Dandan Wang | Physics and Astronomy | Best Researcher Award

Assoc. Prof. Dr Dandan Wang | Physics and Astronomy | Best Researcher Award

Associate Professor at Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, College of Physics, Jilin Normal University, China

Wang Dandan is an accomplished researcher in the field of physics, specializing in optics and applied physics. With a Ph.D. from the prestigious Chinese Academy of Sciences, she has built a strong academic foundation. Her career spans roles as a postdoctoral researcher and an associate professor, contributing significantly to research and education. She has led multiple research projects funded by national and provincial institutions, demonstrating her ability to secure competitive grants. Recognized as a high-level talent in Jilin Province, Wang has made meaningful contributions to her field through both theoretical and applied research. In addition to her research activities, she serves as a mentor to graduate students, fostering academic development in her institution.

Professional Profile

Education

Wang Dandan earned her bachelor’s degree in physics from Wuhan University in 2010, where she gained fundamental knowledge in classical and modern physics. She then pursued her Ph.D. at the Changchun Institute of Optics, Fine Mechanics, and Physics at the Chinese Academy of Sciences, completing it in 2015. Her doctoral research focused on advanced optical materials and their applications. This rigorous academic training provided her with expertise in experimental and theoretical physics, laying the groundwork for her future research in optics and applied physics.

Professional Experience

Following her Ph.D., Wang Dandan worked as a postdoctoral researcher at the Changchun Institute of Applied Chemistry from 2015 to 2017. During this time, she engaged in interdisciplinary research, further strengthening her expertise in materials science and applied physics. In 2018, she joined Jilin Normal University as an associate professor in the College of Physics. In this role, she has been actively involved in teaching, research, and mentoring graduate students. She has also led several competitive research projects, demonstrating her leadership in scientific investigations.

Research Interests

Wang Dandan’s research primarily focuses on optics, fine mechanics, and applied physics. She is particularly interested in the development and application of optical materials, advanced imaging techniques, and light-matter interactions. Her work also explores new methodologies for enhancing optical system performance, contributing to advancements in both fundamental physics and practical applications. Through her research, she aims to bridge the gap between theoretical studies and real-world implementations, ensuring that her findings contribute to technological advancements.

Research Skills

With extensive experience in experimental physics, Wang Dandan possesses strong analytical and technical skills in optical system design, material characterization, and applied photonics. She is proficient in using advanced spectroscopy techniques, nanofabrication methods, and computational modeling for optical applications. Her expertise extends to interdisciplinary research, integrating physics with chemistry and materials science. Additionally, her leadership in research projects highlights her ability to manage large-scale scientific investigations effectively.

Awards and Honors

Wang Dandan has been recognized as a high-level talent in Jilin Province (Category E), reflecting her outstanding contributions to scientific research and academia. She has also successfully secured funding from the National Natural Science Foundation and the Jilin Provincial Department of Science and Technology, further establishing her credibility as a leading researcher. These achievements underscore her expertise and commitment to advancing knowledge in her field.

Conclusion

Wang Dandan is a dedicated researcher with a strong academic background and significant contributions to physics and optics. Her leadership in funded research projects, combined with her teaching and mentorship roles, highlights her commitment to scientific advancement. While her recognition as a high-level talent strengthens her profile, expanding her international collaborations, publication record, and industry engagement could further enhance her research impact. Overall, she is a highly competent candidate with the potential for continued success in her field.

Publication Top Notes

  1. Acid-catalyzed preparation of silicon-based imprinted polymers on the surface of SERS sensors for selective detection of L-tryptophan

    • Authors: Xinyi Liu, Huiyan Wei, Meiqi Ju, Shuhua Zhang, Hongji Li
    • Year: 2025
  2. Efficient Near-Infrared Luminescence in Cr3+ Activated β-Alumina Structure Phosphor via Multiple-Sites Occupancy

    • Authors: Kai Li, Dandan Wang, Dan Wu, Wenping Zhou, Liangliang Zhang
    • Year: 2025
  3. Flexible Au@Ag/PDMS SERS imprinted membrane combined with molecular imprinting technology for selective detection of MC-LR

    • Authors: Heng Guo, Hongji Li, Mengyang Xu, Dandan Wang, Wei Sun
    • Year: 2025
  4. Bi-ZFO/BMO-Vo Z-scheme heterojunction photocatalysis-PMS bidirectionally enhanced coupling system for environmental remediation

    • Authors: Zhaoxin Lin, Jing Shao, Jianwei Zhu, Dandan Wang
    • Year: 2025
    • Citations: 9
  5. Bi2MoO6/ZnIn2S4 S-scheme heterojunction containing oxygen vacancies for photocatalytic degradation of organic pollutant

    • Authors: Dandan Wang, Zhaoxin Lin, Weiting Yang, Hongji Li, Zhongmin Su
    • Year: 2025
    • Citations: 2
  6. Yellow-Emitting Organic–Inorganic Hybrid Manganese Halides Realized by Br/Cl Composition Engineering

    • Authors: Dandan Wang, Huimin Dong, Liangliang Zhang, Ting Wang, Ming Feng
    • Year: 2025
  7. Highly Stable Flexible SERS-Imprinted Membrane Based on Plasmonic MOF Material for the Selective Detection of Chrysoidin in Environmental Water

    • Authors: Xinyi Liu, Hongji Li, Dandan Wang, Yilin Wu, Wei Sun
    • Year: 2025
  8. Bi2MoO6/MgIn2S4 S-scheme heterojunction with rich oxygen vacancies for effective organic pollutants degradation: Degradation pathways, biological toxicity assessment, and mechanism research

    • Authors: Dandan Wang, Zhaoxin Lin, Weiting Yang, Hongji Li, Zhongmin Su
    • Year: 2025
  9. Highly selective fluorescence turn-on sensor for·thiol compounds detection

    • Authors: Chaowei Zhang, Dandan Wang, Yiduo Chen, Weiting Yang, Zhongmin Su
    • Year: 2024
  10. One-step synthesis of O, P co-doped g-C3N4 under air for photocatalytic reduction of uranium

  • Authors: Guangzhi Zhang, Tao Lei, Dandan Wang, Qiang Xu, Zhongmin Su
  • Year: 2024
  • Citations: 2

Rifat Capan | Physics and Astronomy | Best Researcher Award

Prof Dr. Rifat Capan | Physics and Astronomy | Best Researcher Award

Had of Atomic and Molecular Physics at Balikesir university, Turkey

Prof. Dr. Rifat Çapan is a distinguished physicist at the University of Balıkesir, specializing in pyroelectric heat sensors, gas sensors for environmental applications, and organic thin film fabrications. He completed his education at Hacettepe University and the University of Sheffield, where he earned his PhD. Throughout his career, he has published 144 articles and authored two books, receiving numerous accolades, including the Leverhulme Visiting Fellowship and International Scientist of the Year 2004. Prof. Çapan has held various leadership roles, including establishing the first Thin Film and Gas Sensor Research Laboratory at his university. He actively collaborates internationally, serving as the Turkey project coordinator for European Union initiatives. His significant contributions to physics and dedication to research and education make him a highly respected figure in his field, reflecting a commitment to advancing scientific knowledge and fostering innovation.

Profile

Education

Prof. Dr. Rifat Çapan completed his primary, secondary, and high school education in his hometown of Yozgat, Turkey. He pursued higher education at Hacettepe University in Ankara, where he graduated in 1989 with a degree in Physics Teaching from the Faculty of Education. Following his graduation, he worked as a research assistant in the same department from 1989 to 1993 while completing his Master’s degree in Physics Engineering at Hacettepe University between 1989 and 1991. Prof. Çapan then advanced his academic career by moving to the University of Sheffield in the UK to pursue his doctoral studies in Physics, representing Balıkesir University. He successfully earned his PhD in 1998 and returned to Balıkesir University, where he has since made significant contributions to research and education in the field of physics. His educational background laid a strong foundation for his subsequent research endeavors and leadership roles in academia.

Professional Experience

Prof. Dr. Rifat Çapan has a distinguished professional experience primarily at the University of Balıkesir, where he has served since 1993. He began his academic journey as a research assistant in the Department of Physics at Hacettepe University, later completing his master’s and PhD at the same institution and the University of Sheffield, respectively. After returning to Balıkesir University, he rose through the ranks from Assistant Professor to Associate Professor and ultimately became a full Professor in 2007. Throughout his career, Prof. Çapan has held various administrative roles, including Head of the Physics Department, Deputy Head of the Department, and Manager of the Scientific Research Projects Unit. He established the Thin Film and Gas Sensor Research Laboratory and has been actively involved in several research projects, securing funding from Turkish Research Council (TÜBİTAK). His leadership and contributions have significantly advanced the university’s research profile and fostered international collaborations.

Research Interest

Prof. Dr. Rifat Çapan’s research interests primarily focus on the development and characterization of advanced sensor technologies, specifically pyroelectric heat sensors and gas sensors for environmental applications. His work involves the fabrication of organic thin films and their subsequent analysis using structural, electrical, and optical techniques. Prof. Çapan explores the properties and mechanisms of pyroelectric materials, contributing to the enhancement of sensor sensitivity and efficiency. His research is vital for addressing environmental challenges, particularly in monitoring air quality and detecting harmful gases. Additionally, he is engaged in projects that involve molecular engineering of sensor materials, aiming to create innovative solutions for industrial and scientific applications. With a strong emphasis on interdisciplinary collaboration, Prof. Çapan actively seeks to integrate his research with other fields, enhancing the applicability and impact of his findings within the scientific community and beyond.

Research Skills

Prof. Dr. Rifat Çapan possesses a diverse set of research skills that significantly contribute to his expertise in physics. His proficiency in pyroelectric heat sensors and gas sensors is supported by a strong foundation in structural, electrical, and optical characterizations, enabling him to innovate in sensor technology for environmental applications. Dr. Çapan’s experience in organic thin film fabrication enhances his ability to develop novel materials with specific functionalities. His adeptness in experimental design and data analysis ensures rigorous methodologies in his research projects. Additionally, he demonstrates strong collaboration skills, evidenced by his coordination of international projects and partnerships with various institutions. His engagement in mentorship allows him to guide emerging researchers, fostering a culture of inquiry and innovation. Dr. Çapan’s ability to communicate complex concepts clearly through publications and presentations further solidifies his role as a leading figure in his field.

Award and Recognition

Prof. Dr. Rifat Çapan has received numerous prestigious awards and recognitions throughout his academic career, reflecting his significant contributions to the field of physics. He was honored with the Overseas Research Student (ORS) award during his doctoral studies at the University of Sheffield, underscoring his commitment to research excellence. In 2004, he was named International Scientist of the Year by the International Biographical Centre in Cambridge, UK, a testament to his global recognition in the scientific community. Additionally, he received the Leverhulme Visiting Fellowship, allowing him to conduct research as a visiting professor at Sheffield Hallam University. His accolades also include the Turkish Physical Society Honor Award in 2021 and the Balıkesir Radio BRT award for Scientists of the Year in 2007. These honors highlight his impactful research in pyroelectric heat sensors and gas sensors, establishing him as a leading figure in his field and a respected mentor for future generations of scientists.

Conclusion

Prof. Dr. Rifat Çapan is a deserving candidate for the Best Researcher Award due to his extensive contributions to the field of physics, particularly in sensor technology. His accomplishments in research, teaching, and administrative roles underscore his dedication and leadership in the scientific community. By addressing areas for improvement, he can further enhance his impact, ensuring that his work continues to contribute significantly to both academia and society. Recognizing him with this award would not only honor his past achievements but also encourage his future endeavors in research and mentorship.

Publication Top Notes

  1. Sensor parameters and adsorption behaviour of rhodamine-based polyacrylonitrile (PAN) nanofiber against dichloromethane vapour
    • Authors: Capan, R., Capan, I., Bayrakci, M.
    • Year: 2024
    • Journal: Microchemical Journal
    • Volume/Issue/Page: 207, 111806
    • Citations: 0
  2. Spin-coated films of calix[4]resorcinarenes as sensors for chlorinated solvent vapours
    • Authors: Çapan, R., Çapan, İ., Davis, F., Ray, A.K.
    • Year: 2024
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 35(25), 1701
    • Citations: 0
  3. Heterocyclic-based Schiff base material designed as optochemical sensor for the sensitive detection of chlorinated solvent vapours
    • Authors: Halay, E., Capan, I., Capan, R., Ay, E., Acikbas, Y.
    • Year: 2024
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 50(9), pp. 4579–4593
    • Citations: 0
  4. Rhodamine-Based Electrospun Polyacrylonitrile (PAN) Nanofiber Sensor for the Detection of Chlorinated Hydrocarbon Vapors
    • Authors: Capan, R., Capan, I., Bayrakci, M.
    • Year: 2024
    • Journal: ACS Applied Polymer Materials
    • Volume/Issue/Page: 6(13), pp. 7500–7511
    • Citations: 2
  5. Sensing Volatile Pollutants with Spin-Coated Films Made of Pillar[5]arene Derivatives and Data Validation via Artificial Neural Networks
    • Authors: Kursunlu, A.N., Acikbas, Y., Yilmaz, C., Buyukkabasakal, K., Senocak, A.
    • Year: 2024
    • Journal: ACS Applied Materials and Interfaces
    • Volume/Issue/Page: 16(24), pp. 31851–31863
    • Citations: 1
  6. Sensing volatile organic compounds with CVD graphene: insights from quartz crystal microbalance and surface plasmon resonance studies
    • Authors: Selvi, H., Capan, I., Capan, R., Acikbas, Y.
    • Year: 2024
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 35(18), 1268
    • Citations: 0
  7. Chloroform sensing properties of Langmuir-Blodgett thin films of Zn(II)phthalocyanine containing 26-membered tetraoxadithia macrocycle groups
    • Authors: Capan, I., Capan, R., Acikbas, Y., Kabay, N., Gök, Y.
    • Year: 2023
    • Journal: Optik
    • Volume/Issue/Page: 294, 171429
    • Citations: 1
  8. A new approach for the adsorption kinetics using surface plasmon resonance results
    • Authors: Çapan, R., Çapan, İ., Davis, F.
    • Year: 2023
    • Journal: Sensors and Actuators B: Chemical
    • Volume/Issue/Page: 394, 134463
    • Citations: 9
  9. Metal sulfide sub-nanometer clusters formed within calix(8)arene Langmuir-Blodgett films
    • Authors: Ozkaya, C., Abu-Ali, H., Nabok, A., Hammond, D., Capan, R.
    • Year: 2023
    • Journal: Thin Solid Films
    • Volume/Issue/Page: 782, 140024
    • Citations: 1
  10. Electrospun polyacrylonitrile (PAN)/polypyrrole (PPy) nanofiber-coated quartz crystal microbalance for sensing volatile organic compounds
    • Authors: Yagmurcukardes, N., Ince Yardimci, A., Yagmurcukardes, M., Capan, R., Acikbas, Y.
    • Year: 2023
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 34(27), 1869
    • Citations: 3

 

 

 

 

Bibiana Doris Riquelme | Biomedical Physics | Best Researcher Award

Bibiana Doris Riquelme | Biomedical Physics | Best Researcher Award

Principal Research, Consejo Investigaciones Universidad Nacional de Rosario (CIUNR), Argentina.

Bibiana Doris Riquelme is a distinguished physicist based in Rosario, Argentina, with extensive expertise in applied physics, biophotonics, hemorrheology, and biosensors. Her interdisciplinary approach combines principles of physical sciences and biomedical research, leading to significant advancements in understanding biomolecular interactions and their applications in medical technology. Riquelme is affiliated with the Institute of Physics of Rosario (IFIR), where she continues to contribute to innovative research initiatives.

Profile:

 

Education

Riquelme completed her Bachelor’s Degree in Physics from the National University of Rosario (UNR) in December 1989, specializing in applied optics to biology. She further advanced her education by earning a Doctorate in Physics in May 1997, focusing on the complex rheology of biomembranes and its application to human erythrocytes. Additionally, she holds a degree as a Professor of Drawing and Painting from S.S.M. Cosmopolita, demonstrating her diverse academic background and creative skills.

Professional Experiences

Bibiana Riquelme’s professional journey includes a postdoctoral fellowship awarded by FOMEC at the National University of Rosario, where she spent ten months abroad in France, engaged in research at the Laboratory of Mechanics and Cellular and Tissue Engineering. Her work in various esteemed institutions has allowed her to collaborate with leading researchers and contribute to significant advancements in her field. Currently, she is a research scientist at the Institute of Physics of Rosario, where she leads projects focusing on optics and biophysics.

 

Research skills

Riquelme possesses a comprehensive skill set in several critical areas of research, including optics, biophotonics, and hemorrheology. Her proficiency extends to the design and development of biosensors and the study of biomolecular interactions in solution. Her expertise in applied optics to biomedical sciences enables her to contribute significantly to both theoretical and practical advancements in health-related technologies, including medical biomaterials and stem cell technologies.

 

Awards And Recoginition

Throughout her career, Riquelme has received recognition for her contributions to science and technology. Her postdoctoral research experience and collaborations with international research institutions highlight her commitment to advancing knowledge in her field. While specific awards and recognitions are not detailed in the provided information, her standing as a researcher in the academic community reflects her impactful work and dedication to scientific excellence.

Conclusion

Bibiana Doris Riquelme possesses a robust academic background, specialized research expertise, and postdoctoral experience, making her a strong candidate for the Best Researcher Award. Her contributions to applied physics in the biomedical field and her potential for impactful research underscore her suitability for this recognition. Addressing the areas for improvement, particularly in showcasing her publications and community engagement, could further bolster her candidacy and demonstrate her influence within the scientific community.

Publication Top Notes

  • Preliminary Study of the Gamma-Radiation Effect on the Plasma Ions Concentration in Transfusion Units
    Authors: Alet, A.I., Porini, S., Detarsio, G., Galassi, M.E., Riquelme, B.D.
    Year: 2024
    Citation: Anales de la Asociacion Fisica Argentina, 35(1), pp. 21–24.
    🧪📊
  • Effect of Aqueous Extracts of Phyllanthus sellowianus on the Viscoelastic Properties of Human Red Blood Cells: In Vitro Antidiabetic Activity
    Authors: Mascaro Grosso, H., Buszniez, P., Castellini, H.V., Riquelme, B.D.
    Year: 2023
    Citation: Anales de la Asociacion Fisica Argentina, 34(2), pp. 42–45.
    🍃💉
  • Biospeckle Laser as a Tool to Analyze Erythrocyte Aggregation
    Authors: Toderi, M.A., Riquelme, B.D., Galizzi, G.E.
    Year: 2022
    Citation: Optical Engineering, 61(12), 124101.
    🔬✨
  • Methods: A New Protocol for In Vitro Red Blood Cell Glycation
    Authors: Batista da Silva, M.V., Alet, A.I., Castellini, H.V., Riquelme, B.D.
    Year: 2022
    Citation: Comparative Biochemistry and Physiology – Part A: Molecular and Integrative Physiology, 264, 111109.
    📚🧬
  • New Insights into the Mechanics of Erythrocytes: Effects of Radiation and Several Drugs of Biomedical Interest
    Authors: Riquelme, B.D., Toderi, M., Batista, M., Estrada, E., Alet, A.I.
    Year: 2022
    Citation: Series on Biomechanics, 36(1), pp. 61–69.
    🩸🔍
  • In Vitro Alteration on Erythrocytes Mechanical Properties by Propofol, Remifentanil, and Vecuronium
    Authors: Alet, A.I., Batista da Silva, M.V., Castellini, H.V., Alet, N.A., Riquelme, B.D.
    Year: 2021
    Citation: Microvascular Research, 135, 104132.
    💊🩹
  • New Insights into the Analysis of Red Blood Cells from Leukemia and Anemia Patients: Nonlinear Quantifiers, Fractal Mathematics, and Wavelet Transform
    Authors: Bortolato, S.A., Mancilla Canales, M.A., Riquelme, B.D., Ponce de León, P., Korol, A.M.
    Year: 2021
    Citation: Physica A: Statistical Mechanics and its Applications, 567, 125645.
    📈💔
  • Simultaneous Determination of Human Erythrocyte Deformability and Adhesion Energy: A Novel Approach Using a Microfluidic Chamber and the “Glass Effect”
    Authors: Londero, C.M., Riquelme, B.D.
    Year: 2021
    Citation: Cell Biochemistry and Biophysics, 79(1), pp. 49–55.
    🔬💧
  • Preliminary Study of the Effects of Gamma Radiations on Human Red Blood Cells
    Authors: Estrada, E., Castellini, H., Acosta, A., Riquelme, B.D., Galassi, M.E.
    Year: 2020
    Citation: Anales de la Asociacion Fisica Argentina, 31(2), pp. 51–54.
    ☢️🔴
  • Extensive Clinical, Serologic and Molecular Studies Lead to the First Reported Rhmod Phenotype in Argentina
    Authors: Mufarrege, N., Franco, N., Trucco Boggione, C., Castilho, L., Cotorruelo, C.
    Year: 2020
    Citation: Transfusion, 60(7), pp. 1373–1377.
    🩸🇦🇷