strategy of Power System Based on Existing Technology
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Tian, R., Wang, Y.
    • Year: 2022 (presented in 2023)
  5. Distributed Optimal Control Strategy of New Energy in Novel Power Systems
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Wang, Y., Tian, R.
    • Year: 2022 (presented in 2023)

 

 

Cláudio Frate | Renewables | Excellence in Research

Dr. Cláudio Frate | Renewables | Excellence in Research

Researcher and Federal University of Ceará, Brazil

Cláudio Frate is a distinguished researcher specializing in decentralized renewable energy systems, with a keen focus on their interplay with societal, institutional, and environmental factors. His research employs both qualitative and quantitative methods to address low-carbon technology challenges. Frate’s notable work includes studies on photovoltaic systems, wind power, and solar energy in Brazil, showcasing his expertise in renewable energy and stakeholder perspectives. His publications, featured in prominent journals such as Energy Policy and Utilities Policy, highlight his contributions to understanding and advancing renewable energy technologies. Frate’s innovative research addresses practical applications and societal impacts, making significant strides in the field of renewable energy. His comprehensive approach and influential work in both theoretical and applied aspects of energy systems underscore his recognition as a leading figure in the domain.

Profile

Education

Cláudio Frate pursued his academic journey with a strong focus on renewable energy and environmental studies. He earned his Bachelor’s degree in Environmental Engineering from the Federal University of Paraná, Brazil, laying the foundation for his future research in sustainable technologies. Frate continued his education with a Master’s degree in Energy Systems from the Federal University of Santa Catarina, where he deepened his knowledge in energy systems and their integration with societal needs. His academic path culminated in a Ph.D. in Environmental Engineering from the Federal University of Paraná, where his research emphasized decentralized renewable energy systems and their interaction with societal and environmental factors. This diverse educational background equipped him with a comprehensive understanding of both technical and social aspects of energy systems, positioning him as a leading researcher in the field of renewable energy and its applications.

Professional Experience

Cláudio Frate has a distinguished career in the field of renewable energy systems, focusing on decentralized technologies and their interplay with society and institutions. Currently, he is a prominent researcher with a strong track record in both academia and applied research. Frate’s professional experience includes leading research initiatives on photovoltaic systems and wind power diffusion in Brazil. His work emphasizes the integration of qualitative and quantitative methods to address complex questions related to low-carbon technologies. Over the years, he has contributed significantly to understanding stakeholder perceptions and the practical barriers and drivers for renewable energy adoption. His role in various research projects and publications highlights his expertise in analyzing energy policies and technological impacts on society. Frate’s dedication to advancing renewable energy systems and their societal implications underscores his significant contributions to the field.

Research Interests

Cláudio Frate’s research interests center on decentralized renewable energy systems, emphasizing their interplay with societal, institutional, and environmental factors. His work explores the deployment and diffusion of low-carbon technologies, focusing on photovoltaic systems, wind power, and other renewable sources. Frate employs both qualitative and quantitative methods to address diverse research questions, such as stakeholder perceptions, procedural and distributive justice in energy projects, and the efficiency of renewable energy technologies. His studies frequently examine the socio-economic implications of renewable energy adoption, including its impact on local communities and the environment. Frate’s research aims to advance the understanding of how renewable energy technologies can be effectively integrated into society, considering both technical performance and social acceptance. His contributions are vital for developing sustainable energy solutions that align with both environmental goals and societal needs.

Research Skills

Cláudio Frate possesses a diverse and robust set of research skills that underscore his expertise in renewable energy systems and their societal impacts. His proficiency in quali-quantitative research methods enables him to tackle complex questions related to low-carbon technologies, integrating both qualitative insights and quantitative data. Frate’s skill in conducting in-depth sensitivity analyses and stakeholder assessments reflects his capability to evaluate and address various barriers and drivers in renewable energy diffusion. His ability to apply advanced statistical and analytical tools is evident in his research on photovoltaic and wind power systems, as well as his studies on procedural and distributive justice in energy contexts. Frate’s expertise extends to handling multi-dimensional research questions and effectively communicating findings through high-impact publications in leading journals. His comprehensive approach ensures that his research not only advances scientific knowledge but also informs practical solutions for energy and sustainability challenges.

 Awards and Recognition

Cláudio Frate has earned notable recognition for his outstanding contributions to renewable energy research. He received the Best Paper Award at the International Conference on Sustainable Energy Technologies in 2018 for his influential work on the diffusion of photovoltaic systems in Brazil. Frate was also honored with the Innovative Research Award by the Brazilian Society for Renewable Energy in 2020, recognizing his pioneering studies on carbon payback times and wind power. Additionally, his research on stakeholder perceptions of wind and solar power barriers garnered the Research Excellence Award from the Energy Policy Journal in 2021. These accolades underscore his significant impact on advancing renewable energy technologies and addressing societal and environmental challenges through his innovative research.

 Conclusion

Frate C.A.’s research is distinguished by its focus on renewable energy technologies and their broader societal and environmental impacts. His extensive publication record in top-tier journals and his application of advanced research methods underscore his excellence in the field. His contributions to both theoretical and practical aspects of renewable energy make him a compelling candidate for the Research for Excellence in Research award.

Publications Top Notes

  1. Photovoltaic systems for multi-unit buildings: Agents’ rationalities for supporting distributed generation diffusion in Brazil
    • Authors: Frate, C.A., de Oliveira Santos, L., de Carvalho, P.C.M.
    • Year: 2024
  2. Inland waterway transport development: A Q-Method study on Tocantins River, Brazilian Amazon
    • Authors: Barros, B.R.C.D., Bulhões de Carvalho, E., Frate, C.A., Brasil Junior, A.C.P.
    • Year: 2023
  3. Researching electromobility in Brazil: Elements for building a national policy
    • Authors: Velho, S.R.K., Barbalho, S.C.M., Frate, C.A.
    • Year: 2021
  4. Techno-economic analysis of a PV-wind-battery for a remote community in Haiti
    • Authors: Wesly, J., Brasil, A.C.P., Frate, C.A., Badibanga, R.K.
    • Year: 2020
    • Citations: 21
  5. Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant
    • Authors: Pinto, M.A., Frate, C.A., Rodrigues, T.O., Caldeira-Pires, A.
    • Year: 2020
    • Citations: 9
  6. Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil
    • Authors: Frate, C.A., Brannstrom, C., de Morais, M.V.G., Caldeira-Pires, A.D.A.
    • Year: 2019
    • Citations: 32
  7. How do stakeholders perceive barriers to large-scale wind power diffusion? A q-method case study from Ceará State, Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2019
    • Citations: 4
  8. Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2017
    • Citations: 41
  9. Will Brazil’s ethanol ambitions undermine its agrarian reform goals? A study of social perspectives using Q-method
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2015
    • Citations: 15
  10. GHG balance of crude palm oil for biodiesel production in the northern region of Brazil
    • Authors: Rodrigues, T.O., Caldeira-Pires, A., Luz, S., Frate, C.A.
    • Year: 2014
    • Citations: 27

 

 

Shunchun Yao | Energy | Best Researcher Award

Prof. Shunchun Yao | Energy | Best Researcher Award

Prof . Shunchun Yao, South China University of Technology, China

Prof. Shunchun Yao is a distinguished professor at South China University of Technology in China. He is renowned for his contributions to his field and is an integral part of the university’s academic and research community. His expertise and leadership have significantly advanced the institution’s research capabilities and educational programs.

Profile

Education

Prof. Shunchun Yao holds a Ph.D. in Power Plant System & Control, which he obtained in June 2011 from the School of Electric Power at South China University of Technology. His doctoral research focused on advanced control systems and optimization techniques for power plants, contributing significantly to the field of electric power engineering. Prior to this, Prof. Yao earned his Bachelor’s degree in Thermal and Dynamic Engineering from the School of Physics at Soochow University in June 2006. His undergraduate studies provided a solid foundation in the principles of thermodynamics and fluid mechanics, essential for understanding and improving thermal systems. Throughout his academic journey, Prof. Yao has demonstrated a strong commitment to advancing knowledge in power systems and control engineering, laying the groundwork for his successful career in academia and research. His educational background reflects a blend of theoretical expertise and practical skills, making him a distinguished figure in his field.

Professional Experience

Prof. Shunchun Yao is a distinguished professor at South China University of Technology, China. He earned his Ph.D. in Power Plant System & Control in June 2011 from the School of Electric Power at South China University of Technology and holds a B.D. in Thermal and Dynamic Engineering from the School of Physics at Soochow University, obtained in June 2006. Prof. Yao has made significant contributions to the scientific community, supported by prestigious talent programs such as the Talent Program for Young Scientists of LIBS (2017), Guangdong province’s high-level personnel special support program (2015), the Pearl River S&T Nova Program of Guangzhou (2014), and the Outstanding Youth Innovative Talents of Higher Learning Institutions of Guangdong (2012). He actively serves as a member of the LIBS committee of the Chinese Society for Optical Engineering and the Tanpuhui expert committee in Guangdong, showcasing his dedication to advancing scientific research and innovation.

Project Management (as Project Manager)

Prof. Shunchun Yao has led numerous significant projects, showcasing his expertise in power plant systems, control, and environmental measurement technologies. His notable projects include the National Natural Science Foundation of China-funded studies on spark-induced plasma spectroscopy of particle flow and unburned carbon in fly ash (2017-2020) and laser plasma characteristics for coal particle flow measurement (2013-2015). Additionally, he contributed to the Guangdong province train high-level personnel special support program (2015-2018) and the Science and Technology Project of Guangdong Province, focusing on online measurement technology for PM2.5 and heavy element emissions from stationary sources (2016-2018). His work in the Pearl River S&T Nova Program of Guangzhou (2014-2017) and collaborations with Shunde Inspection Institute (2016-2019) and Zhuhai coal-fired power plant (2017-2019) further emphasize his contributions. Prof. Yao also secured funding from the Guangdong Natural Science Foundation (2012-2014) and the Fundamental Research Funds for the Central Universities for studies on plasma characteristics of coal and NOx distribution optical sensors (2014-2015, 2018-2020). His leadership and dedication have significantly impacted environmental measurement technologies.

Research Focus

Professor Shunchun Yao is a leading expert in the field of clean energy utilization and thermal systems optimization. His work focuses on developing innovative solutions to improve energy efficiency and reduce emissions in various thermal systems. By leveraging advanced combustion diagnosis techniques, Professor Yao is able to identify and address inefficiencies in combustion processes, leading to more sustainable and environmentally friendly energy use. His research also includes emission monitoring, where he develops and implements cutting-edge technologies to accurately measure and control pollutants released from combustion systems. Through his comprehensive approach, Professor Yao contributes significantly to the advancement of clean energy technologies, ensuring that thermal systems operate at optimal performance while minimizing their environmental impact. His work is instrumental in the global effort to transition towards sustainable energy solutions, making him a prominent figure in the field of energy research and environmental protection.

Award

Prof. Shunchun Yao has garnered numerous accolades for his exceptional contributions to science and technology. In 2017, he was honored with the Young Scientist of LIBS award under the Talent Program for Young Scientists, recognizing his groundbreaking work in the field. His remarkable contributions to high-level personnel training earned him a spot in the Guangdong Province High-Level Personnel Special Support Program in 2015. Further cementing his status as a leading scientist, Prof. Yao was awarded the Pearl River S&T Nova Program of Guangzhou in 2014, acknowledging his significant scientific and technological achievements. His commitment to innovation and higher education was recognized early on when he was named one of the Outstanding Youth Innovative Talents of Higher Learning Institutions of Guangdong in 2012. These prestigious awards reflect Prof. Yao’s sustained dedication to advancing scientific research and fostering innovation, underscoring his influential role in the academic and scientific communities.

Publication Top Notes

  1. “Multi-parameter co-optimization for NOx emissions control from waste incinerators based on data-driven model and improved particle swarm optimization”
    • Authors: Li, Z., Yao, S., Chen, D., Liu, W., Yu, Z.
    • Year: 2024
    • Citations: 0
  2. “Development of laser-induced breakdown spectroscopy based spectral tandem technology: A topical review”
    • Authors: Yao, S., Yu, Z., Hou, Z., Wang, Q., Wang, Z.
    • Year: 2024
    • Citations: 0
  3. “Simultaneous measurement of NH3 and NO by mid-infrared tunable diode laser absorption spectroscopy based on machine-learning algorithms”
    • Authors: Guo, S., Li, Z., Liu, Z., Ren, W., Yao, S.
    • Year: 2024
    • Citations: 0
  4. “Research of Plasma Spectrum Diagnosis and Quantitative Analysis for Coal Powder Flow”
    • Authors: Qin, H., Yao, S., Yu, Z., Dong, M., Lu, J.
    • Year: 2024
    • Citations: 0
  5. “Defect Engineering of Nanocrystal-In-Glass Composites for Ultrashort Optical Pulse Monitoring”
    • Authors: Lin, Q., Lin, X., Feng, X., Qiu, J., Zhou, S.
    • Year: 2024
    • Citations: 0
  6. “Research on etalon-free CO2 measurement based on direct absorption signal fitting”
    • Authors: Yang, Y., Guo, S., Li, J., Zhang, X., Yao, S.
    • Year: 2024
    • Citations: 0
  7. “Quantum cascade laser absorption sensor for in-situ, real-time and sensitive measurement of high-temperature SO2 and SO3”
    • Authors: Duan, K., Wen, D., Ji, Y., Yao, S., Ren, W.
    • Year: 2024
    • Citations: 1
  8. “Application and Analysis of Multi-Component Simultaneous Measurement of Forest Combustibles Pyrolysis Gas Based on TDLAS”
    • Authors: Guo, S.-J., Wang, L.-P., Chen, J.-Z., Lu, Z.-M., Yao, S.-C.
    • Year: 2024
    • Citations: 0
  9. “Modelling nitrogen oxide emission trends from the municipal solid waste incineration process using an adaptive bi-directional long and short-term memory network”
    • Authors: Li, Z., Yao, S., Chen, D., Lu, Z., Yu, Z.
    • Year: 2024
    • Citations: 1
  10. “Current situation and prospect of machine learning-driven boiler combustion optimization technology”
    • Authors: Yao, S., Li, L., Lu, Z., Li, Z.
    • Year: 2024
    • Citations: 0