Peng Tang | Energy | Best Researcher Award

Dr. Peng Tang | Energy | Best Researcher Award

Sichuan University of Science & Engineering, China

Dr. Peng Tang is a dedicated and multidisciplinary researcher in the field of physical chemistry and electrochemical engineering, with a proven track record in advanced materials research and energy storage systems. His career has been marked by impactful contributions to alkali metal batteries, corrosion protection, and hydrogen storage technologies. Having conducted research in leading institutions across China, Japan, and the United States, Dr. Tang has cultivated a robust international research profile. He is widely recognized for his ability to combine theoretical modeling with experimental electrochemical techniques to develop innovative solutions in energy and materials science. His work has led to numerous peer-reviewed publications, patents, and scholarly presentations at international conferences. In addition to academic excellence, he is highly committed to mentoring students, promoting scientific exchange, and fostering collaborations across disciplines. Dr. Tang’s research is driven by innovation and a deep interest in solving real-world energy challenges through sustainable and efficient technologies.

Professional Profile

Education

Dr. Peng Tang has pursued a strong academic path rooted in chemical engineering and physical chemistry. He began his education at Tianjin University of Science & Technology, where he earned his Bachelor of Engineering degree in Chemical Engineering & Technology (2008–2012) under the guidance of Professors Shiqiang Wang and Tianlong Deng. He continued at the same university to complete his Master of Science in Chemical Engineering (2012–2015), working with Professor Zuoliang Sha on advanced functional materials and their applications. His academic journey culminated in a Ph.D. in Physic-Chemistry from the University of Fukui, Japan (2017–2020), under the joint supervision of Professors Jingyuan Chen and Koichi Aoki. His doctoral research focused on electroanalytical chemistry, including voltammetric analysis and the study of micro-particle behavior. This rigorous academic training equipped him with both theoretical insights and hands-on laboratory expertise, forming the foundation for his current research in energy storage and environmental electrochemistry.

Professional Experience

Dr. Peng Tang has acquired a diverse and rich professional background through positions held in both academia and industry. Currently, he serves as a researcher at Sichuan University of Science and Engineering (2022–present), where he leads projects on alkali metal batteries and corrosion-resistant materials. Prior to this, he completed multiple postdoctoral fellowships abroad. At the University of Arkansas (2022), under Prof. Xiangbo Meng, he explored advanced lithium and sodium-ion battery architectures. He also worked at the University of Pittsburgh (2021–2022) with Prof. Shigeru Amemiya on scanning electrochemical microscopy, and at the University of Ibaraki (2020–2021) with Prof. Kazuyuki Kita on aerosol particle characterization. His experience includes industrial engineering work on hydrogen storage at Hangzhou Hydrogen Sources and Tianjin Highland Energy Technology (2015–2016). He also briefly worked as a temporary researcher at Peking University (2014–2015) under Prof. Xingguo Li. These varied roles reflect his adaptability and multidisciplinary expertise.

Research Interest

Dr. Peng Tang’s research interests span several critical domains in energy and materials science. He is particularly focused on the development and characterization of advanced alkali metal batteries, such as lithium and sodium-ion systems, with an emphasis on optimizing cathode materials and surface engineering. Another core area of his work involves electrochemical methods for corrosion protection and environmental monitoring. He has also conducted in-depth studies on aerosol particles, micro-particle behavior, and radionuclide transport, especially in post-Fukushima contamination contexts. Furthermore, his early career included work on hydrogen storage, exploring both solid-state and gas-phase mechanisms. Dr. Tang is driven by a desire to solve real-world sustainability challenges through electrochemical innovation and advanced material synthesis. He often collaborates internationally to integrate multidisciplinary techniques, including atomic layer deposition, scanning electrochemical microscopy, and impedance spectroscopy. His research reflects a strong commitment to bridging the gap between laboratory-based science and industrial-scale applications.

Research Skills

Dr. Tang is equipped with a wide array of experimental and analytical skills in the field of physical and electrochemical sciences. He has advanced expertise in electrochemical characterization methods, including voltammetry, scanning electrochemical microscopy (SECM), and electrochemical impedance spectroscopy (EIS). He is proficient in surface and materials analysis, such as atomic/molecular layer deposition (ALD/MLD), spectroscopic techniques (UV-Vis, FTIR), and particle morphology assessment. His experience extends to working in cleanrooms and glovebox environments for battery and nanomaterial synthesis. Dr. Tang is also skilled in developing polymeric and ceramic composite materials for energy and environmental applications. His academic and industrial work has required the use of data modeling software and simulation tools for process optimization. Additionally, he has hands-on experience with hydrogen storage system design, including both experimental setup and theoretical modeling. His interdisciplinary skills enable him to bridge chemistry, engineering, and materials science with a high level of competence and precision.

Awards and Honors

Throughout his career, Dr. Peng Tang has received numerous recognitions that reflect his academic excellence and leadership in research. In 2017, he was awarded the Excellent Poster Prize at the 16th International Electroanalytical Chemistry Symposium in Changchun, China. His academic potential was further recognized in 2018 when he received an Emory University International Student Scholarship, supported by NICCA Chemical Co., Ltd. In recent years, his role as a mentor has been honored with the “Excellent Mentor Award” in both 2023 and 2024 for guiding student teams during China’s prestigious Chemical Engineering Design competitions. His active participation in academic exchange programs, such as the Sakura Program between Japan and China, highlights his commitment to cross-cultural academic enrichment. He has also delivered oral and poster presentations at international conferences and has authored several high-impact publications and patents. These accolades underscore Dr. Tang’s reputation as a dedicated researcher and mentor in his field.

Conclusion

Dr. Peng Tang exemplifies a well-rounded researcher who combines deep theoretical understanding with practical innovation in the fields of electrochemistry and material science. His extensive international research background, coupled with a consistent publication record and patent portfolio, highlights his contributions to advancing sustainable energy technologies. Through mentorship, interdisciplinary collaboration, and a strong commitment to scientific excellence, he has influenced both academic and professional communities. His future trajectory points toward leadership in global battery research, environmental electrochemistry, and materials engineering. With proven expertise, innovative thinking, and a drive for impactful research, Dr. Tang is a deserving candidate for recognition and awards. He continues to explore emerging challenges in clean energy and environmental safety, aiming to provide solutions that bridge science, industry, and societal benefit. His profile stands as a testament to academic rigor, collaborative spirit, and long-term vision in science and technology.

Publications Top Notes

  1. Synthesis and Properties of a New Environmentally Friendly Bicyclic Imidazoline Quaternary Ammonium Salt as a Corrosion Inhibitor of Carbon Steel
    Journal: Corrosion, 2025
    Authors: Xiaoping Qin, Zhaolin Xie, Yilin Li, Lei Chen, Peng Tang, Xiaonan Liu, Haiwei Lu, Lijie Xing, Xiaoyan Wang

  2. Synthesis and Performance Evaluation of a Novel Zwitterionic Quaternary Copolymer for Enhanced Oil‐Recovery Application
    Journal: SPE Polymers, 2024
    Authors: Xiaoping Qin, Zhaolin Xie, Peng Tang, Hui Yang, Cuixia Li, Xiaoliang Yang, Tong Peng

  3. Atmospheric Resuspension of Insoluble Radioactive Cesium-Bearing Particles Found in the Difficult-to-Return Area in Fukushima
    Journal: Progress in Earth and Planetary Science, 2022
    Authors: Peng Tang, et al.

  4. Atomic and Molecular Layer Deposition as Surface Engineering Techniques for Emerging Alkali Metal Rechargeable Batteries
    Journal: Molecules, 2022
    Authors: Peng Tang, Matthew Sullivan, Xiangbo Meng

  5. Atmospheric Resuspension of Insoluble Radioactive Cesium Particles Found in the Difficult-to-Return Area in Fukushima
    Preprint, 2021
    Authors: Peng Tang, Kazuyuki Kita, Yasuhito Igarashi, Yukihiko Satou, Koutarou Hatanaka, Kouji Adachi, Takeshi Kinase, Kazuhiko Ninomiya, Atsushi Shinohara

  6. Reduction Charge Smaller than the Deposited One in Cathodic Stripping Voltammograms of AgCl
    Journal: American Journal of Analytical Chemistry, 2019
    Authors: Peng Tang, Koichi Jeremiah Aoki, Jingyuan Chen

  7. Double Layer Impedance in Mixtures of Acetonitrile and Water
    Journal: Electroanalysis, 2018
    Authors: K.J. Aoki, J. Chen, P. Tang

  8. Capacitive Currents Flowing in the Direction Opposite to Redox Currents
    Journal: The Journal of Physical Chemistry C, 2018
    Authors: Koichi Jeremiah Aoki, Jingyuan Chen, Peng Tang

  9. Construction of Hybrid Z-Scheme Pt/CdS-TNTAs with Enhanced Visible-Light Photocatalytic Performance
    Journal: Applied Catalysis B: Environmental, 2015
    Authors: Zhu Y, Chen Z, Gao T, Huang Q, Niu F, Qin L, Tang P, Huang Y, Sha Z, Wang Y

  10. Visible Light Induced Photocatalysis on CdS Quantum Dots Decorated TiO₂ Nanotube Arrays
    Journal: Applied Catalysis A: General, 2015
    Authors: Zhu Y, Wang Y, Chen Z, Qin L, Yang L, Zhu L, Tang P, Gao T, Huang Y, Sha Z, et al.

Yuriy Maletin | Energy | Best Researcher Award

Prof. Yuriy Maletin | Energy | Best Researcher Award

Head of laboratory from Institute for sorption and Problems of Endoecology National Academy of Sciences of Ukraine, Ukraine

Yuriy A. Maletin is an accomplished chemist with over five decades of scientific contributions in inorganic and physical chemistry. Born on January 15, 1949, in Moscow, Russia, he has established a profound legacy in the field of nanosized carbon materials and energy storage systems. Currently serving as Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology in Kyiv, Ukraine, and as Chief Scientist at Yunasko-Ukraine LLC, he combines academic leadership with industrial innovation. His commitment to advancing science has earned him membership in several prestigious boards and societies, including being a Corresponding Member of the National Academy of Sciences of Ukraine. With over 105 published papers and 35 patents, his work has left a significant mark on scientific and technological development in Ukraine and beyond. Throughout his career, he has held notable leadership roles at various institutions, contributing to both theoretical and applied research. Maletin continues to be active in international scientific dialogue, frequently invited to deliver keynote lectures. His distinguished career embodies a blend of research excellence, innovation, and mentorship that reflects an enduring passion for scientific progress.

Professional Profile

Education

Yuriy A. Maletin pursued his academic journey at some of the most prestigious institutions in the former Soviet Union. He graduated in 1971 with an MSc in Chemistry from the renowned Moscow State University named after M.V. Lomonosov, a leading institution known for producing world-class scientists. Following his graduate studies, he earned a Ph.D. in Inorganic Chemistry from the Institute of General and Inorganic Chemistry in Kiev in 1977. This was followed by his Doctor of Science (Dr. habil.) degree in Physical Chemistry from the Institute of Chemical Physics in Moscow in 1989, marking the peak of academic qualifications in the former USSR and Eastern Europe. These degrees reflect a deep academic foundation in both theoretical and applied chemistry. His education laid the groundwork for his later achievements in research and leadership, particularly in the fields of coordination chemistry, sorption technologies, and nanomaterials for energy storage. His multidisciplinary training provided him with the ability to work at the interface of various scientific domains and effectively lead complex research projects with national and international significance.

Professional Experience

Yuriy A. Maletin’s professional career spans over four decades of continuous engagement in scientific research, academic leadership, and industrial collaboration. He is currently the Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, a position he has held since 2009. Since 2010, he has also served as the Chief Scientist at Yunasko-Ukraine LLC, focusing on advanced energy storage solutions. From 2002 to 2008, he was Head of the Physical Chemistry Department at the National Technical University of Ukraine “KPI.” Prior to that, from 1987 to 2002, he headed the Coordination Chemistry Department at the Institute of General and Inorganic Chemistry. His career also includes serving on national advisory boards in inorganic chemistry and electrochemistry. This diverse experience reflects not only his scientific expertise but also his ability to manage research teams, influence policy, and bridge academia with industry. Through each of these roles, he has contributed significantly to Ukraine’s scientific infrastructure and its positioning within global scientific communities.

Research Interests

Yuriy A. Maletin’s research interests lie primarily in the areas of inorganic chemistry, physical chemistry, and materials science, with a particular emphasis on nanosized carbon materials for energy storage. His early work focused on coordination chemistry and the synthesis of complex compounds, while his later career has evolved toward the design, characterization, and application of materials relevant to energy technologies. He has been at the forefront of research on supercapacitors, batteries, and other energy storage systems, developing novel carbon-based nanostructures that enhance storage efficiency and device longevity. His interest in sorption processes and endoecology further reflects his multidisciplinary approach, addressing both energy needs and environmental challenges. In addition to core chemistry domains, he actively engages in applied sciences and industrial innovation, contributing to the development of practical technologies. His current work continues to explore advanced physical and chemical methods for improving material performance in energy devices, guided by a strong foundation in electrochemistry, thermodynamics, and nanotechnology. His long-standing contributions reflect a career dedicated to pushing the boundaries of material science and contributing to global efforts toward sustainable and efficient energy solutions.

Research Skills

Yuriy A. Maletin possesses a diverse set of research skills that span across multiple disciplines within chemistry and materials science. He is proficient in the synthesis and characterization of inorganic compounds, particularly within coordination and physical chemistry. His expertise includes the design and fabrication of nanosized carbon materials, with applications in energy storage technologies such as batteries and supercapacitors. Maletin has demonstrated strong analytical skills through his work on the physical and chemical behavior of materials, employing various spectroscopic, electrochemical, and thermal analysis methods. He also has significant experience in sorption studies, enabling him to assess environmental interactions and the efficiency of materials in filtration and separation processes. Beyond laboratory skills, he has a strategic mindset for guiding research directions, demonstrated through his leadership in multiple scientific institutions. His patent portfolio underscores a practical orientation in translating theoretical insights into functional applications. Additionally, he has cultivated scientific writing, mentoring, and public speaking abilities through numerous publications and invited lectures. These comprehensive research skills position him as a leader capable of both deep scientific inquiry and high-impact innovation.

Awards and Honors

Yuriy A. Maletin has received numerous awards and honors in recognition of his outstanding scientific contributions. Among his most prestigious accolades is his election as a Corresponding Member of the National Academy of Sciences of Ukraine in 2021, acknowledging his lifetime achievements and leadership in chemical sciences. Earlier in his career, he was a Fellow of the Royal Society of Chemistry (United Kingdom) from 1996 to 2014, a testament to his international recognition and influence. He has also served on national and international advisory boards, including the Advisory Board of Inorganic Chemistry Communications (1998–2002), which highlights his authoritative role in the global research community. His consistent presence in high-level scientific committees—such as the All-Ukrainian Boards on Inorganic Chemistry and Electrochemistry—demonstrates his long-standing impact on the development of Ukraine’s scientific ecosystem. With over 105 peer-reviewed articles and 35 patents and applications, Maletin’s research has not only advanced theoretical understanding but also led to practical applications, earning both academic and industrial accolades. These honors reflect a career marked by excellence, influence, and a dedication to scientific advancement at both national and global levels.

Conclusion

Yuriy A. Maletin’s career represents a rare blend of academic brilliance, research innovation, and scientific leadership. His journey from Moscow State University to leading institutions in Ukraine showcases a lifelong dedication to advancing chemistry and materials science. His work on nanosized carbon materials for energy storage has contributed meaningfully to the global pursuit of sustainable energy solutions. Beyond his scientific outputs—evident in his publications and patents—he has influenced generations of researchers through teaching, mentoring, and strategic leadership. His recognition by the National Academy of Sciences of Ukraine and global societies like the Royal Society of Chemistry affirms his standing in the international scientific community. He remains actively involved in shaping future research directions and disseminating knowledge through conferences and advisory roles. Given his comprehensive achievements, Maletin is a distinguished figure whose work continues to inspire innovation in energy, chemistry, and environmental technologies. His legacy is built not only on scientific discovery but also on his commitment to applying research for real-world impact, making him an exemplary candidate for top-level research recognition awards.

Publications Top Notes

  1. Graphene vs activated carbon in supercapacitors
    Journal: Nanosistemi, Nanomateriali, Nanotehnologii, 2020
    Authors: Zelinskyi, S.O.; Stryzhakova, N.G.; Maletin, Y.A.

  2. Supercapacitor technology: Targets and limits
    Conference: LLIBTA 2015 & ECCAP 2015, AABC Europe, 2015
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.

  3. Electrochemical double layer capacitors and hybrid devices for green energy applications
    Journal: Green, 2014
    DOI: 10.1515/green-2014-0002
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.; Tychina, S.; Drobny, D.

  4. On the perspectives of supercapacitor technology
    Conference: AABC 2014, 2014
    Author: Maletin, Y.

  5. Ultracapacitor technology: What it can offer to electrified vehicles
    Conference: IEEE IEVC, 2014
    DOI: 10.1109/IEVC.2014.7056227
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinskyi, S.; Chernukhin, S.; Tretyakov, D.; Mosqueda, H.A.; Davydenko, N.; Drobnyi, D.

  6. The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation
    Journal: Corrosion Science, 2013
    DOI: 10.1016/j.corsci.2012.12.002
    Authors: Gromadskyi, D.G.; Fateev, Y.F.; Maletin, Y.A.

  7. Anodic processes on aluminum in aprotic electrolytes based on the tetraethylammonium tetrafluoroborate salt in acetonitrile
    Journal: Materials Science, 2010
    DOI: 10.1007/s11003-010-9305-1
    Authors: Hromads’kyi, D.H.; Fateev, Yu.F.; Stryzhakova, N.H.; Maletin, Yu.A.

  8. Ultracapacitors as the key to efficient power solutions
    Conference: AABC 2010, 2010
    Author: Maletin, Y.

  9. Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors
    Journal: Applied Physics A: Materials Science and Processing, 2006
    DOI: 10.1007/s00339-005-3416-9
    Authors: Maletin, Y.; Novak, P.; Shembel, E.; Izotov, V.; Strizhakova, N.; Mironova, A.; Danilin, V.; Podmogilny, S.

  10. Complexes of some 3d-metal salts with N,N-dimethylhydrazide of 4-nitrobenzoic acid
    Journal: Russian Journal of Coordination Chemistry / Koordinatsionnaya Khimiya, 2004
    DOI: 10.1023/B:RUCO.0000043902.12955.5e
    Authors: Zub, V.Ya.; Bugaeva, P.V.; Strizhakova, N.G.; Maletin, Yu.A.

Mohamed Saber | Energy | Best Researcher Award

Mr. Mohamed Saber | Energy | Best Researcher Award

Lecturer Assistant from Zagazig University, Egypt

Mohammed Al-Desouky is a dedicated early-career researcher and civil hydraulic engineer currently serving as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University, Egypt. His academic and professional journey reflects a strong commitment to advancing sustainable hydraulic systems, energy harvesting technologies, and computational fluid dynamics (CFD) applications. Mohammed’s work integrates theoretical research with hands-on experimentation and simulation, making significant strides in optimizing hydraulic structures for renewable energy production. His notable contribution includes a publication in the high-impact journal Renewable Energy, where he introduced a novel design for pico-hydropower generation using Dethridge waterwheels. His work addresses real-world challenges in low-head energy generation systems and demonstrates both academic rigor and practical relevance. In addition to his academic responsibilities, he is actively engaged in professional engineering practices as a civil hydraulic engineer and co-founder of a construction company. Mohammed’s multidisciplinary expertise spans water resources engineering, structural analysis, fluid mechanics, and advanced CFD modeling. His diverse experience, technical proficiency, and innovative mindset position him as a valuable contributor to the fields of renewable energy and hydraulic engineering. While still early in his research career, he displays notable potential for future impact through expanded collaborations, further publications, and international academic engagement.

Professional Profile

Education

Mohammed Al-Desouky holds a Bachelor of Science (B.Sc.) degree in Civil Engineering from Zagazig University, Egypt, earned in 2019 with an outstanding academic record, graduating with an overall grade of “Excellent with Honor” (88.65%). His undergraduate studies provided a comprehensive foundation in structural mechanics, fluid dynamics, and water resources engineering. He is currently pursuing a Master of Science (M.Sc.) degree in Water and Water Structures Engineering at the same university, with an expected completion year of 2025. His master’s thesis, titled “Investigation of Energy Harvesting by Water Wheels at Low-head Heading up Structures,” reflects a focused research interest in renewable energy applications within hydraulic engineering. This work combines field experimentation with computational analysis to evaluate the feasibility and efficiency of waterwheel systems for small-scale hydropower generation. His educational journey is characterized by a strong integration of theory and practice, reinforced by involvement in laboratory work, project supervision, and engineering simulations. Mohammed’s academic progression demonstrates a clear trajectory toward research excellence and technical innovation in civil and environmental engineering. As he continues to expand his scholarly contributions through graduate research and peer-reviewed publications, his education equips him with the necessary skills to address global challenges in sustainable water infrastructure.

Professional Experience

Mohammed Al-Desouky has built a multifaceted professional background in academia, research, and engineering practice. Since December 2019, he has worked as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University. In this role, he supports the delivery of undergraduate courses and laboratory sessions in fluid mechanics, hydraulics, and water structures, while also supervising student projects and contributing to curriculum development. Concurrently, he serves as a Civil Hydraulic Engineer at the university’s Irrigation and Hydraulics Lab, conducting both experimental and computational research on flow behavior and hydraulic systems. Beyond academia, Mohammed has pursued various freelance roles. Between 2020 and 2021, he worked as a structural design freelancer, providing engineering solutions using SAP2000, ETABS, and SAFE. Since 2022, he has been engaged as a general contracting engineer, managing on-site construction, quality control, and stakeholder coordination. He also operates as a freelance CFD engineer, delivering fluid dynamics simulations and technical assessments using ANSYS Fluent and FLOW-3D. In addition, Mohammed co-founded CIVIC, a construction company specializing in design-build services and real estate. His experience across academic, research, and industry domains illustrates his versatility, leadership potential, and commitment to translating engineering theory into practical applications.

Research Interests

Mohammed Al-Desouky’s research interests lie at the intersection of civil engineering, hydraulics, and sustainable energy technologies. His primary focus is on the development and optimization of low-head hydropower systems, particularly the use of waterwheels in energy harvesting applications. Through his M.Sc. research, he explores the integration of traditional hydraulic structures with modern energy generation techniques to create efficient and eco-friendly solutions. This includes experimental investigations and computational modeling of flow behavior in open channels and water passage systems. His interest in Computational Fluid Dynamics (CFD) has led him to apply advanced simulation tools such as ANSYS Fluent and FLOW-3D to study fluid-structure interactions, energy dissipation, and turbine performance under varying hydraulic conditions. Mohammed is also interested in techno-economic assessments of renewable energy systems, aiming to ensure not only the technical feasibility but also the economic sustainability of engineering solutions. In addition, his work touches upon the structural analysis and design of civil infrastructure, with particular attention to how structural and hydraulic systems interact. He is motivated by the potential for interdisciplinary research to address global challenges in clean energy, water scarcity, and resilient infrastructure, and seeks to expand his contributions through international collaboration and high-impact publications.

Research Skills

Mohammed Al-Desouky possesses a comprehensive set of research skills that span theoretical analysis, computational modeling, and experimental evaluation. He is proficient in conducting Computational Fluid Dynamics (CFD) simulations using advanced platforms such as ANSYS Fluent and FLOW-3D. These tools allow him to analyze complex flow fields, pressure distributions, and energy conversion mechanisms within hydraulic structures. He is also skilled in 3D modeling for CFD pre-processing using AutoCAD 3D and SOLIDWORKS, enabling the creation of accurate geometrical inputs for simulation. In structural engineering, he is adept at using SAP2000, ETABS, SAFE, and CSI Column for load analysis, system modeling, and structural detailing. His research capabilities extend to numerical analysis and data interpretation, where he can derive velocity vectors, pressure contours, and turbulence profiles to assess fluid behavior. Mohammed is equally comfortable with physical experimentation, having worked extensively in hydraulic labs on open channel flow setups. He is experienced in technical report writing, academic presentations, and collaboration on multidisciplinary projects. His ability to bridge simulation with real-world engineering scenarios enhances the practical impact of his research. Combined with his knowledge of productivity tools like Microsoft Office and Adobe Photoshop, he is well-prepared to deliver high-quality research outcomes with technical precision.

Awards and Honors

Mohammed Al-Desouky has been recognized for his academic excellence and early contributions to engineering research. He graduated with honors from Zagazig University in 2019, earning a B.Sc. in Civil Engineering with an “Excellent with Honor” distinction, reflecting consistent academic performance throughout his undergraduate studies. His high GPA and class ranking earned him a teaching assistant position immediately after graduation, enabling him to contribute to both education and research activities within the university. Although still in the early stages of his professional and academic career, he has already secured a significant research publication in the prestigious Renewable Energy journal, which in itself represents a notable milestone and demonstrates peer-recognized research output. Additionally, his membership in the Egyptian Engineers Syndicate since 2024 reflects his professional standing within the engineering community in Egypt. While he has not yet accumulated a broad list of national or international awards, his current achievements highlight a trajectory of growing impact and recognition. His combination of academic excellence, publication success, and professional engagement position him well for future honors and research-based awards as his career develops. With continued output and wider visibility, he is poised to earn more distinguished recognition in the field of sustainable civil engineering.

Conclusion

Mohammed Al-Desouky exemplifies the profile of a promising early-career researcher in the field of civil and hydraulic engineering. With a strong foundation in both theoretical and applied aspects of engineering, he demonstrates a clear focus on integrating renewable energy concepts into water infrastructure systems. His work on pico-hydropower systems using waterwheels represents an innovative approach to sustainable energy generation, supported by robust CFD modeling and experimental validation. His publication in a reputable international journal signifies a high level of academic credibility, and his technical skill set equips him to tackle complex engineering problems. Beyond his research, Mohammed is active in teaching, lab supervision, and engineering consultancy, reflecting a well-rounded professional identity. Although his research output is still emerging, the quality and relevance of his work suggest significant future potential. Areas for further development include expanding his publication record, increasing international collaborations, and pursuing competitive research grants. With continued commitment and strategic engagement in the research community, Mohammed is well-positioned to become a leading figure in water and energy systems engineering. His current accomplishments serve as a strong foundation for long-term academic and professional success in addressing global sustainability challenges.

Publication Top Note

  1. Title: Techno-economic Assessment of the Dethridge Waterwheel under Sluice Gates in a Novel Design for Pico Hydropower Generation
    Journal: Renewable Energy
    Publication Date: August 2024
    Type: Journal Article
    DOI: 10.1016/j.renene.2024.121206
    ISSN: 0960-1481
    Authors: Mohamed Saber, Gamal Abdelall, Riham Ezzeldin, Ahmed Farouk AbdelGawad, Reda Ragab

 

Hu Fangyuan | Energy | Best Researcher Award

Prof. Dr. Hu Fangyuan | Energy | Best Researcher Award

Professor from Dalian University of Technology, China

Dr. Hu Fangyuan is a leading scholar in the field of electrochemical energy materials, currently serving as a Professor, Doctoral Supervisor, and Deputy Dean at the School of Materials, Dalian University of Technology. Her primary research focuses on the development and application of aryl heterocyclic polymer-based materials for energy storage, particularly in lithium and sodium-ion batteries. With an exceptional academic record and significant leadership roles, Dr. Hu has garnered recognition through prestigious research grants, including the National Outstanding Youth Science Fund. Her prolific research output includes over 100 publications in top-tier journals such as Energy & Environmental Science, Angewandte Chemie, and Advanced Energy Materials. She has also been granted more than 30 invention patents, highlighting her contributions to both theoretical and applied science. Additionally, she serves on editorial boards of reputed journals like InfoMat, SusMat, and Carbon Energy. Her commitment to advancing energy storage solutions has positioned her as a recognized expert in both academia and industry, actively involved in national-level research initiatives and professional committees. Dr. Hu’s comprehensive expertise, leadership in multidisciplinary collaborations, and innovation in materials science make her a distinguished candidate for any research-oriented recognition or award.

Professional Profile

Education

Dr. Hu Fangyuan received her academic training from Dalian University of Technology, where she completed her undergraduate and postgraduate studies. Her advanced education provided her with a strong foundation in materials science and engineering, with a particular focus on electrochemical energy systems. Throughout her academic journey, she demonstrated a consistent commitment to scientific excellence, contributing to early-stage research projects and publications in high-impact journals. Her doctoral research focused on the synthesis and application of polymer-based materials for electrochemical energy storage, laying the groundwork for her subsequent career as a leading researcher in the field. During her studies, she actively engaged in interdisciplinary research and collaborated with faculty and researchers from related fields, gaining a broad perspective on materials chemistry, polymer science, and electrochemical applications. Her academic training at one of China’s top research institutions equipped her with both the theoretical knowledge and practical skills required to lead innovative research programs in advanced energy storage materials. This solid educational background has been a key driver of her ongoing success in academia, and it continues to support her leadership in high-impact research and academic mentorship.

Professional Experience

Dr. Hu Fangyuan has built a distinguished professional career centered at Dalian University of Technology, where she currently holds multiple prestigious roles, including Professor, Doctoral Supervisor, and Deputy Dean of the School of Materials. Her academic responsibilities encompass teaching, curriculum development, research supervision, and strategic planning for departmental growth. Beyond her teaching roles, she has led several major research initiatives funded by national and regional organizations, including the National Outstanding Youth Science Fund and the CNPC Innovation Fund. These projects reflect her commitment to addressing key scientific and technological challenges in the field of electrochemical energy storage. In addition to her university-based work, Dr. Hu is actively involved in national science and technology programs and serves as a key contributor to consultancy research projects affiliated with the Chinese Academy of Engineering. Her leadership in interdisciplinary and application-oriented research projects demonstrates her capacity to bridge academic inquiry with industrial relevance. Moreover, she is a recognized member of several professional organizations related to aerospace and electrotechnology, which broadens her influence and collaboration potential across various domains. Dr. Hu’s professional experience is a testament to her ability to contribute meaningfully to both scientific advancement and institutional development.

Research Interest

Dr. Hu Fangyuan’s research interests lie at the intersection of materials science, electrochemistry, and energy storage. Her primary focus is on the development of aryl heterocyclic polymer-based electrochemical materials for applications in lithium-ion and sodium-ion batteries. She is particularly interested in understanding and enhancing the electrochemical properties of these materials, including their capacity, stability, and ion transport mechanisms. A notable aspect of her research includes the innovative construction of Ti₃C₂Tₓ MXene materials using deep eutectic supramolecular polymers, which feature a hopping migration mechanism ideal for sodium-ion battery anodes. Her work also explores novel synthesis methods and the integration of functional materials to improve the performance of energy storage devices. In addition to fundamental studies, Dr. Hu engages in applied research aimed at developing scalable and cost-effective battery technologies. Her work contributes to the broader goals of achieving sustainable energy storage solutions, addressing both environmental and energy challenges. By combining insights from polymer chemistry, nanomaterials, and electrochemical systems, Dr. Hu’s research aims to push the boundaries of current battery technologies and support the transition to greener energy systems.

Research Skills

Dr. Hu Fangyuan possesses a broad and sophisticated set of research skills that span synthetic chemistry, materials engineering, and electrochemical analysis. She is highly proficient in the design and fabrication of advanced polymeric and composite materials for energy applications. Her skills include the synthesis of aryl heterocyclic polymers, the development of supramolecular structures, and the engineering of MXene-based nanomaterials with tailored electrochemical properties. Dr. Hu is also well-versed in advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and various spectroscopy methods to analyze material morphology and chemical composition. Furthermore, she employs electrochemical testing methods including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy to evaluate the performance of battery materials. Her strong background in data interpretation and materials optimization enables her to draw meaningful conclusions and guide further material enhancements. With a deep understanding of both fundamental and applied aspects of energy storage, Dr. Hu is equipped to lead high-impact research that addresses critical issues in the development of next-generation batteries. Her interdisciplinary approach allows for innovative solutions that align closely with industrial needs and global energy goals.

Awards and Honors

Dr. Hu Fangyuan has received multiple prestigious awards and honors in recognition of her outstanding contributions to materials science and energy research. Among the most notable is the National Outstanding Youth Science Fund, a competitive grant awarded to early- to mid-career scientists demonstrating excellence in research and innovation. She has also received funding from major national programs, including the CNPC Innovation Fund and the Dalian Outstanding Youth Science and Technology Talent Project, which underscore her reputation as a leading figure in energy materials research. Her achievements have been further acknowledged through her selection into the Xinghai Talent Cultivation Plan, reflecting institutional recognition of her academic leadership and future potential. In addition to research-based awards, Dr. Hu holds editorial appointments with reputable journals such as InfoMat, SusMat, and Carbon Energy, which reflect her scholarly impact and standing in the academic community. Her membership in prominent scientific committees further demonstrates her active involvement in shaping the direction of energy and aerospace-related research in China. These honors collectively affirm Dr. Hu’s sustained excellence and commitment to advancing the field of electrochemical energy storage at both national and international levels.

Conclusion

Dr. Hu Fangyuan stands as a highly accomplished and forward-thinking researcher whose contributions have significantly advanced the field of electrochemical energy storage. Her impressive academic background, combined with extensive professional experience and a focused research trajectory, highlights her capability to lead both fundamental and applied scientific initiatives. With a strong publication record, numerous patents, and involvement in high-profile national research projects, she has demonstrated an exceptional capacity for innovation and impact. Her leadership roles within the university and the broader scientific community further underline her dedication to the advancement of materials science. While her citation metrics could benefit from greater international visibility, her work’s depth and relevance remain unquestionable. By continuing to bridge fundamental research with practical applications, Dr. Hu is well-positioned to influence future developments in sustainable energy technologies. Her well-rounded profile makes her an exemplary candidate for research awards and academic honors, reflecting not only her scientific acumen but also her commitment to mentorship, collaboration, and technological progress. In conclusion, Dr. Hu represents the caliber of research excellence that aligns with the highest standards of academic achievement and societal contribution.

Publications Top Notes

  1. Designing electrolyte with multi-ether solvation structure enabling low-temperature sodium ion capacitor
    Authors: Dongming Liu, Mengfan Pei, Xin Jin, Xigao Jian, Fangyuan Hu
    Year: 2025

  2. Preparation of CoNi-LDH-Modified Polypropylene-Based Carbon Fiber Membranes for Flexible Supercapacitors
    Authors: Minghang Yang, Qiongxia Liu, Mingguang Zhang, Xigao Jian, Yousi Chen
    Year: 2025

  3. Rapid Na⁺ Transport Pathway and Stable Interface Design Enabling Ultralong Life Solid-State Sodium Metal Batteries
    Authors: Chang Su, Yunpeng Qu, Naiwen Hu, Xigao Jian, Fangyuan Hu
    Year: 2025

  4. Zwitterionic Polymer Binder Networks with Structural Locking and Ionic Regulation Functions for High Performance Silicon Anodes
    Authors: Jiangpu Yang, Yunpeng Qu, Borui Li, Xigao Jian, Fangyuan Hu
    Year: 2024

  5. Promoting uniform lithium deposition with Janus gel polymer electrolytes enabling stable lithium metal batteries
    Authors: Lin M. Wang, Shugang Xu, Zihui Song, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 2

  6. Fluorine and Nitrogen Codoped Carbon Nanosheets In Situ Loaded CoFe₂O₄ Particles as High-Performance Anode Materials for Sodium Ion Hybrid Capacitors
    Authors: Jinfeng Zhang, Yunpeng Qu, Mengfan Pei, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 1

  7. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na⁺ Migration Kinetics for Advanced Sodium-Ion Batteries
    Authors: Yuxin Yao, Mengfan Pei, Chang Su, Xigao Jian, Fangyuan Hu
    Year: 2024
    Citations: 8

  8. Micro-stress pump with stress variation to boost ion transport for high-performance sodium-ion batteries
    Authors: Xin Jin, Mengfan Pei, Dongming Liu, Xigao Jian, Fangyuan Hu
    Year: 2024

Chenxu Zhang | Energy | Best Researcher Award

Dr. Chenxu Zhang | Energy | Best Researcher Award

Postdoctoral Fellow from Shenzhen University, China

Dr. Chenxu Zhang is a dedicated materials scientist specializing in electrocatalysis, particularly focusing on hydrogen evolution reactions (HER) and water splitting technologies. His academic journey encompasses a bachelor’s and master’s degree from Shijiazhuang Tiedao University, a Ph.D. from Jilin University, and postdoctoral research at Shenzhen University and the City University of Hong Kong. Dr. Zhang’s research emphasizes the development of advanced catalysts, including high-entropy alloys and pentlandite-based materials, aiming to enhance the efficiency and stability of HER processes. His contributions are evidenced by multiple publications in high-impact journals and several granted patents, reflecting his commitment to advancing sustainable energy solutions through innovative materials design.

Professional Profile

Education

Dr. Zhang commenced his academic pursuits with a Bachelor of Engineering in Materials Science and Engineering at Shijiazhuang Tiedao University (2012–2016). He continued at the same institution for his master’s degree in Material Engineering (2016–2019), where he investigated the photocatalytic properties of graphite phase carbon nitride-based catalysts. Pursuing further specialization, he obtained his Ph.D. in Material Physics and Chemistry from Jilin University (2019–2022), focusing on transition metal chalcogenide catalysts for hydrogen production via water electrolysis. Currently, he is engaged in postdoctoral research at Shenzhen University and the City University of Hong Kong, exploring high-entropy alloy-based porous structures for electrocatalytic water splitting.

Professional Experience

Dr. Zhang’s professional trajectory is marked by significant research engagements across esteemed institutions. During his doctoral studies at Jilin University, he delved into the synthesis and application of transition metal chalcogenides for HER. His postdoctoral tenure at Shenzhen University and the City University of Hong Kong involves designing high-entropy alloy-based porous materials to improve electrocatalytic water splitting efficiency. Throughout his career, Dr. Zhang has led and contributed to multiple research projects, demonstrating his ability to manage complex scientific inquiries and collaborate effectively within multidisciplinary teams.

Research Interests

Dr. Zhang’s research interests are centered on the development of advanced materials for energy conversion processes. He focuses on electrocatalysis, particularly the hydrogen evolution reaction, aiming to design catalysts that are both efficient and stable across various pH environments. His work involves exploring high-entropy alloys, pentlandite-based materials, and transition metal chalcogenides to enhance water splitting technologies. By integrating experimental techniques with theoretical insights, Dr. Zhang seeks to address the challenges in sustainable hydrogen production, contributing to the broader goal of clean energy advancement.

Research Skills

Dr. Zhang possesses a robust skill set in materials synthesis, characterization, and performance evaluation. He is proficient in fabricating nanostructured catalysts and employing techniques such as X-ray diffraction, electron microscopy, and electrochemical measurements to assess material properties. His expertise extends to designing experiments that elucidate the mechanisms underlying catalytic processes, enabling the optimization of material performance. Additionally, Dr. Zhang demonstrates strong capabilities in scientific writing and project management, facilitating the dissemination of research findings and the successful execution of research initiatives.

Awards and Honors

Throughout his academic and professional journey, Dr. Zhang has received numerous accolades recognizing his contributions to materials science. His honors include national scholarships, provincial awards for outstanding graduates, and multiple prizes in innovation and entrepreneurship competitions. Notably, he has been acknowledged for his leadership and academic excellence during his tenure at Jilin University. These awards reflect Dr. Zhang’s dedication to research excellence and his impact within the scientific community.

Conclusion

Dr. Chenxu Zhang exemplifies a researcher with a profound commitment to advancing materials science for energy applications. His comprehensive education, extensive research experience, and consistent recognition through awards underscore his qualifications for the Best Researcher Award. Dr. Zhang’s work addresses critical challenges in sustainable energy, and his ongoing contributions continue to influence the field of electrocatalysis. His profile reflects a trajectory of excellence and innovation, making him a deserving candidate for recognition in his domain.

Publications Top Notes

  • A high-entropy oxyhydroxide with a graded metal network structure for efficient and robust alkaline overall water splitting
    Authors: Chenxu Zhang, et al.
    Journal: Advanced Science, 2024, Article ID: 2406008

  • Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH‐universal hydrogen evolution reaction
    Authors: Chenxu Zhang#, Yanan Cui#, et al.
    Journal: Advanced Functional Materials, 2021, 31, 2105372

  • Structure-catalytic functionality of size-facet-performance in pentlandite nanoparticles
    Authors: Chenxu Zhang, et al.
    Journal: Journal of Energy Chemistry, 2023, 78, 438

  • Ruthenium nanoparticles/pentlandite composite for efficient and stable pH-universal hydrogen evolution reaction: The enhanced interfacial interaction
    Authors: Chenxu Zhang, et al.
    Journal: Small, 2024, 19, 2301721

  • Recent advances in pentlandites for electrochemical water splitting: A short review
    Authors: Chenxu Zhang, et al.
    Journal: Journal of Alloys and Compounds, 2020, 838, 155685

  • The charge transport double-channel structure facilitating Fe₅Ni₄S₈/Ni₃S₂ nanoarray for efficient and stable overall water splitting
    Authors: Yanan Cui#, Chenxu Zhang#, et al.
    Journal: Applied Surface Science, 2022, 604, 154473

 

Shukur Nasirov | Energy | Best Researcher Award

Assoc. Prof. Dr. Shukur Nasirov | Energy | Best Researcher Award

Chief of Department at Azerbaijan State Oil and Industry University, Azerbaijan 

Shukur Nasirov is an Associate Professor and Head of the Energy Production Technologies Department at Azerbaijan State Oil and Industry University (ASOIU). Born on June 1, 1962, in Masis District, Armenian SSR, he is an expert in industrial thermal power engineering with over 30 years of academic and professional experience. His contributions span teaching, research, and leadership, and he has authored more than 100 scientific, educational, and methodological works, including 10 study guides and 3 textbooks. His research focuses on renewable energy, gas turbine technologies, and thermal power plants. Dr. Nasirov is also an active member of various academic and dissertation councils, highlighting his dedication to advancing education and research in energy technologies.

Professional Profile

Education

Dr. Nasirov graduated with honors in 1985 from the Azerbaijan Institute of Oil and Chemistry (now ASOIU), specializing in “Industrial Heat Power Engineering.” He later earned the degree of Candidate of Technical Sciences (equivalent to Ph.D.) with a thesis on the thermal properties of gasoline fractions in offshore oil fields of Azerbaijan. His academic foundation in heat engineering and industrial energy systems has shaped his career as a leading expert in the field, providing a strong base for his teaching and research endeavors.

Professional Experience

Since 1990, Dr. Nasirov has held several academic and research roles at ASOIU. Starting as a junior researcher, he progressed to senior researcher and associate professor, conducting classes at the undergraduate and graduate levels. In 2021, he was appointed Head of the Department of Energy Production Technologies. He also served as chairman of the Student Scientific Society and has been a member of ASOIU’s Academic and Scientific Councils since 2018. Dr. Nasirov has contributed to numerous industry-focused projects, including designing new steam boilers for ships and developing strategies for the energy sector, showcasing his blend of academic and practical expertise.

Research Interests

Dr. Nasirov’s research interests include industrial thermal power engineering, gas turbine technologies, renewable energy systems, thermal physical properties of petroleum products, and the intensification of heat exchange in oil refining equipment. His work addresses the challenges of improving efficiency and sustainability in energy production and refining processes. He is also deeply engaged in theoretical aspects of heating techniques, ensuring that his research contributes to both applied and foundational knowledge in the field.

Research Skills

Dr. Nasirov possesses a wide array of research skills, including the design and analysis of thermal power systems, optimization of heat exchange processes, and evaluation of thermal physical properties of petroleum products. His expertise in gas and steam turbines, as well as his ability to perfect turbine cycles, underscores his proficiency in advancing energy technologies. He is adept at mentoring students and conducting applied research that bridges academic knowledge with industrial applications, making him a leader in his field.

Awards and Honors

Dr. Nasirov’s achievements have been recognized with numerous awards, including the Jubilee Medal for the 100th anniversary of ASOIU in 2021. He has received grants for innovative projects such as the development of energy sector strategies and designing steam boilers for marine applications. His contributions to academic and industrial research have earned him respect and recognition as a key figure in energy technologies.

Conclusion

Dr. Shukur Nasirov is a distinguished academic and researcher whose work in energy technologies has significantly advanced the field of industrial thermal power engineering. With decades of experience, extensive scientific output, and leadership in academia, he has made notable contributions to teaching, research, and industrial projects. His dedication to innovation, coupled with his focus on training future energy professionals, positions him as a respected figure in the global energy research community.

Publication Top Notes

  1. Title: Hydrogen technologies: Optical properties of hydrogenated amorphous thin films for solar cells
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 101, pp. 47–53
  2. Title: Production of thin-layer silicon alloys and their application in solar-hydrogen energy
    Authors: Najafov, B.A., Nasirov, S.N., Nasirov, S.N., Verdiyev, N.M.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 926–938
  3. Title: HYDROGEN technologies for the manufacture of solar-hydrogen Energy objects
    Authors: Najafov, B.A., Nasirov, S.N., Neymetov, S.R.
    Journal: International Journal of Hydrogen Energy
    Year: 2025
    Volume & Pages: 99, pp. 328–339
  4. Title: Analysis of the Efficiency of the Bivalent Parallel Mode of Operation of Heat Pumps in an Individual Residential Building: A Study of the Operating Modes of the Heat Supply System
    Authors: Babayeva, S., Nasirov, S.
    Journal: Przeglad Elektrotechniczny
    Year: 2024
    Volume & Pages: (9), pp. 235–238

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Madalin Costin | Energy | Best Researcher Award

Mr. Madalin Costin | Energy | Best Researcher Award

Lecturer at Lower Danube” University of Galati, Romania

Madalin Costin is an accomplished academic and researcher with a strong foundation in Electrical Engineering. He specializes in electric drives, renewable energy systems, and the use of advanced control strategies for electromagnetic energy conversion processes. Currently a lecturer at “Dunarea de Jos” University of Galati, Romania, Madalin has consistently demonstrated a passion for teaching and research. His work spans both theoretical and applied aspects of energy efficiency and control systems, with a particular focus on improving performance through innovative methods. His ongoing projects, such as the evaluation of novel control strategies for PMSM motors, highlight his commitment to advancing the field. As a multilingual academic, Madalin is well-positioned to engage in international collaborations, furthering the impact of his research.

Professional Profile

Education

Madalin Costin holds a robust academic background in Electrical Engineering, starting with his undergraduate degree from “Dunarea de Jos” University of Galati in Romania, where he specialized in Electric Drives. He continued his education with a Master’s degree in Electrical Engineering, focusing on the Rational Use of Energy and Renewable Sources. Furthering his expertise, he completed his PhD at the same institution, where his research focused on energy-efficient control strategies. Currently, Madalin is pursuing a second PhD at Gheorghe Asachi Technical University of Iasi, demonstrating his commitment to continued academic growth.

Professional Experience

Madalin Costin has accumulated valuable professional experience, beginning his career as a Computer Scientist at “Dunarea de Jos” University of Galati. Over the years, he progressed to Assistant and then Lecturer positions, where he has been responsible for teaching both theoretical and practical aspects of Electrical Engineering. His experience in academic settings is complemented by his involvement in project management. As of June 2024, he is managing a significant research project focused on evaluating a novel control strategy for electromagnetic energy conversion. His professional journey reflects his evolving expertise and leadership in both academia and research.

Research Interests

Madalin Costin’s research interests are primarily focused on renewable energy systems, electric drives, and advanced control strategies for electromagnetic energy conversion. He has a strong interest in improving the efficiency of electric motors and developing new control methods that are both energy-efficient and adaptable to real-world applications. His ongoing work on Radial Basis Function Neural Networks (RBF-NN) and Model Predictive Control (MPC) for Permanent Magnet Synchronous Motors (PMSM) is aimed at optimizing energy conversion processes. He is particularly interested in how these technologies can be applied to renewable energy sources and contribute to more sustainable engineering solutions.

Research Skills

Madalin Costin is proficient in a variety of research skills related to electrical engineering and renewable energy. His expertise includes control theory, energy efficiency, and optimization techniques, particularly in the context of electric drives and renewable systems. He is skilled in using advanced computational methods, including neural networks and predictive control algorithms, to model and optimize energy systems. Madalin also possesses solid skills in project management, demonstrating an ability to lead and coordinate complex research initiatives. Additionally, his proficiency in academic writing and presenting research ensures that his work reaches both scientific and industrial audiences.

Awards and Honors

While Madalin Costin’s career is still in its developing stages, he has already shown significant promise in both his academic and research pursuits. His work on energy efficiency and control strategies for electric drives has been recognized within his university and research community. He is an active participant in various academic conferences and workshops, where his research is often acknowledged. His ongoing contributions to research on renewable energy systems, particularly in the context of electromagnetic energy conversion, are likely to garner more formal recognition as his research advances and his academic portfolio expands.

Conclusion

Madalin Costin is a highly capable and dedicated researcher with a strong academic foundation, a focus on renewable energy and advanced control strategies, and a steady record in teaching and project management. His current research and his approach to advanced energy systems place him in a strong position for the Best Researcher Award. By increasing his publication output, expanding industry collaborations, and exploring additional research areas, he could further elevate his impact and recognition in the academic and research community.

Publication Top Notes

  1. Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization
    • Authors: Costin, M., Lazar, C.
    • Year: 2024
    • Journal: Energies, 17(4), 875
  2. Field-Oriented Predictive Control Structure for Synchronous Reluctance Motors
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Journal: Machines, 11(7), 682
    • Citations: 5
  3. Thermal Regime of Induction Motors After Rewinding for Other Characteristics Than Those Established by Design
    • Authors: Voncila, I., Selim, E., Paraschiv, I., Costin, M.
    • Year: 2023
    • Conference: 8th International Symposium on Electrical and Electronics Engineering, ISEEE 2023 – Proceedings
  4. Constrained Predictive Current Control in dq Frame for a Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2023
    • Conference: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2023
  5. Comparative Study of Predictive Current Control Structures for a Synchronous Reluctance Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2022
    • Conference: 26th International Conference on System Theory, Control and Computing, ICSTCC 2022 – Proceedings
    • Citations: 1
  6. Predictive Control of a Two-Input Two-Output Current System for Permanent Magnet Synchronous Machines
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on Methods and Models in Automation and Robotics, MMAR 2021
    • Citations: 1
  7. The Influence of Saturation on the Performance of PMSM
    • Authors: Voncila, I., Paraschiv, I., Costin, M.
    • Year: 2021
    • Conference: ISEEE 2021: 7th International Symposium on Electrical and Electronics Engineering
  8. Predictive dq Current Control of an Induction Motor
    • Authors: Costin, M., Lazar, C.
    • Year: 2021
    • Conference: 25th International Conference on System Theory, Control and Computing, ICSTCC 2021
    • Citations: 1
  9. Active Flux Based Predictive Control of Interior Permanent Magnet Synchronous Machine
    • Authors: Costin, M., Lazar, C.
    • Year: 2020
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2020
    • Citations: 1
  10. Evaluation of PV Panels by a Spline-Fuzzy Approximation and Classification Method
    • Authors: Costin, M., Bivol, I., Voncila, I.
    • Year: 2018
    • Conference: International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

 

Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack | Energy | Young Scientist Award

Mr. Armel Zambou Kenfack, University of Yaoundé I, Cameroon

Based on the details provided, Armel Zambou Kenfack appears to be a strong candidate for the Research for Young Scientist Award. Here are a few reasons why:

Publication profile

Academic Background

Armel holds a Master’s degree in Energy and Environment from the University of Yaoundé 1, Cameroon, with a commendable “Very Good” distinction. His academic path also includes a Bachelor’s degree in Physics, specializing in Mechanics and Energetics, showcasing his foundational knowledge in energy-related fields.

Research Experience

He has actively contributed to research in renewable energy, particularly focusing on photovoltaic/thermal (PV/T) hybrid systems, solar energy optimization, and thermal storage. His involvement in multiple projects, including designing AI models for optimizing PV/T systems, demonstrates his commitment to advancing renewable energy technologies.

Publications 

  • Sensitivity analysis of the thermal performance of a parabolic trough concentrator using Al2O3 and SiO2/Vegetable oil as heat transfer fluid 🌡️🌞 – Cited by 6, 2024
  • Exergetic optimization of some design parameters of the hybrid photovoltaic/thermal collector with bi-fluid air/ternary nanofluid (CuO/MgO/TiO2) 🔋🔧 – Cited by 4, 2023
  • Techno-economic and environmental analysis of a hybrid PV/T solar system based on vegetable and synthetic oils coupled with TiO2 in Cameroon 📉🌿 – Cited by 3, 2024
  • Sectoral Assessment of the Energy, Water, Waste and Land Nexus in the Sustainability of Agricultural Products in Cameroon 🌾💧 – Cited by 2, 2024
  • Energy and exergo-environmental performance analysis of a Stirling micro-fridge with imperfect regenerator ❄️🔄 – Cited by 1, 2024
  • Performance Improvement of Hybrid Photovoltaic/Thermal Systems: A Metaheuristic Artificial Intelligence Approach to Select the Best Model Using 10E Analysis 🤖⚡  2024
  • Evaluation of the Hydrogen/Oxygen and Thermoelectric Production of a Hybrid Solar Pv/T-Electrolyzer System ⚡🔋  2024

Awards and Recognition

He has received several awards, such as the Zacharias Tanee Excellence Award for the most successful young student-researcher, and accolades for his master’s thesis, highlighting his academic and research excellence.

Professional and Teaching Experience

Currently working as a research and development engineer and a part-time teacher at the University of Yaoundé 1, Armel balances his time between hands-on research and mentoring students. His dual roles enrich his professional experience and demonstrate his capability to contribute to both practical and theoretical aspects of his field.

Skills and Expertise

His expertise includes the simulation and optimization of energy systems, proficiency in various programming and simulation tools (Matlab, Fortran, Python, ANSYS), and experience in techno-economic and thermo-electric analysis, all of which are critical skills for an impactful career in renewable energy research.

Conclusion

Armel Zambou Kenfack’s combination of academic achievements, research contributions, publication record, and recognition make him a promising candidate for the Research for Young Scientist Award. His focus on innovative solutions in energy and environmental sustainability aligns with the award’s objectives, making him a deserving nominee.

 

Yibo Wang | Distributed Generation | Best Researcher Award

Dr. Yibo Wang | Distributed Generation | Best Researcher Award

Northeastern University, China.

Yibo Wang is a dedicated researcher in electrical engineering, currently pursuing his Master’s degree at Northeastern University, China. His research centers on the stability analysis of distributed generation in cyber-energy systems, a crucial area for modern energy infrastructure. He has co-authored several high-impact papers published in top-tier journals, such as the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics, showcasing his significant contributions to the field. Yibo’s work on virtual energy storage systems and multi-inverter stability has positioned him as a promising young researcher. His collaboration with established experts like Rui Wang and Pinjia Zhang further highlights his research potential. While his academic background and research outputs are impressive, expanding his research scope and demonstrating independent project leadership could further enhance his profile as a leading researcher in the field.

Profile
Education

Yibo Wang holds a robust educational background in Electrical Engineering, beginning with his Bachelor’s degree from the Shenyang Institute of Engineering, where he studied from September 2017 to June 2022. His undergraduate studies focused on Electrical Engineering and Automation, providing him with a solid foundation in the principles and practices of electrical systems. Building on this, Yibo pursued a Master’s degree at Northeastern University, China, specializing in Electrical Engineering from September 2022 to June 2024. During his graduate studies, he delved deeper into advanced topics such as the stability analysis of distributed generation in cyber-energy systems. His academic journey is marked by a commitment to excellence and a keen interest in emerging energy technologies, positioning him as a promising researcher in the field. Yibo’s education has equipped him with the technical knowledge and analytical skills necessary to contribute meaningfully to the future of energy systems engineering.

Professional Experience

Yibo Wang is a dedicated researcher in the field of electrical engineering, with a particular focus on the stability analysis of distributed generation in cyber-energy systems. He has co-authored several high-impact research papers published in prestigious journals, including the Journal of Energy Storage and IEEE Journal of Emerging and Selected Topics in Power Electronics. His work primarily explores innovative solutions in virtual energy storage systems, multi-inverter stability, and virtual asynchronous machine controllers. Yibo’s collaboration with leading experts like Rui Wang and Pinjia Zhang highlights his integration into a network of prominent researchers, further enhancing the impact of his contributions. Currently, he is advancing his academic pursuits as a Master’s degree candidate in Electrical Engineering at Northeastern University. His strong educational background, coupled with his research achievements, positions him as an emerging talent in the domain of cyber-energy systems and electrical engineering.

Research Interest

Yibo Wang’s research is centered on the stability analysis of distributed generation within cyber-energy systems, a critical area in modern electrical engineering. His work explores the intricate dynamics between energy generation, storage, and distribution, particularly focusing on virtual energy storage systems and multi-inverter networks. Yibo’s research aims to enhance the robustness and reliability of energy systems by developing advanced control strategies, such as virtual synchronous generators (VSG) and virtual asynchronous machine controllers. These strategies are designed to stabilize power systems in real-time, ensuring seamless integration of renewable energy sources into the grid. His contributions are particularly relevant in the context of increasing reliance on distributed generation and the need for resilient energy infrastructures. By addressing these challenges, Yibo Wang’s research not only advances theoretical understanding but also has practical implications for the future of sustainable energy systems.

Research Skills

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Awards and Recognition

Yibo Wang possesses a robust set of research skills, particularly in the field of electrical engineering and energy systems. His expertise in stability analysis of distributed generation in cyber-energy systems is evidenced by his contributions to high-impact publications. Yibo is proficient in advanced analytical techniques, such as the Guardian Map Method, which he has applied to optimize parameter selection in complex energy systems. His ability to collaborate effectively with leading researchers and contribute to significant studies on virtual energy storage and multi-inverter systems demonstrates his strong teamwork and communication skills. Additionally, Yibo’s research is grounded in a deep understanding of both theoretical principles and practical applications, allowing him to develop innovative solutions for contemporary challenges in energy infrastructure. His technical proficiency, coupled with a commitment to advancing knowledge in his field, makes him a valuable asset in any research setting.

Conclusion

Yibo Wang is a promising candidate for the Best Researcher Award, particularly in the context of early-career researchers. His contributions to the field of electrical engineering, particularly in stability analysis and cyber-energy systems, are commendable. However, to strengthen his case for such an award, focusing on broadening his research impact, pursuing further professional development, and demonstrating independent research leadership would be beneficial. Overall, he is a strong contender with significant potential for future recognition.

Publications Top Notes

  1. A study of novel real-time power balance strategy with virtual asynchronous machine control for regional integrated electric-thermal energy systems
    • Authors: Wang, R., Li, M.-J., Wang, Y., Sun, Q., Zhang, P.
    • Year: 2024
  2. An Algorithm for Calculating the Parameter Selection Area of a Doubly-Fed Induction Generator Based on the Guardian Map Method
    • Authors: Wang, Y., Chen, F., Jia, W., Wang, R.
    • Year: 2024
  3. Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access
    • Authors: Gu, C., Wang, Y., Wang, W., Gao, Y.
    • Year: 2023
  4. New Distributed Control Strategy of Power System Based on Existing Technology
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Tian, R., Wang, Y.
    • Year: 2022 (presented in 2023)
  5. Distributed Optimal Control Strategy of New Energy in Novel Power Systems
    • Authors: Jia, Y., Zheng, Q., Pan, Z., Wang, Y., Tian, R.
    • Year: 2022 (presented in 2023)