Jiakang Zhang | Chemistry | Best Researcher Award

Dr. Jiakang Zhang | Chemistry | Best Researcher Award

Doctor at Qingdao university of science and technology, China

Dr. Jiakang Zhang is a dedicated researcher specializing in high-efficiency perovskite solar cells, focusing on lead leakage prevention, surface passivation, and advanced hole transport materials. As the first and corresponding author, he has published multiple high-impact research papers in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. His work emphasizes innovative stability strategies and coordination chemistry to enhance solar cell performance. Through collaborative research, Dr. Zhang has contributed significantly to advancements in sustainable energy technologies. His expertise, coupled with a strong publication record, demonstrates his influence in the field. While further details on citation metrics, industry collaborations, and patents could enhance his research impact, his contributions already establish him as a leading figure in perovskite solar cell research. Dr. Zhang’s commitment to innovation and scientific excellence makes him a strong contender for the Best Researcher Award.

Professional Profile

Education

Dr. Jiakang Zhang holds a strong academic background in materials science and renewable energy, specializing in the development of high-efficiency perovskite solar cells. He earned his doctoral degree from Qingdao University of Science and Technology, where he focused on performance enhancement and stability strategies for perovskite solar technology. His research has been deeply rooted in coordination chemistry, surface passivation techniques, and the design of novel hole transport materials. Throughout his academic journey, Dr. Zhang has actively contributed to cutting-edge advancements in solar energy, publishing extensively in top-tier scientific journals. His education has provided him with a solid foundation in photovoltaic materials, nanotechnology, and sustainable energy solutions. Through rigorous training, collaborative research, and interdisciplinary expertise, he has developed innovative approaches to improving solar cell efficiency and stability. His academic achievements, combined with a commitment to pioneering research, position him as a leading expert in his field.

Professional Experience

Dr. Jiakang Zhang has extensive professional experience in the field of high-efficiency perovskite solar cells, with a strong focus on performance optimization, stability strategies, and material innovation. As a researcher at Qingdao University of Science and Technology, he has led multiple studies on lead leakage prevention, coordination chemistry for surface passivation, and the development of un-doped hole transport materials. His expertise is reflected in his role as the first and corresponding author of several high-impact publications in renowned journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. Through collaborative projects, he has contributed to groundbreaking advancements in perovskite solar technology, working with interdisciplinary teams to address key challenges in the field. His professional experience also includes mentoring young researchers, engaging in international collaborations, and pushing the boundaries of photovoltaic research. Dr. Zhang’s work continues to shape the future of renewable energy solutions.

Research Interests

Dr. Jiakang Zhang’s research interests lie in the advancement of high-efficiency perovskite solar cells, with a particular focus on stability enhancement and material innovation. His work explores lead leakage prevention and control, aiming to improve the environmental safety of perovskite-based photovoltaics. He is also deeply involved in coordination chemistry for surface and interface passivation, addressing defects that affect device performance and longevity. Additionally, Dr. Zhang is committed to the design and application of high-performance un-doped hole transport materials, which play a crucial role in improving charge transport efficiency and overall solar cell stability. His research integrates fundamental chemistry with applied material science, driving innovations in next-generation solar energy technologies. Through interdisciplinary collaborations and a strong publication record in prestigious journals, Dr. Zhang continues to make significant contributions toward the commercialization and large-scale application of perovskite solar cells, shaping the future of sustainable and renewable energy solutions.

Awards and Honors

Dr. Jiakang Zhang has been recognized for his outstanding contributions to the field of high-efficiency perovskite solar cells through various awards and honors. His pioneering research on stability enhancement, lead leakage prevention, and advanced material design has earned him recognition in the scientific community. As the first and corresponding author of multiple high-impact publications in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy, Dr. Zhang has gained significant academic acclaim. His work has been cited widely, reflecting its impact on the field of photovoltaic technology. In addition to his research achievements, he has been acknowledged for his collaborative efforts in advancing solar energy solutions. While specific awards and honors may not be explicitly listed, his extensive contributions and influence in the domain of renewable energy research position him as a distinguished scientist and a strong candidate for prestigious research awards.

Research Skills

Dr. Jiakang Zhang possesses a diverse and advanced set of research skills in the field of high-efficiency perovskite solar cells. His expertise includes material synthesis and characterization, with a strong focus on developing novel strategies for lead leakage prevention and stability enhancement. He has extensive experience in coordination chemistry, which he applies to surface and interface passivation to improve device performance and longevity. Dr. Zhang is proficient in the design and optimization of high-performance un-doped hole transport materials, contributing to more efficient charge transport in photovoltaic systems. His research skills also extend to experimental design, data analysis, and the use of advanced spectroscopic and microscopic techniques for material evaluation. Furthermore, he has a strong background in scientific writing and publishing, having authored multiple high-impact papers in leading journals. His ability to conduct interdisciplinary research and collaborate on innovative solar energy solutions makes him a valuable contributor to the field.

Conclusion

Dr. Jiakang Zhang is a highly qualified candidate for the Best Researcher Award due to his extensive research contributions, high-impact publications, and expertise in perovskite solar cells. Strengthening the application with citation data, industry collaborations, patents, and leadership roles would further solidify his eligibility and enhance his nomination.

Publications Top Notes

  • Title: Halogen-Bonded Hole-Transport Material Enhances Open-Circuit Voltage of Inverted Perovskite Solar Cells
  • Authors: Z. Chen, Zhaoyang; J. Zhang, Jiakang; Z. Chen, Zilong; H. Zhang, Haichang; M. Liu, Maning, et al.
  • Journal: Advanced Science
  • Year: 2024
  • Type: Open-access article
  • Key Contribution: The study focuses on utilizing halogen-bonded hole-transport materials to enhance the open-circuit voltage of inverted perovskite solar cells.

Svitlana Orlyk | Physical Chemistry | Best Researcher Award

Prof. Svitlana Orlyk | Physical Chemistry | Best Researcher Award

Lead Scientist from L.V. Pisarzhevsky Institute of Physical Chemistry of NAS of Ukraine, Ukraine

Professor Svitlana M. Orlyk is a distinguished chemist specializing in catalytic redox processes, environmental catalysis, and hydrogen energy. She has made significant contributions to the development of advanced catalysts for pollution control, fuel reforming, and greenhouse gas conversion. With over four decades of experience, she has held key leadership positions at the L.V. Pisarzhevsky Institute of Physical Chemistry of NASU, where she currently serves as the Head of the Department of Catalytic Redox Processes. Professor Orlyk has authored more than 370 scientific publications, including over 200 peer-reviewed articles and 23 patents. Her research has been featured in multiple international monographs, highlighting her impact on the global scientific community. She has received prestigious awards, including the State Prize of Ukraine in Science and Technology and the Order of Princess Olga. Her expertise in heterogeneous catalysis, reaction kinetics, and catalyst design has led to innovative solutions for industrial and environmental challenges. Through her leadership and mentorship, she continues to drive advancements in catalysis, supporting the next generation of researchers in the field.

Professional Profile

Education

Professor Orlyk’s academic journey began at Kyiv Polytechnic Institute, where she earned a degree in Chemical Technology, specializing in Basic Processes of Chemical Production and Chemical Cybernetics in 1976. She pursued postgraduate studies in Chemical Kinetics and Catalysis at the L.V. Pisarzhevsky Institute of Physical Chemistry of NASU, completing her Ph.D. in 1982. Her doctoral research focused on catalytic reactions, laying the foundation for her future contributions to environmental catalysis and hydrogen energy. In 1998, she obtained a Doctor of Chemical Sciences degree from the same institute, marking a significant milestone in her academic career. Recognized for her expertise, she was appointed as a Professor in Chemical Kinetics and Catalysis in 2009. Her educational background has provided her with a strong foundation in chemical reaction engineering, catalyst design, and kinetic modeling. Through continuous learning and research, she has established herself as a leader in the field, contributing to both theoretical advancements and practical applications in catalysis. Her commitment to education extends to mentoring students and young researchers, ensuring the growth and sustainability of catalytic science in Ukraine and beyond.

Professional Experience

Professor Orlyk has had a progressive and impactful career in chemical research, spanning over 40 years. She began her professional journey as an Engineer in 1976 before transitioning into research, working as a Junior Scientific Associate from 1982 to 1986. Her expertise and dedication led to her promotion as a Scientific Associate (1986-1988), followed by Senior Scientist (1988-1999). Between 1999 and 2000, she served as a Lead Scientist, contributing significantly to catalytic reaction mechanisms and industrial applications of catalysts. In 2000, she was appointed as the Head of the Department of Catalytic Redox Processes at the L.V. Pisarzhevsky Institute of Physical Chemistry of NASU, a role she continues to hold. Under her leadership, the department has made significant advancements in catalyst design for environmental and industrial applications. Her work has influenced the development of efficient catalytic systems for pollution reduction, energy production, and sustainable chemistry. Throughout her career, she has collaborated with numerous researchers and institutions, further expanding the reach of her work in the international scientific community.

Research Interests

Professor Orlyk’s research focuses on the physicochemical principles of catalytic processes, particularly in environmental catalysis, hydrogen energy, and sustainable chemical production. She specializes in the kinetics and mechanisms of heterogeneous catalytic redox reactions, including those involving nitrogen oxides, carbon compounds, sulfur species, hydrocarbons, and oxygenates. Her work is aimed at designing next-generation catalysts for critical industrial applications, such as neutralizing harmful emissions (CO, NOx, hydrocarbons), reforming hydrocarbon fuels, and converting greenhouse gases (CO₂, CH₄, N₂O) into valuable chemicals. She is also actively involved in developing bifunctional catalysts for tandem processes that produce essential organic compounds from C1-C4 alkanes and bioalcohols. By integrating fundamental reaction mechanisms with practical catalyst development, her research contributes to both scientific innovation and environmental sustainability. Her investigations into advanced catalytic materials, including zeolites and cerium-based nanocatalysts, have led to breakthroughs in cleaner industrial processes and energy-efficient technologies.

Research Skills

Professor Orlyk possesses a diverse set of research skills in catalytic science, including catalyst synthesis, kinetic modeling, surface chemistry analysis, and reaction mechanism elucidation. She is proficient in designing and characterizing heterogeneous catalysts using advanced spectroscopic and microscopic techniques. Her expertise in chemical kinetics allows her to develop predictive models for catalytic reactions, optimizing performance for industrial applications. She has extensive experience with gas-phase and liquid-phase catalytic processes, particularly in environmental catalysis and energy conversion. Her work involves the integration of computational chemistry with experimental data to enhance catalyst efficiency and selectivity. She is also skilled in patent development, having secured 23 patents related to innovative catalytic materials and processes. Her ability to translate fundamental research into practical applications demonstrates her strength in bridging scientific discovery with industrial needs. Additionally, her leadership in research project management and mentorship highlights her commitment to advancing the field of catalysis through collaboration and knowledge dissemination.

Awards and Honors

Professor Orlyk’s contributions to catalysis and chemical sciences have been recognized through numerous prestigious awards. In 2000, she received the L.V. Pisarzhevsky Award of NAS of Ukraine for her research on selectivity in complex catalytic reactions. Her outstanding contributions to surface chemistry and catalysis earned her the State Prize of Ukraine in Science and Technology in 2008, acknowledging her work on adsorbed layers on transition metal surfaces. In recognition of her scientific achievements and service to Ukraine’s research community, she was awarded the Order of Princess Olga in 2019, one of the highest honors for distinguished women in science and academia. Beyond these national recognitions, her extensive publication record and inclusion in international monographs highlight her impact on the global scientific stage. Her achievements reflect a lifelong dedication to advancing catalysis for environmental sustainability and industrial efficiency.

Conclusion

Professor Svitlana M. Orlyk is a leading expert in catalytic redox processes, with an outstanding career dedicated to environmental catalysis, hydrogen energy, and sustainable chemical production. Her extensive research, leadership, and mentorship have significantly contributed to advancements in catalyst design and reaction kinetics. With over 370 scientific publications, numerous awards, and a strong record of innovation, she stands as a prominent figure in the field of chemistry. Her ability to combine fundamental research with industrial applications has led to impactful solutions for pollution control and energy efficiency. While her international collaborations and industry partnerships could be further strengthened, her current contributions already position her as an exceptional researcher. As Head of the Department of Catalytic Redox Processes, she continues to drive scientific progress and mentor the next generation of chemists, ensuring the sustainability of catalytic science. Her dedication, expertise, and accomplishments make her a highly deserving candidate for recognition as a top researcher in her field.

Publication Top Notes

  1. Vapor-Phase Carbonylation of Methanol with the Obtaining of Acetyls on Solid-Phase Catalysts: A Review

    • Authors: A.Y. Kapran, Y.I. Pyatnitsky, V.I. Chedryk, S.M. Orlyk
    • Year: 2024
  2. Effect of Surface Acidity/Basicity of Cr/Zn−BEA Zeolite Catalysts on Performance in CO₂-PDH Process

    • Authors: S.M. Orlyk, A.Y. Kapran, V.I. Chedryk, Y.M. Nychiporuk, P.I. Kyriienko, S. Dzwigaj
    • Year: 2024
    • Citations: 3
  3. Influence of Chromium in Cr/Zn-BEA Metal–Zeolite Composites on Their Acid–Base Characteristics and Catalytic Properties in the Processes of Propane Dehydrogenation

    • Authors: S.M. Orlyk, N.V. Vlasenko, V.I. Chedryk, A.Y. Kapran, S. Dzwigaj
    • Year: 2024
  4. The Effect of Modification of Zn–Mg(Zr)Si Oxide Catalysts with Rare-Earth Elements (Y, La, Ce) in the Ethanol-to-1,3-Butadiene Process

    • Authors: O.V. Larina, O.V. Zikrata, L.M. Alekseenko, S.O. Soloviev, S.M. Orlyk
    • Year: 2023
  5. Fast Synthesis of MgO–Al₂O₃ Systems: Effect on Physicochemical Characteristics and Catalytic Properties in Guerbet Condensation of Ethanol

    • Authors: K.V. Valihura, O.V. Larina, P.I. Kyriienko, S.O. Soloviev, S.M. Orlyk
    • Year: 2023
    • Citations: 1
  6. CO₂-Assisted Dehydrogenation of Propane to Propene over Zn-BEA Zeolites: Impact of Acid–Base Characteristics on Catalytic Performance

    • Authors: S.M. Orlyk, P.I. Kyriienko, A.Y. Kapran, V.I. Chedryk, D. Balakin, J. Gurgul, M. Zimowska, Y. Millot, S. Dzwigaj
    • Year: 2023
    • Citations: 11
  7. Catalytic Properties and Resource Characteristics of Modified Nickel Composites in the Processes of Oxidative Reforming of C₁-C₄ Alkanes

    • Authors: S.M. Orlyk, V.I. Chedryk, S.O. Soloviev, O.D. Vasylyev
    • Year: 2022
  8. Effect of Acid–Base Characteristics of Zeolite Catalysts on Oxidative Dehydrogenation of Propane with Carbon Dioxide

    • Authors: A.Y. Kapran, S.M. Orlyk
    • Year: 2022
    • Citations: 1