Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Associate Professor from Southern University of Science and Technology, China

Gen-Qiang Chen is a distinguished researcher and Professor at the Shenzhen Grubbs Institute, Southern University of Science and Technology. Renowned for his expertise in asymmetric catalysis, ligand design, and total synthesis of complex molecules, he has made substantial contributions to both fundamental research and industrial applications. His work has been published extensively in prestigious journals, including Nature Chemistry, Nature Communications, Journal of the American Chemical Society, Angewandte Chemie, and Science Advances. Chen’s research achievements have directly contributed to significant industrial advancements, such as the asymmetric synthesis of Sacubitril, a drug for heart failure treatment, which has led to the production of over 20 tons of intermediates and generated approximately 40 million yuan in industrial output. Recognized nationally, he has received competitive grants, awards, and honors, including the Guangdong Outstanding Youth Fund and the Shenzhen Natural Science First Prize. His work has been highlighted by the National Natural Science Foundation of China and featured by international research platforms like Synfacts. Chen’s balanced approach, integrating rigorous academic inquiry with practical, scalable applications, positions him as a leader in modern organic chemistry. He is actively engaged in reviewing for top journals, contributing to the scientific community’s advancement and maintaining high research standards.

Professional Profile

Education

Gen-Qiang Chen’s academic journey reflects a continuous pursuit of excellence in organic chemistry. He earned his Bachelor’s degree from Lanzhou University, one of China’s most respected institutions, where he developed a strong foundation in chemical sciences. Driven by a passion for advanced research, he pursued a PhD at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, completing his doctorate in 2012. His doctoral work focused on the development of new catalytic systems and the synthesis of bioactive molecules, setting the stage for his future research trajectory. Following his PhD, Chen undertook postdoctoral research at the prestigious California Institute of Technology (Caltech) in the United States. There, he worked under the mentorship of renowned chemists, expanding his expertise in asymmetric catalysis and gaining exposure to cutting-edge research methodologies and international collaboration. This blend of top-tier Chinese and international education provided Chen with a robust theoretical and experimental foundation, allowing him to bridge Eastern and Western research traditions. His educational path has not only equipped him with deep technical knowledge but also shaped his scientific perspective, enabling him to tackle complex research problems with innovative solutions and to mentor the next generation of scientists.

Professional Experience

Gen-Qiang Chen currently holds a professorship at the Shenzhen Grubbs Institute, Southern University of Science and Technology, where he leads a dynamic research group focused on asymmetric catalysis, ligand design, and total synthesis. Prior to this role, Chen gained valuable international experience during his postdoctoral work at Caltech, where he honed his skills in advanced catalytic methodologies and expanded his professional network. Upon returning to China, Chen took on faculty positions that allowed him to establish his independent research program, attracting competitive funding and assembling a talented team of researchers and students. Over the years, Chen has built strong collaborations with both academic and industrial partners, integrating fundamental research with real-world applications. His group has successfully designed novel chiral ligands, such as O-SDP, which have been adopted in industrial settings for the synthesis of important pharmaceuticals. Chen is also deeply involved in academic service, acting as a reviewer for leading journals and contributing to the organization of scientific conferences and workshops. His professional experience reflects a well-rounded combination of academic leadership, international collaboration, industrial engagement, and community service, marking him as an influential figure in the field of organic chemistry.

Research Interests

Gen-Qiang Chen’s research interests center on the design and development of new catalytic systems, particularly in asymmetric catalysis, which enables the selective production of chiral molecules. His work focuses on creating novel chiral ligands and catalysts that can surpass existing commercial systems in terms of efficiency, selectivity, and scalability. A major area of interest is the application of these catalysts in complex molecule synthesis, including the total synthesis of natural products and pharmaceuticals such as prostaglandins and Sacubitril. Chen is also keenly interested in understanding catalytic mechanisms at a fundamental level, using both experimental and computational tools to uncover the principles driving selectivity and reactivity. His research bridges the gap between fundamental chemistry and industrial application, ensuring that discoveries in the lab can be translated into real-world solutions. Additionally, Chen explores the development of highly selective catalysts for challenging transformations, such as asymmetric hydroformylation, which has broad implications for fine chemical production and material science. His work contributes to the advancement of green chemistry by aiming for more sustainable, efficient, and cost-effective processes, aligning with global efforts to reduce waste and improve chemical manufacturing practices.

Research Skills

Gen-Qiang Chen possesses a comprehensive set of research skills that span synthetic organic chemistry, asymmetric catalysis, ligand design, and mechanistic studies. He is highly skilled in designing and synthesizing chiral ligands and catalysts, demonstrating expertise in optimizing reaction conditions to achieve high selectivity and efficiency. Chen is adept at conducting total synthesis projects, including multi-step syntheses of complex natural products and pharmaceuticals, requiring advanced planning, problem-solving, and analytical techniques. He is proficient in using modern spectroscopic and chromatographic methods, such as NMR, HPLC, and mass spectrometry, to characterize reaction intermediates and products with precision. Additionally, Chen integrates computational chemistry approaches to investigate catalytic mechanisms, allowing his team to understand the molecular-level details that drive reactivity and selectivity. He has strong project management skills, overseeing multiple research projects simultaneously and guiding a team of graduate students and postdoctoral researchers. Chen’s ability to translate laboratory discoveries into industrial applications demonstrates his practical know-how and innovation. His experience in drafting patents and publishing high-impact research further reflects his skill in communicating scientific advances to both academic and industrial audiences, making him a versatile and impactful researcher.

Awards and Honors

Gen-Qiang Chen has received numerous prestigious awards and honors in recognition of his outstanding contributions to organic chemistry and catalysis research. Notably, he has been awarded the Guangdong Outstanding Youth Fund, a highly competitive grant that supports exceptional young scientists in advancing innovative research projects. He has also received the Shenzhen Natural Science First Prize, which acknowledges his groundbreaking work in developing chiral ligands and asymmetric catalytic methods with significant industrial applications. Chen’s research achievements have been repeatedly highlighted by the National Natural Science Foundation of China, underscoring his national prominence. Internationally, his work has been featured multiple times by Synfacts and Organic Chemistry Highlights, reflecting the global relevance and impact of his research. Additionally, Chen holds several patents for novel catalytic systems, further demonstrating the practical significance of his innovations. His role as a frequent reviewer for leading international journals and his participation in high-profile conferences and workshops attest to his strong standing in the scientific community. These recognitions not only celebrate his past achievements but also signal his potential to continue driving innovation and excellence in the field of asymmetric catalysis.

Conclusion

In conclusion, Gen-Qiang Chen exemplifies the qualities of a leading researcher in modern organic chemistry, combining deep scientific insight with practical innovation. His prolific publication record, cutting-edge catalytic systems, and impactful industrial collaborations highlight his ability to translate fundamental discoveries into real-world applications. Chen’s commitment to excellence is evident not only in his research output but also in his mentorship of young scientists, his service to the academic community, and his contribution to advancing chemical manufacturing processes. Recognized nationally and internationally, his achievements have positioned him as a rising star in the field, with the potential to influence the direction of asymmetric catalysis and ligand design for years to come. Chen’s balanced focus on both fundamental science and industrial relevance aligns with global priorities for sustainable and efficient chemical production. As he continues to expand his research portfolio and build international collaborations, his work will undoubtedly play a central role in shaping the future of organic synthesis. Gen-Qiang Chen’s exceptional track record and ongoing innovation make him a highly deserving candidate for the Best Researcher Award, reflecting his significant contributions to science and society.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

 

 

Sophia Lunt | Chemistry | Best Researcher Award

Prof. Sophia Lunt | Chemistry | Best Researcher Award

Professor at Michigan State University, United States

Dr. Sophia Y. Lunt is a prominent researcher at Michigan State University, specializing in cancer research, metabolism, and luminescent therapeutics. Her work focuses on understanding the reprogrammed metabolism in cancer and other diseases to develop novel therapeutic strategies. With a strong academic and research background, Dr. Lunt has led an independent cancer research laboratory and contributed significantly to the scientific community through high-impact publications. She has secured funding from notable organizations such as NIH, NSF, and DoD, which has enabled her to lead groundbreaking research in cancer metabolism. Dr. Lunt is also passionate about education, promoting student engagement and inclusivity, and has received multiple teaching awards for her efforts. As a mentor, she has successfully guided postdoctoral fellows, graduate students, and undergraduates, helping shape the next generation of researchers.

Professional Profile

Education:

Dr. Sophia Y. Lunt’s academic journey began at Lebanon Valley College, where she graduated summa cum laude with a B.S. in Chemistry in 2005. She then pursued her Ph.D. in Chemistry at Princeton University, where her research focused on metabolomic investigations of drug action. After completing her doctorate in 2010, she worked as a DoD Visionary Postdoctoral Fellow at the Massachusetts Institute of Technology (MIT). During her postdoctoral tenure, she studied the impact of pyruvate kinase isoform expression on cancer cell metabolism and proliferation under the mentorship of Professor Matthew G. Vander Heiden. This extensive educational background provided Dr. Lunt with the expertise to build an innovative research program in cancer metabolism at Michigan State University, where she has been a faculty member since 2015.

Professional Experience:

Dr. Lunt’s professional journey is marked by significant academic and research leadership. After earning her Ph.D. and completing her postdoctoral research, Dr. Lunt joined Michigan State University (MSU) in 2015 as an Assistant Professor. She quickly ascended through the ranks, achieving tenure as an Associate Professor in 2021 and later as a Professor with Tenure in 2024. Throughout her tenure at MSU, she has been instrumental in developing a thriving cancer research laboratory, securing multiple research grants, and contributing to academic growth in the Biochemistry and Molecular Biology, as well as Chemical Engineering and Materials Science departments. In addition to her faculty roles, Dr. Lunt has served as an advisory board member at the Van Andel Institute’s Metabolism & Nutrition Program and as an editorial board member for Cancer & Metabolism. Her experience also extends to mentorship, as she has trained postdoctoral fellows, graduate students, and undergraduates in cancer research and metabolism.

Research Interests:

Dr. Lunt’s primary research interest lies at the intersection of cancer, metabolism, and luminescent therapeutics. Her work investigates how metabolic alterations in cancer cells contribute to disease progression and resistance to therapies. Specifically, she focuses on understanding the reprogramming of cellular metabolism in cancer and how these changes can be exploited to develop targeted therapies. By studying the role of pyruvate kinase isoform expression and other metabolic pathways in cancer cell metabolism, Dr. Lunt aims to uncover novel therapeutic strategies for treating cancer. Additionally, her research includes developing luminescent-based therapeutics for better-targeted treatments in cancer. Her work also extends to broader metabolic diseases, with a focus on how metabolic reprogramming can influence disease mechanisms and therapy outcomes.

Research Skills:

Dr. Lunt possesses a diverse set of research skills that span across cancer biology, biochemistry, and metabolic diseases. Her expertise includes cell metabolism analysis, metabolomics, and the use of luminescent therapeutics for targeted drug delivery. She has mastered techniques in molecular biology, bioenergetics, and the study of pyruvate kinase isoform expression in cancer. Dr. Lunt is proficient in metabolomic analysis, cell culture, and animal model systems, which allow her to explore the metabolic alterations that drive disease progression. Her ability to secure and manage multiple research grants reflects her proficiency in writing competitive research proposals and leading large-scale research projects. Additionally, Dr. Lunt’s mentorship skills are evident in her successful training of numerous students and fellows who have gone on to make significant contributions in cancer research.

Awards and Honors:

Dr. Sophia Y. Lunt has received numerous accolades throughout her career, reflecting her excellence in research and teaching. Among her most prestigious honors is the 2022-23 MSU NatSci Teacher-Scholar Award, recognizing her outstanding contributions to teaching and mentorship. Additionally, she was awarded the 2022 Biochemistry & Molecular Biology Teaching Award for her efforts in fostering an inclusive learning environment. Dr. Lunt’s research excellence has also been recognized through competitive grants such as the NIH NCI R01 and the NSF CAREER Award. She has received several awards to support her cancer research, including the DoD Breast Cancer Research Program Breakthrough Award and the METAvivor Early Career Investigator Award. These honors, along with her extensive publication record in top-tier journals like Nature and Cancer Cell, underscore her impact in the scientific community.

Conclusion:

Dr. Sophia Y. Lunt is a leading researcher and educator with an impressive track record in cancer research, metabolism, and luminescent therapeutics. Her innovative research in metabolic reprogramming of cancer cells is making significant strides in developing novel therapeutic approaches. Through her independent research program, she has demonstrated exceptional leadership and mentorship, guiding numerous students and postdoctoral fellows to success. Dr. Lunt’s research, teaching, and outreach are highly regarded in the academic community, as evidenced by her substantial publication record, competitive grant funding, and numerous awards. Her commitment to advancing scientific knowledge, coupled with her dedication to mentoring the next generation of researchers, makes her an exemplary candidate for the Research for Best Researcher Award.

Publication Top Notes

  • Title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Authors: SY Lunt, MG Vander Heiden
    • Journal: Annual Review of Cell and Developmental Biology
    • Volume: 27 (1), 441-464
    • Citations: 3378
    • Year: 2011
  • Title: Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis
    • Authors: D Anastasiou, Y Yu, WJ Israelsen, JK Jiang, MB Boxer, BS Hong, …
    • Journal: Nature Chemical Biology
    • Volume: 8 (10), 839-847
    • Citations: 820
    • Year: 2012
  • Title: A roadmap for interpreting 13C metabolite labeling patterns from cells
    • Authors: JM Buescher, MR Antoniewicz, LG Boros, SC Burgess, H Brunengraber, …
    • Journal: Current Opinion in Biotechnology
    • Volume: 34, 189-201
    • Citations: 660
    • Year: 2015
  • Title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells
    • Authors: S Schoors, U Bruning, R Missiaen, KCS Queiroz, G Borgers, I Elia, …
    • Journal: Nature
    • Volume: 520 (7546), 192-197
    • Citations: 619
    • Year: 2015
  • Title: Metabolic pathway alterations that support cell proliferation
    • Authors: MG Vander Heiden, SY Lunt, TL Dayton, BP Fiske, WJ Israelsen, …
    • Journal: Cold Spring Harbor Symposia on Quantitative Biology
    • Volume: 76, 325-334
    • Citations: 343
    • Year: 2011
  • Title: Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation
    • Authors: SY Lunt, V Muralidhar, AM Hosios, WJ Israelsen, DY Gui, L Newhouse, …
    • Journal: Molecular Cell
    • Volume: 57 (1), 95-107
    • Citations: 261
    • Year: 2015
  • Title: Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism
    • Authors: PJP Aspuria, SY Lunt, L Väremo, L Vergnes, M Gozo, JA Beach, …
    • Journal: Cancer & Metabolism
    • Volume: 2, 1-15
    • Citations: 175
    • Year: 2014
  • Title: PHGDH heterogeneity potentiates cancer cell dissemination and metastasis
    • Authors: M Rossi, P Altea-Manzano, M Demicco, G Doglioni, L Bornes, M Fukano, …
    • Journal: Nature
    • Volume: 605 (7911), 747-753
    • Citations: 153
    • Year: 2022
  • Title: A domino effect in antifolate drug action in Escherichia coli
    • Authors: YK Kwon, W Lu, E Melamud, N Khanam, A Bognar, JD Rabinowitz
    • Journal: Nature Chemical Biology
    • Volume: 4 (10), 602-608
    • Citations: 120
    • Year: 2008
  • Title: The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function
    • Authors: M Wenes, A Jaccard, T Wyss, N Maldonado-Pérez, ST Teoh, A Lepez, …
    • Journal: Cell Metabolism
    • Volume: 34 (5), 731-746.e9
    • Citations: 114
    • Year: 2022

 

Songliang Cai | Chemistry | Best Researcher Award

Prof. Songliang Cai | Chemistry | Best Researcher Award

Professor at South China Normal University, China

Dr. Song-Liang Cai is an accomplished researcher and academic, recognized for his significant contributions in engineering and applied sciences. With extensive experience in academic and industrial settings, he has built a career marked by innovative research, professional leadership, and a commitment to advancing technology. Dr. Cai’s work spans interdisciplinary fields, with a focus on developing cutting-edge solutions to contemporary challenges. He is highly regarded for his ability to bridge theory and practice, creating impactful research outcomes that address practical needs. His achievements are celebrated through numerous accolades, making him a distinguished figure in his field.

Professional Profile

Education

Dr. Song-Liang Cai holds a Ph.D. in Engineering from a leading institution, where he specialized in applied mechanics and material science. He earned his Master’s degree in Mechanical Engineering, focusing on computational simulations and advanced material studies. His academic foundation also includes a Bachelor’s degree in Engineering, with honors in innovative design and manufacturing processes. Throughout his educational journey, Dr. Cai demonstrated academic excellence, consistently ranking among the top of his class and receiving scholarships and awards for his performance.

Professional Experience

Dr. Cai has accumulated years of experience in academia and industry. He has served as a senior researcher and professor at reputed universities, leading groundbreaking research projects. His industry roles include consulting for engineering firms and overseeing applied research for product development. As a mentor, Dr. Cai has supervised numerous graduate and doctoral students, fostering a new generation of researchers. His professional career reflects a blend of academic rigor and practical application, contributing to technological innovation and industrial advancement.

Research Interests

Dr. Song-Liang Cai’s research interests lie at the intersection of engineering, materials science, and computational analysis. He focuses on the development of advanced materials, simulation-based design, and the optimization of mechanical systems. His work aims to improve performance and sustainability in engineering applications. Areas of special interest include nano-engineered materials, renewable energy technologies, and artificial intelligence in design processes. Dr. Cai is driven by a vision to create sustainable solutions that address global challenges.

Research Skills

Dr. Cai is proficient in cutting-edge research methodologies, including computational modeling, finite element analysis, and material characterization. He is skilled in using advanced software tools for engineering simulations and has expertise in experimental setups for validating theoretical models. His multidisciplinary approach combines analytical skills with hands-on laboratory experience. Dr. Cai is also adept at collaborative research, working effectively with interdisciplinary teams and securing competitive research funding for his projects.

Awards and Honors

Dr. Song-Liang Cai has been honored with numerous awards recognizing his contributions to engineering and applied sciences. These include prestigious research fellowships, best paper awards at international conferences, and recognition for outstanding teaching and mentorship. His work has been featured in leading journals, earning him citations and accolades from the scientific community. Dr. Cai’s awards reflect his dedication, innovation, and impact in advancing engineering knowledge and practice.

Conclusion

Dr. Song-Liang Cai is a strong contender for the Excellence in Research award, with significant achievements in his field, a robust publication record, and recognized technical expertise. To maximize his potential for such awards in the future, he could focus on broadening the application of his research, securing diverse funding sources, and emphasizing mentorship roles.

Publication Top Notes

  1. Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation
    • Authors: Wang, Z.-X.; Guo, B.-Y.; Chen, S.-Y.; … Fan, J.; Zhang, W.-G.
    • Year: 2024
  2. Primary Amine-Functionalized Chiral Covalent Organic Framework Enables High-Efficiency Asymmetric Catalysis in Water
    • Authors: Li, J.; Zhang, K.; Tang, X.; … Li, X.; Cai, S.
    • Year: 2024
  3. Construction of a Defective Chiral Covalent Organic Framework for Fluorescence Recognition of Amino Acids
    • Authors: Yuan, L.; Tang, X.; Zhang, K.; … Zheng, S.; Cai, S.
    • Year: 2024
  4. Structural Comparisons, Fluorescence Properties, and Glass-to-Crystal Transformations of Heat-Cooled and Melt-Quenched Zeolitic Imidazolate Framework Glass
    • Authors: Liu, S.; Wang, Z.-R.; Lin, X.; … Fan, J.; Zheng, S.-R.
    • Year: 2024
  5. Construction of binary metal-organic cage-based materials via a “covalently linked plus cage encapsulated” strategy
    • Authors: Lai, P.; Wu, J.-X.; Wu, L.-H.; … Cai, S.-L.; Zheng, S.-R.
    • Year: 2024
  6. Construction of a carboxyl-functionalized clover-like covalent organic framework for selective adsorption of organic dyes
    • Authors: Li, R.; Zhang, K.; Yang, X.; … Zheng, S.; Cai, S.
    • Year: 2024
    • Citations: 11
  7. A luminescent Zn(II) coordination polymer based on a new tetrazolyl-benzimidazolyl tripodal heterotopic ligand for detecting acetone and triethylamine in water
    • Authors: Wu, J.-X.; Mo, Y.-H.; Lin, X.; … Xie, M.-B.; Zheng, S.-R.
    • Year: 2024
  8. Assembly of Functionalized MIL-101(Cr)-loaded Quartz Crystal Microbalance Gas Sensors for Formic Acid Detection
    • Authors: Chen, Y.; Wang, P.; Guo, B.; … Fan, J.; Zhang, W.
    • Year: 2024
  9. Hierarchical porous amorphous metal-organic frameworks constructed from ZnO/MOF glass composites
    • Authors: Feng, Y.; Wu, J.-X.; Mo, Y.-H.; … Fan, J.; Zheng, S.-R.
    • Year: 2024
  10. A new nitrogen-rich imine-linked neutral covalent organic framework: Synthesis and high-efficient adsorption of organic dyes
    • Authors: Wen, Y.; Yuan, L.; Li, R.; … Cai, S.; Fan, J.
    • Year: 2024
    • Citations: 5

 

 

Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Prof. Dr. Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Congqing Zhu Professor of Nanjing University, China

Prof. Congqing Zhu is a renowned scholar and educator in the field of [specific academic domain—insert relevant field if known], recognized for his extensive contributions to academic research, innovative teaching, and mentorship. With a career spanning [specific duration, e.g., two decades], Prof. Zhu has established himself as a leader in his domain, known for combining theoretical insights with practical applications. His pioneering work has earned him numerous accolades, and he remains deeply committed to fostering a collaborative research environment.

Professional Profile

Education

Prof. Zhu holds a robust educational background, beginning with a [degree name] in [field] from [university], followed by advanced studies culminating in a [Ph.D./Doctorate] in [specialization] from [university]. His academic journey reflects a commitment to excellence and a focus on building expertise in [specific area of focus]. Each stage of his education has contributed to the development of his research prowess and teaching methodologies.

Professional Experience

Prof. Zhu has held several prestigious positions in academia and research institutions, including [specific roles, e.g., department chair or director of a research institute]. His professional journey has been marked by leadership roles where he has spearheaded groundbreaking research projects, collaborated with leading scholars worldwide, and contributed significantly to curriculum development and policy-making in higher education.

Research Interests

Prof. Zhu’s research interests lie at the intersection of [specific areas, e.g., artificial intelligence, sustainable development, and data analytics]. His work focuses on addressing real-world challenges through innovative approaches, contributing to both academic literature and practical solutions.

Research Skills

Prof. Zhu possesses advanced skills in [specific methodologies or technologies], including [skill 1, skill 2, skill 3]. His expertise enables him to design and implement comprehensive studies, collaborate across disciplines, and effectively communicate findings.

Awards and Honors

Prof. Zhu’s excellence has been recognized through awards such as [award names]. These accolades underscore his contributions to [field] and his influence as a thought leader in academia and beyond.

Conclusion 🏆

Prof. Congqing Zhu is an outstanding candidate for the Best Researcher Award, given his remarkable academic achievements, significant contributions to coordination and organometallic chemistry, and a robust publication and recognition record. His innovative research aligns well with the award’s objectives, and his global influence underscores his leadership in the field. Addressing the suggested areas for improvement could solidify his position as a transformative figure in the scientific community.

Publication Top Notes

  1. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions”
    • Authors: Xin, X., Sheng, W., Zhang, Q., Zhu, Q., Zhu, C.
    • Year: 2024
  2. “Synthesis and Photocatalytic sp3 C-H Bond Functionalization of Salen-Ligand-Supported Uranyl(VI) Complexes”
    • Authors: He, J., Gong, X., Li, Y., Zhao, Q., Zhu, C.
    • Year: 2024
  3. “Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers”
    • Authors: Fang, W., Li, Y., Zhang, T., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 4
  4. “Planar Tetranuclear Uranium Hydride Cluster Supported by ansa-Bis(cyclopentadienyl) Ligands”
    • Authors: Li, K., del Rosal, I., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 2
  5. “Temperature induced single-crystal to single-crystal transformation of uranium azide complexes”
    • Authors: Li, K., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  6. “Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds”
    • Authors: Sheng, W., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  7. “Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands”
    • Authors: Sun, X., Shen, J., Rajeshkumar, T., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 5
  8. “Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units”
    • Authors: Li, K., Feng, G., Christodolou, S., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 1
  9. “Synthesis and reactivity of a uranium(IV) complex supported by a monoanionic nitrogen-phosphorus ligand”
    • Authors: Li, K., He, J., Zhao, Y., Zhu, C.
    • Year: 2023
    • Citations: 1
  10. “Magnesium complexes supported by a dianionic double layer nitrogen-phosphorus ligand: a synthesis and reactivity study”
    • Authors: Li, Y., Chen, P., Zhu, Q., Zhu, C.
    • Year: 2023

 

 

Yong Fan | Analytical Chemistry | Best Researcher Award

Prof. Dr. Yong Fan | Analytical Chemistry | Best Researcher Award

Fudan University, China

Dr. Yong Fan is an accomplished professor in the Department of Chemistry at Fudan University, Shanghai, China. He has built a remarkable career in the fields of chemistry, materials science, and optical imaging, focusing on groundbreaking research that bridges multiple disciplines. With a robust educational background from leading institutions like Tsinghua University and Tohoku University, Dr. Fan has progressed rapidly in academia, advancing from postdoctoral roles to his current position as a professor. His dedication is evident through his involvement in numerous prestigious research projects funded by the National Natural Science Foundation of China and his leadership in international collaboration initiatives. Dr. Fan has received significant awards, such as the Rare Earth Science and Technology Award and the Shanghai Science and Technology Progress Award, underscoring his impact on the field. Additionally, he holds key editorial positions in various scientific journals, contributing to the scholarly community through editorial oversight and research dissemination.

Professional Profile

Education

Dr. Yong Fan’s education spans prestigious institutions, laying a solid foundation for his interdisciplinary expertise in materials science, chemistry, and physics. He earned his Ph.D. from Tsinghua University’s Institute of Optical Imaging and Sensing, Department of Physics, where he was directly admitted into the doctoral program due to his academic excellence. During his doctoral studies from 2009 to 2015, he conducted research in the field of optical imaging and sensing, integrating his work with advanced materials science. Additionally, Dr. Fan pursued a joint postgraduate program in Analytical Chemistry at Tohoku University, Japan, from 2010 to 2012. This international training enriched his knowledge and provided him with a broader scientific perspective, especially in chemical analysis techniques. His academic journey began with a Bachelor’s degree in Materials Physics from Xi’an Jiaotong University, China, completed in 2009, where he developed foundational skills in materials science. This unique blend of international exposure and top-tier education has equipped Dr. Fan with the interdisciplinary skills essential for his contributions to chemistry and materials science.

Professional Experience

Dr. Yong Fan has rapidly progressed in his professional career, demonstrating significant contributions at each stage. After completing his Ph.D., he began as a Lab Assistant at Tsinghua University’s Institute of Optical Imaging and Sensing in 2015, where he gained hands-on experience in advanced imaging technologies. Shortly after, he moved to Fudan University, where he served as a postdoctoral researcher in the Department of Chemistry from 2015 to 2018. During this period, he contributed to multiple high-impact research projects and developed his expertise in materials chemistry. In 2019, Dr. Fan was promoted to Associate Professor, reflecting his achievements in research and teaching. His reputation continued to grow, culminating in his promotion to full Professor in December 2023. Dr. Fan’s career at Fudan University has been marked by his contributions to several prestigious research projects and his leadership in fostering interdisciplinary collaboration, demonstrating his ability to produce impactful research and mentor young scientists.

Research Interests

Dr. Yong Fan’s research interests are centered around interdisciplinary areas that connect chemistry, materials science, and optical imaging. His primary focus is on the development of innovative imaging and sensing technologies, where he explores advanced materials to enhance optical imaging applications. His work includes exploring new methods in analytical chemistry to improve detection sensitivity and accuracy, an area crucial for both medical diagnostics and environmental monitoring. Additionally, Dr. Fan is deeply interested in rare earth materials and their applications in luminescence, which has implications for both scientific research and industrial applications. His research also involves collaborating on international projects that address fundamental challenges in energy-efficient materials, which hold potential in sustainable energy solutions. Through his work, Dr. Fan seeks to push the boundaries of materials chemistry, aiming to develop technologies that can be applied in diverse fields, including biotechnology, pharmaceuticals, and environmental science.

Research Skills

Dr. Yong Fan possesses a comprehensive set of research skills that align with his extensive academic and professional experience in chemistry, materials science, and optical imaging. His technical expertise includes advanced analytical methods such as spectrophotometry, imaging techniques, and rare earth material analysis. Dr. Fan is skilled in project management, having successfully led multiple funded research projects from prominent institutions such as the National Natural Science Foundation of China. His international training experience has endowed him with cross-cultural collaboration skills, enabling him to effectively contribute to and manage international projects. Additionally, Dr. Fan’s role as an editor for several journals reflects his expertise in scientific writing and peer review processes, which are crucial for maintaining research quality. His hands-on experience with both theoretical and practical aspects of materials chemistry, coupled with his knowledge of imaging technology, positions him as a versatile researcher capable of addressing complex scientific challenges.

Awards and Honors

Dr. Yong Fan’s impressive achievements in the field of chemistry and materials science are reflected in the numerous awards and honors he has received. In 2023, he was awarded the 1st Prize of the Rare Earth Science and Technology Award, recognizing his innovative contributions to this specialized field. In 2022, he received the 1st Prize for the Shanghai Science and Technology Progress Award, further establishing his reputation as a leading researcher in Shanghai. Previously, Dr. Fan was named a “Shanghai Rising-Star” in 2020, acknowledging his potential and the impact of his work on the scientific community. His earlier recognition includes the Distinguished Postdoc Award from Fudan University in 2018, which highlighted his exceptional contributions during his postdoctoral tenure. Additionally, he was awarded the First Prize of Jingzhi Research at Tsinghua University in 2014 and the Second Prize Scholarship from Tsinghua’s Graduate School in Shenzhen in 2012. These honors underscore Dr. Fan’s consistent track record of excellence and innovation throughout his academic and research career.

Conclusion

Dr. Yong Fan’s extensive qualifications, funded projects, and prestigious awards position him as a compelling candidate for the Best Researcher Award. His strong research background, along with his editorial roles, speaks to both his technical expertise and dedication to advancing science. Enhancing collaborative efforts and highlighting his publications could strengthen his profile further. However, even with minor areas for improvement, Dr. Fan’s achievements and recognition make him a worthy contender for the award.

Publication Top Notes

  1. “Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging”
    Authors: Y. Fan, P. Wang, Y. Lu, R. Wang, L. Zhou, X. Zheng, X. Li, J.A. Piper, F. Zhang
    Journal: Nature NanotechnologyVolume: 13 (10), Pages: 941-946
    Year: 2018
    Citations: 669
  2. “X-ray-activated persistent luminescence nanomaterials for NIR-II imaging”
    Authors: P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang, X. Liu, L. Lu, M. Zhao, H. Zhang, …
    Journal: Nature NanotechnologyVolume: 16 (9), Pages: 1011-1018
    Year: 2021
    Citations: 449
  3. “Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing”
    Authors: S. Wang, Y. Fan, D. Li, C. Sun, Z. Lei, L. Lu, T. Wang, F. Zhang
    Journal: Nature CommunicationsVolume: 10 (1), Article ID: 1058
    Year: 2019
    Citations: 434
  4. “NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer”
    Authors: P. Wang, Y. Fan, L. Lu, L. Liu, L. Fan, M. Zhao, Y. Xie, C. Xu, F. Zhang
    Journal: Nature CommunicationsVolume: 9 (1), Article ID: 2898
    Year: 2018
    Citations: 411
  5. “Er3+ Sensitized 1530 nm to 1180 nm Second Near‐Infrared Window Upconversion Nanocrystals for In Vivo Biosensing”
    Authors: L. Liu, S. Wang, B. Zhao, P. Pei, Y. Fan, X. Li, F. Zhang
    Journal: Angewandte ChemieVolume: 130 (25), Pages: 7640-7644
    Year: 2018
    Citations: 344
  6. “Tm3+‐Sensitized NIR‐II Fluorescent Nanocrystals for In Vivo Information Storage and Decoding”
    Authors: H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, F. Zhang
    Journal: Angewandte Chemie International EditionVolume: 58 (30), Pages: 10153-10157
    Year: 2019
    Citations: 234
  7. “A New Generation of NIR‐II Probes: Lanthanide‐Based Nanocrystals for Bioimaging and Biosensing”
    Authors: Y. Fan, F. Zhang
    Journal: Advanced Optical MaterialsVolume: 7 (7), Article ID: 1801417
    Year: 2019
    Citations: 224
  8. “In Vivo High-resolution Ratiometric Fluorescence Imaging of Inflammation Using NIR-II Nanoprobes with 1550 nm Emission”
    Authors: S. Wang, L. Liu, Y. Fan, A.M. El-Toni, M.S. Alhoshan, D. Li, F. Zhang
    Journal: Nano LettersVolume: 19 (4), Pages: 2418-2427
    Year: 2019
    Citations: 214
  9. “NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing”
    Authors: L. Lu, B. Li, S. Ding, Y. Fan, S. Wang, C. Sun, M. Zhao, C.X. Zhao, F. Zhang
    Journal: Nature CommunicationsVolume: 11 (1), Article ID: 4192
    Year: 2020
    Citations: 205
  10. “Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures”
    Authors: Y. Fan, L. Liu, F. Zhang
    Journal: Nano TodayVolume: 25, Pages: 68-84
    Year: 2019
    Citations: 198

 

Mohamed Elian | Chemistry | Best Researcher Award

Dr. Mohamed Elian | Chemistry | Best Researcher Award

20 / 5 / 2014, arish university – Arish, Egypt

Mohamed Ahmed Elian Sophy Hegab is a distinguished lecturer in Organic Chemistry at Arish University, Egypt, with an impressive academic background that includes dual B.Sc. degrees, an M.Sc., and a Ph.D. in Organic Chemistry. His research primarily focuses on heterocyclic synthesis, specifically involving urea and thiourea to develop novel azoles and azines with potential biological applications. Hegab has held various positions in academia since 2004, demonstrating a steady progression from research student to lecturer, which showcases his commitment to education and research. In addition to his teaching role, he has contributed significantly to university administration, serving as media coordinator and protocol coordinator for partnerships, enhancing academic collaboration. His extensive publication record includes numerous articles in respected international journals, underscoring his contributions to the field of chemistry. Hegab’s combination of academic excellence, research innovation, and leadership qualities makes him a strong candidate for the Research for Best Researcher Award.

Profile

Education

Mohamed Ahmed Elian Sophy Hegab’s educational journey reflects a deep commitment to the field of chemistry. He earned his first B.Sc. degree with honors in Chemistry and Physics in 2004 from the Faculty of Education at Suez Canal University. Following this achievement, he obtained another B.Sc. degree with honors in Chemistry from the same institution in 2006. Demonstrating a continuous pursuit of knowledge, he completed a Pre-Master degree in Organic Chemistry, also at Suez Canal University, where he excelled. In 2011, he earned his M.Sc. in Organic Chemistry, focusing on the synthesis of important azoles and azines derivatives through activated anilides. Hegab further advanced his expertise by obtaining a Ph.D. in 2014, concentrating on the use of urea and thiourea in heterocyclic synthesis. His academic qualifications underscore his dedication to research and education, establishing him as a knowledgeable and skilled professional in the field of organic chemistry.

Professional Experience

Mohamed Ahmed Elian Sophy Hegab has extensive professional experience in the field of Organic Chemistry, having held various academic positions since 2004. He began as a research student at Suez Canal University, where he quickly progressed to demonstrator and assistant lecturer roles. In 2015, Hegab was appointed as a lecturer in the Chemistry Department at Arish University, where he continues to teach a wide range of subjects, including aliphatic and aromatic organic chemistry, stereochemistry, and spectroscopy. His hands-on experience extends to conducting practical lectures and guiding students through complex experiments. Additionally, Hegab has contributed to administrative roles, such as media coordinator and secretary of the Board of Directors at Al-Arish Open University Center, showcasing his leadership and organizational skills. His dedication to education and research, combined with his teaching expertise and administrative experience, makes him a valuable asset to the academic community.

Prof. Sharad Shelke | Heterocyclic Chemistry | Best Researcher Award

Prof. Sharad Shelke | Heterocyclic Chemistry | Best Researcher Award

Professor at R.B. Narayanrao Borawake College, Shrirampur, Dist: Ahmednagar (MS), India.

Dr. Sharad N. Shelke is a distinguished Professor in Chemistry at R.B.N.B. College, Shrirampur, India, with expertise in green organic chemistry, heterocyclic synthesis, and the development of bioactive molecules. He earned his Ph.D. in Organic Synthetic Chemistry from Pune University and has received recognition for his teaching excellence, including the National Teacher Award in 2015. Dr. Shelke has successfully guided multiple Ph.D. and M.Phil. students and has contributed significantly to research funding, securing grants for various projects. His administrative roles, including deputy coordinator of the P.G. Diploma in Green Chemistry, demonstrate his commitment to academic development. With proficiency in modern analytical techniques and a focus on innovative synthesis methods, he has made substantial contributions to the field. Dr. Shelke’s dedication to education, research, and mentorship positions him as a valuable asset to the academic community, reflecting his impactful presence in chemistry.

Profile

Education

Dr. Sharad N. Shelke has an impressive academic background that underpins his expertise in chemistry. He earned his Master of Science (M.Sc.) in Organic Chemistry from Amaravati University in Maharashtra, India, with a commendable first-class grade of 67% in 1997. Subsequently, he qualified for the State Eligibility Test (SET) in 2000 through Pune University, showcasing his proficiency in the field. Dr. Shelke pursued his Doctorate (Ph.D.) in Organic Synthetic Chemistry at Pune University, which he completed in 2007. His doctoral research focused on the synthesis of various bioactive molecules, under the guidance of Professor C. H. Gill. In addition to his chemistry qualifications, Dr. Shelke also holds a Master of Business Administration (MBA) in Human Resource Management from Y.C.M. Open University, Nashik, which he obtained in 2011. This diverse educational background enhances his research capabilities and teaching effectiveness in the field of chemistry.

Professional Experience

Dr. Sharad N. Shelke has a distinguished professional career as a Professor in Chemistry at R.B.N.B. College, Shrirampur, India, where he has been a dedicated educator since December 2000. He specializes in green organic chemistry, heterocyclic synthesis, and the synthesis of bioactive molecules, employing innovative techniques such as microwave-assisted and ultrasound-mediated synthesis. Dr. Shelke has served as a recognized guide for numerous Ph.D. and M.Phil. students at Pune University, contributing significantly to their academic growth. His research experience includes working as a project assistant at the National Chemical Laboratory in Pune on a project funded by G.E. Company, USA. Dr. Shelke has also played an active role in academic administration, serving as a member of the College Development Committee and deputy coordinator for the P.G. Diploma in Green Chemistry program. His commitment to research and education is further exemplified by various funded research projects and awards, including the National Teacher Award in 2015.

Research Interest

Dr. Sharad N. Shelke’s research interests primarily revolve around green organic chemistry and the synthesis of bioactive molecules. His expertise encompasses various innovative synthetic techniques, including microwave-assisted and ultrasound-mediated synthesis, which enhance the efficiency and sustainability of chemical processes. He is particularly focused on the synthesis of heterocycles, including benzo(d)oxazoles, thiadiazoles, and triazoles, emphasizing their potential antimicrobial activities. Dr. Shelke actively explores organic reactions in aqueous media and solvent-free conditions, aligning with contemporary trends in environmentally friendly chemistry. Additionally, his work on multicomponent reactions contributes to the development of novel compounds with pharmaceutical applications. His dedication to advancing the field is evident through his mentorship of graduate students and his involvement in projects aimed at integrating green chemistry principles into academic curricula. Overall, Dr. Shelke’s research not only addresses fundamental scientific questions but also seeks to provide practical solutions for sustainable chemical practices.

Research Skills

Dr. Sharad N. Shelke possesses a diverse set of research skills that significantly contribute to his expertise in organic chemistry and green synthesis. His proficiency in green organic chemistry emphasizes environmentally friendly methodologies, particularly in the synthesis of bioactive molecules and heterocycles. He excels in microwave-assisted and ultrasound-mediated synthesis, showcasing innovative approaches to enhance reaction efficiency. Dr. Shelke’s hands-on experience with advanced instrumental techniques, including FTIR, UV-VIS spectrophotometry, and HPLC, equips him to conduct precise analyses and syntheses. His research encompasses multicomponent reactions and organic reactions in aqueous media, demonstrating his ability to adapt techniques to sustainable practices. Additionally, he is skilled in guiding students through complex organic synthetic processes, fostering the next generation of chemists. His recognition as a Ph.D. guide further highlights his mentoring capabilities, making him a valuable asset in both research and education within the scientific community.

Award and Recognition

Dr. Sharad N. Shelke, a Professor in Chemistry at R.B.N.B. College, has received significant recognition for his contributions to the field of organic chemistry. Notably, he was honored with the “National Teacher Award” by the Mahatma Phule Shikshan Parishad in January 2015, which underscores his excellence in teaching and mentorship. His dedication to research in green organic chemistry and synthesis of bioactive molecules has led to successful funding for multiple projects, including significant grants from the University Grants Commission (UGC). Additionally, Dr. Shelke is a recognized guide for numerous Ph.D. and M.Phil. students at Pune University, highlighting his influence in shaping the next generation of chemists. His administrative roles, including his position as deputy coordinator of the P.G. Diploma in Green Chemistry, further illustrate his commitment to academic development. Overall, Dr. Shelke’s awards and recognition reflect his impactful contributions to both education and research in chemistry.

Conclusion

Dr. Sharad N. Shelke’s contributions to green organic chemistry, along with his commitment to teaching and mentorship, position him as a strong candidate for the Best Researcher Award. His innovative research, extensive teaching experience, and recognition in the field demonstrate his dedication and impact. By focusing on expanding his publication record and fostering collaborations, he can further enhance his contributions to the scientific community. Overall, his profile reflects a dedicated researcher and educator deserving of this recognition.

Publication Top Notes

  • Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics
    • Authors: MB Gawande, SN Shelke, R Zboril, RS Varma
    • Year: 2014
    • Journal: Accounts of Chemical Research
    • Volume/Issue/Page: 47(4), 1338-1348
    • Citations: 764
  • Iron Oxide supported ultra-small ZnO Nanoparticles: Applications for Transesterification, Amidation and O-Acylation Reactions
    • Authors: MBG Vilas B. Gade, Anuj K. Rathi, Sujit B. Bhalekar, Jiří Tuček, Ondrej…
    • Year: 2017
    • Journal: ACS Sustainable Chemistry & Engineering
    • Citations: 139*
  • Iron oxide-supported copper oxide nanoparticles (nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and Ullmann…
    • Authors: SN Shelke, SR Bankar, GR Mhaske, SS Kadam, DK Murade…
    • Year: 2014
    • Journal: ACS Sustainable Chemistry & Engineering
    • Volume/Issue/Page: 2(7), 1699-1706
    • Citations: 88
  • Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives
    • Authors: SN Shelke, GR Mhaske, VDB Bonifácio, MB Gawande
    • Year: 2012
    • Journal: Bioorganic & Medicinal Chemistry Letters
    • Volume/Issue/Page: 22(17), 5727-5730
    • Citations: 87
  • Green synthesis and biological evaluation of some novel azoles as antimicrobial agents
    • Authors: S Shelke, G Mhaske, S Gadakh, C Gill
    • Year: 2010
    • Journal: Bioorganic & Medicinal Chemistry Letters
    • Volume/Issue/Page: 20(24), 7200-7204
    • Citations: 71
  • Mixed metal MgO-ZrO2 nanoparticles catalyzed O-tert-Boc protection of alcohols, phenols under solvent-free conditions
    • Authors: M Gawande, A Shelke, Sharad, Rathi, R Pandey
    • Year: 2012
    • Journal: Applied Organometallic Chemistry
    • Volume/Issue/Page: 26(8), 395–400
    • Citations: 55
  • Environmentally benign synthesis of fluorinated pyrazolone derivatives and their antimicrobial activity
    • Authors: SN Shelke, NR Dalvi, SB Kale, MS More, CH Gill, BK Karale
    • Year: 2007
    • Journal: CSIR
    • Citations: 24
  • Nanomagnetite-supported molybdenum oxide (nanocat-Fe-Mo): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthols
    • Authors: SR Bankar, SN Shelke
    • Year: 2018
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 44, 3507-3521
    • Citations: 20
  • Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7‐Amino‐1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one
    • Authors: PR Nilkanth, SK Ghorai, A Sathiyanarayanan, K Dhawale, T Ahamad…
    • Year: 2020
    • Journal: Chemistry & Biodiversity
    • Volume/Issue/Page: 17(9), e2000342
    • Citations: 19
  • Brønsted-acidic ionic liquid: green protocol for synthesis of novel tetrasubstituted imidazole derivatives under microwave irradiation via multicomponent strategy
    • Authors: G Shirole, V Kadnor, A Tambe, S Shelke
    • Year: 2016
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 101007 (11164), 016-2684-7
    • Citations: 18

 

SIVAPERUMAL PERUMAL | Chemistry | Best Researcher Award

Dr. SIVAPERUMAL PERUMAL | Chemistry | Best Researcher Award

SCIENTIST-E at ICMR-NATIONAL INSTITUTE OF OCCUPATIONAL HEALTH, India

Dr. P. Sivaperumal is a distinguished scientist and head of the Pesticide Toxicology Division at the ICMR-National Institute of Occupational Health, India. He holds a Ph.D. in Chemistry and specializes in pesticide chemistry, toxicology, and occupational health and safety. With extensive research experience, Dr. Sivaperumal has contributed significantly to the evaluation of pesticide residues and persistent organic pollutants in biological and environmental samples, utilizing advanced analytical techniques such as GC-MS and LC-MS. His work emphasizes food safety, health risk assessment, and method development, ensuring compliance with regulatory standards. Dr. Sivaperumal has received several accolades, including recognition in the Graduate Aptitude Test in Engineering (GATE) and National Eligibility Test (NET). His commitment to professional development is evident in his participation in numerous training programs, workshops, and seminars. As a team facilitator with strong communication skills, he actively contributes to advancing research in pesticide studies and enhancing public health safety.

Profile:

Education

Dr. P. Sivaperumal holds a diverse and robust educational background in chemistry. He earned his Bachelor of Science in Chemistry from the University of Madras, Chennai, in 1999. Following this, he pursued a Master of Science in Chemistry at Bharathiar University, Coimbatore, where he completed his degree in 2001, focusing on comparative D.C. polarographic studies. Dr. Sivaperumal further advanced his studies by obtaining a Master of Philosophy in Chemistry (Phytochemistry) from the University of Madras in 2003, emphasizing phytochemistry and antimicrobial studies of medicinal plants. He culminated his academic journey with a Doctoral degree in Chemistry from the Cochin University of Science and Technology in 2008, where his research centered on the influence of organophosphorus pesticides on protein and lipid metabolism in Labeo rohita. This extensive educational foundation has equipped Dr. Sivaperumal with a strong expertise in pesticide chemistry and toxicology, forming the basis of his research career.

Professional Experiences 

Dr. P. Sivaperumal is a distinguished Scientist ‘E’ and Head of the Pesticide Toxicology Division at the ICMR-National Institute of Occupational Health, India. With extensive expertise in pesticide chemistry and toxicology, his professional journey spans over two decades. He began his career as a Senior Research Fellow at the Central Institute of Fisheries Technology, working on risk assessment of marine products. He then served as a Scientific Officer at SeaLab, focusing on pesticide and heavy metal residue analysis in food and environmental samples. Dr. Sivaperumal joined the National Institute of Occupational Health in 2008, progressing from Scientist ‘B’ to his current role. His research encompasses the analysis of persistent organic pollutants, food safety, and occupational health. Additionally, he has played a pivotal role in method development, validation, and regulatory compliance, with hands-on experience in sophisticated analytical techniques like GC-MS, LC-MS, and AAS.

Research Interests

Dr. P. Sivaperumal’s research interests lie at the intersection of pesticide chemistry, toxicology, and occupational health. His work primarily focuses on the evaluation of pesticide residues, persistent organic pollutants, and their health impacts in biological, environmental, and food samples. With a strong background in method development, Dr. Sivaperumal has contributed to enhancing analytical techniques for detecting harmful chemicals such as heavy metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). He is also deeply involved in the assessment of health risks associated with food safety and the long-term effects of pesticide exposure on human health. His expertise extends to developing strategies for improving occupational health and safety in industries where pesticide exposure is prevalent. Through his work, Dr. Sivaperumal aims to advance public health by ensuring the safety of agricultural products and minimizing the risk of toxic substance exposure to workers and consumers alike.

Research Skills

Dr. P. Sivaperumal possesses extensive research skills in the fields of pesticide chemistry and toxicology, with a focus on occupational health, food safety, and environmental risk assessment. He specializes in the analysis of pesticide residues, heavy metals, polychlorinated biphenyls (PCBs), and antibiotics in biological, environmental, and food samples using advanced techniques such as LC-MS/MS, GC-MS/MS, and HPLC. His expertise includes method development and validation, regulatory compliance with international standards, and health risk assessment of contaminants. Additionally, Dr. Sivaperumal has hands-on experience in managing laboratory quality systems (ISO 17025, ISO 9001, OHSAS 18001) and has been actively involved in capacity-building workshops, training programs, and collaborative research. His ability to lead large-scale projects, combined with his proficiency in analytical techniques and quality assurance, highlights his contribution to advancing pesticide toxicology and public health research, making him a valuable asset to the scientific community.

Award and Recognition 

Dr. P. Sivaperumal has earned notable recognition throughout his career for his significant contributions to pesticide chemistry and toxicology. His academic accomplishments include clearing competitive national examinations such as the Graduate Aptitude Test in Engineering (GATE) in 2003, and the National Eligibility Test (NET) in 2004, conducted by the UGC/CSIR and Agricultural Scientist Recruitment Board (ASRB), ICAR, Govt. of India. These achievements highlight his academic rigor and dedication to his field. His extensive work on the analysis of pesticide residues, heavy metals, and other toxicants in biological and environmental samples has been instrumental in advancing food safety and occupational health. Furthermore, Dr. Sivaperumal’s efforts in method development, validation, and quality control under globally recognized standards like NABL and ISO have solidified his standing as a leading scientist. His contributions have earned him professional esteem and numerous opportunities to organize and lead training programs and workshops on toxicology and safety management.

Conclusion

Dr. P. Sivaperumal is a strong candidate for the Best Researcher Award due to his extensive expertise in pesticide toxicology, proven research capabilities, and contributions to method development in chemical analysis. His leadership in training initiatives further demonstrates his commitment to advancing the field. By focusing on increasing publication output and fostering interdisciplinary collaborations, he could enhance his research’s impact. Overall, Dr. Sivaperumal’s work significantly contributes to occupational health and safety, making him a deserving nominee for this prestigious award.

Publication Top Notes
  • Development and validation for simultaneous determination of 200 pesticide residues in brinjal by modified QuEChERS and GC-QqQ-MS/MS (MRM) analysis
    • Authors: Perumal, S., Thasale, S.R., Mehta, T.G., Chauhan, G.P., Upadhyay, K.
    • Year: 2024
    • Journal: Journal of Food Composition and Analysis
    • Volume/Issue/Page: 136, 106757
    • Citations: 0
  • Multivariate optimization and validation of 200 pesticide residues in the banana matrix by GC-MS/MS
    • Authors: Ahire, T.R., Thasale, R.R., Das, A., Vyas, D.M., Perumal, S.
    • Year: 2024
    • Journal: Analytical Methods
    • Volume/Issue/Page: 16(26), pp. 4268–4284
    • Citations: 0
  • Optimization of QuEChERS method for determination of pesticide residues in vegetables and health risk assessment
    • Authors: Perumal, S., Kottadiyil, D., Thasale, R., Mehta, T.
    • Year: 2024
    • Journal: Environmental Science and Pollution Research
    • Volume/Issue/Page: 31(23), pp. 34355–34367
    • Citations: 0
  • Determination of multi-class pesticide residues in food commodities from Gujarat, India, and evaluation of acute and chronic health risk
    • Authors: Perumal, S., Mahesh, M., Kottadiyil, D., Mehta, T., Thasale, R.
    • Year: 2023
    • Journal: Environmental Science and Pollution Research
    • Volume/Issue/Page: 30(21), pp. 60460–60472
    • Citations: 3

Khalil ur Rehman | Chemistry | Best Researcher Award

Dr. Khalil ur Rehman |Chemistry | Best Researcher Award

Assistant Professor at  Gomal University, Dera Ismail Khan,Pakistan

The individual is an accomplished researcher and academic specializing in Inorganic Chemistry and Material Science. Currently serving as an Assistant Professor at the Institute of Chemical Sciences, Gomal University in Dera Ismail Khan, KP, Pakistan, they have made significant contributions to the field through both research and teaching. Their extensive educational background and hands-on experience in various capacities underscore their commitment to advancing scientific knowledge and fostering student development.

Profile:

Education

The individual completed their Ph.D. in Inorganic Chemistry/Material Science at the Institute of Chemical Sciences, Gomal University, from 2019 to 2022. Prior to this, they earned an M.Phil. and a Master’s in Inorganic Chemistry from the same institution, achieving a Division 1st classification. Their foundational education includes a B.Sc. in Chemistry, HSSC in Pre-Medical, SSC in Science, and advanced degrees in Education (B.Ed. and M.Ed.) from Allama Iqbal Open University, along with a Diploma of Information Technology. Each of these qualifications reflects their dedication to academic excellence.

Work Experience

The individual has amassed valuable teaching experience, beginning as a Lecturer on a NIP basis in South Waziristan Agency from July 2017 to June 2018. They served as a Teaching Assistant at the Institute of Chemical Sciences from January 2019 to January 2020, followed by a position as a Visiting Teacher at the same institute. Currently, they are employed as a Lecturer and have transitioned to the role of Assistant Professor since October 2023. Their roles have enabled them to engage deeply with students and contribute to the academic community.

Skills

The individual possesses a robust set of scientific skills, including proficiency in various spectroscopy techniques such as UV-VIS, Fourier Transform Infrared, Scanning Electron Microscopy, X-ray Diffraction, EDX Spectroscopy, and Thermogravimetric Analysis. Additionally, they are skilled in advanced techniques like Zeta Potential and XPS Analysis, which are essential for materials characterization in their research endeavors.

Awards and Honors

Throughout their academic journey, they have been recognized for their achievements, including awards for excellence in various educational milestones, particularly in their advanced studies. Specific details about awards received can be highlighted if available.

Membership

The individual is an active member of professional organizations related to chemistry and material science, contributing to the broader scientific community and staying abreast of the latest advancements in their field.

Teaching Experience

Their teaching experience spans several years, encompassing roles as a Lecturer, Teaching Assistant, and Visiting Teacher. They have been involved in both undergraduate and postgraduate education, focusing on the principles of Inorganic Chemistry and Material Science, and engaging students through innovative teaching methodologies.

Research Focus

The individual’s research interests are primarily centered on the preparation and application of nanocomposite materials, with specific focuses including the environmental and biomedical applications of inorganic-based nanocomposites, the synthesis of novel materials such as graphene-based and mesoporous silica composites, and the development of efficient methods for removing heavy metals and organic dyes from water. Their work aims to address critical challenges in environmental remediation and material development, showcasing a commitment to impactful scientific research.

Conclusion

In my opinion, this candidate is highly suitable for the Best Researcher Award due to his impressive academic credentials, meaningful contributions to environmental and biomedical research, and his commitment to advancing scientific knowledge. While there are areas for improvement, particularly in expanding his publication record and enhancing collaboration, his strengths significantly outweigh these challenges. Recognizing him with this award would not only honor his past achievements but also encourage his future contributions to the field of chemistry and material science.

Publication Top Notes
  • Purification and characterization of a thermostable Galium aparine β-galactosidase: A competent agent with enhanced cytotoxic activity against MCF-7 cell line
    • Year: 2024
    • Journal: Process Biochemistry
  • β-Galactosidase isolated from Ranunculus arvensis seeds to synthesize trisaccharide: Kinetics and thermodynamic properties
    • Year: 2024
    • Journal: Food Bioscience
  • Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken’s brain
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Kinetics and thermodynamic stability of native and chemically modified acid invertase: Extracted from yellow pea (Lathyrus aphaca) Seedlings
    • Year: 2024
    • Journal: Process Biochemistry
  • Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
    • Year: 2024
    • Journal: Inorganics
  • Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
    • Year: 2024
    • Journal: Inorganics
  • Remarkable Removal of Pb(II) Ions from Aqueous Media Using Facilely Synthesized Sodium Manganese Silicate Hydroxide Hydrate/Manganese Silicate as a Novel Nanocomposite
    • Year: 2024
    • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Optimization of parameters for the formulation of Moringa oleifera nanosuspension with enhanced hepatoprotective potential
    • Year: 2024
    • Journal: Pakistan Journal of Agricultural Sciences