Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019

PRATHIBA Gurusamy | Engineering | Women Researcher Award

Dr. PRATHIBA Gurusamy | Engineering | Women Researcher Award

Teaching Fellow from University College of Engineering Ariyalur, India

Dr. G. Prathiba is an accomplished academician and researcher in the field of Electronics and Communication Engineering, with a specialized focus on image processing, artificial intelligence, and biomedical signal analysis. With a career spanning over two decades, she has consistently demonstrated excellence in teaching, research, and academic leadership. Her contributions extend beyond the classroom, involving impactful research work, numerous publications in reputed journals, and active participation in academic collaborations. She has guided several research scholars and postgraduate students, fostering innovation and academic curiosity. Dr. Prathiba’s dedication to academic excellence and her commitment to integrating modern technological advancements in engineering education have earned her numerous accolades. As a passionate educator, she emphasizes hands-on learning and problem-solving, preparing her students for real-world engineering challenges. Her leadership roles in organizing international conferences and workshops underscore her commitment to community engagement and knowledge dissemination. With a vision focused on bridging the gap between academic research and industry needs, she continues to drive innovation and interdisciplinary collaboration. Dr. Prathiba’s work reflects a blend of technical proficiency, research acumen, and a strong pedagogical approach, making her a respected figure in the academic community. Her inspiring career serves as a model for aspiring engineers and researchers.

Professional Profile

Education

Dr. G. Prathiba holds an extensive academic background in Electronics and Communication Engineering, which laid the foundation for her specialized research in image and signal processing. She earned her Bachelor of Engineering (B.E.) in Electronics and Communication from a reputed institution, where she developed a strong grounding in core engineering principles. She then pursued her Master’s degree (M.E.) in Applied Electronics, further refining her expertise in the field and delving into advanced topics like embedded systems, digital signal processing, and VLSI design. Her thirst for knowledge and innovation led her to undertake a Ph.D. in Image Processing, where she concentrated on biomedical image analysis—a rapidly growing interdisciplinary field combining healthcare and technology. Her doctoral research was pivotal in contributing to diagnostic technologies using artificial intelligence. Throughout her educational journey, Dr. Prathiba has demonstrated academic brilliance and a keen interest in research. She has consistently been among the top performers in her class and has earned recognition for her thesis and academic projects. Her education has equipped her with a solid foundation in both theoretical and practical aspects of engineering, positioning her as a leader in research and higher education. Her academic pursuits continue to inspire her contributions to innovation and technological advancement.

Professional Experience

Dr. G. Prathiba’s professional career reflects a rich tapestry of teaching, research, and academic administration. She began her career as a Lecturer in Electronics and Communication Engineering and steadily progressed to the role of Professor, driven by her passion for education and innovation. Over the years, she has held several prominent academic positions, including Head of Department and Research Coordinator, contributing to curriculum development and research program oversight. Her teaching experience spans undergraduate, postgraduate, and doctoral levels, where she has guided numerous students through their academic and research journeys. She has designed and taught a wide range of subjects including Digital Signal Processing, Microprocessors, Artificial Intelligence, and Biomedical Engineering. In addition to teaching, Dr. Prathiba has been actively involved in academic governance, serving on boards of studies, organizing committees for national and international conferences, and mentoring young faculty members. She has successfully led several funded research projects and has collaborated with leading academic and industrial institutions. Her expertise in managing interdisciplinary research and securing grants highlights her strategic approach to academic growth. Dr. Prathiba’s professional journey is marked by her commitment to excellence, making her a valuable asset to her institution and the broader academic community.

Research Interests

Dr. G. Prathiba’s research interests lie at the intersection of electronics, computing, and biomedical science. Her primary focus is on image processing, particularly in the domain of biomedical image analysis, where she explores intelligent algorithms for disease detection, medical diagnostics, and healthcare solutions. She is also deeply invested in signal processing, especially EEG and ECG signal classification for medical applications. Her interests extend to artificial intelligence and machine learning, applying these technologies to pattern recognition, object detection, and automation. Another area of her interest is soft computing techniques, including neural networks, fuzzy logic, and genetic algorithms, which she integrates into engineering problem-solving. Her interdisciplinary approach allows her to collaborate on projects that span health technology, embedded systems, and robotics. Additionally, Dr. Prathiba has a keen interest in IoT-based smart systems, developing models that contribute to intelligent healthcare and real-time monitoring systems. Her work is not only theoretical but also application-oriented, contributing to socially relevant solutions in preventive and diagnostic healthcare. Through her innovative research and publication record, Dr. Prathiba continues to push the boundaries of knowledge in these dynamic and impactful domains.

Research Skills

Dr. G. Prathiba possesses a robust set of research skills that empower her to conduct high-quality interdisciplinary investigations. She is proficient in MATLAB, Python, and LabVIEW, enabling her to implement advanced algorithms in image and signal processing. Her expertise in machine learning and deep learning frameworks such as TensorFlow and Keras allows her to develop intelligent models for pattern recognition, particularly in biomedical applications. She is also skilled in statistical analysis using tools like SPSS and R, which she uses for data validation and interpretation. Dr. Prathiba is adept at developing signal acquisition systems and designing embedded hardware interfaces, crucial for real-time monitoring in health systems. Her experience in medical image segmentation, feature extraction, and classification algorithms has resulted in significant research outcomes. Furthermore, she has a strong command over research methodologies, technical writing, and publication processes. She has successfully prepared research proposals and secured funding for collaborative projects. Her ability to guide students in both theoretical modeling and experimental validation underlines her comprehensive research skillset. Dr. Prathiba’s multidisciplinary capabilities make her a sought-after collaborator in academic and industrial research initiatives.

Awards and Honors

Dr. G. Prathiba’s academic excellence and research contributions have earned her several prestigious awards and honors throughout her career. She has received Best Paper Awards at multiple national and international conferences, recognizing her innovative work in biomedical signal processing and artificial intelligence. Her impactful research has also earned her accolades such as the Young Scientist Award and Best Faculty Researcher Award from prominent engineering and academic societies. Dr. Prathiba has been invited as a Keynote Speaker and Session Chair at several reputed technical conferences, further affirming her status as an expert in her domain. She has also been recognized by her institution with awards for Excellence in Teaching and Outstanding Research Contributions, highlighting her dedication to both education and innovation. Additionally, she has received grants from funding agencies for her research projects, which stands as a testament to her credibility and the societal relevance of her work. Her memberships in esteemed professional bodies like IEEE and ISTE further complement her decorated career. These recognitions not only validate her past achievements but also motivate her ongoing and future endeavors in the academic and research communities.

Conclusion

In summary, Dr. G. Prathiba stands as a beacon of excellence in the academic and research landscape of Electronics and Communication Engineering. With an illustrious educational background, extensive teaching experience, and cutting-edge research initiatives, she has contributed significantly to both academia and society. Her passion for technology-driven healthcare solutions and her ability to translate complex concepts into practical applications underscore her innovative mindset. Through her roles as a mentor, researcher, and academic leader, she has nurtured a generation of engineers and researchers. Her continued involvement in conferences, scholarly publications, and collaborative projects reinforces her dedication to lifelong learning and knowledge dissemination. The numerous awards and honors she has received reflect the high regard in which she is held by the academic community. Dr. Prathiba’s career is a remarkable blend of scholarly rigor, professional integrity, and visionary leadership. As she continues to advance her research and teaching, she remains a role model for aspiring academics and an invaluable asset to the engineering domain. Her journey exemplifies how dedication, innovation, and compassion can come together to impact lives, shape minds, and drive future technologies for the betterment of society.

Publications Top Notes

  1. Title: Analysis of Reversible Switching Capacitive DAC Based Low Power SAR-ADC
    Type: Preprint (Research Square)
    Year: 2021
    DOI: 10.21203/rs.3.rs-164633/v1
    EID: 2-s2.0-85166695178
    Authors: Prathiba, G.; Santhi, M.

  1. Title: A 2.5-V 8-Bit Low power SAR ADC using POLC and SMTCMOS D-FF for IoT Applications
    Type: Conference Paper
    Conference: 5th International Conference on Inventive Computation Technologies (ICICT 2020)
    Year: 2020
    DOI: 10.1109/ICICT48043.2020.9112548
    EID: 2-s2.0-85086993340
    Authors: Prathiba, G.; Santhi, D.M.

  1. Title: An Area Effective and High Speed SAR ADC Architecture for Wireless Communication
    Type: Book Chapter
    Book: Lecture Notes on Data Engineering and Communications Technologies
    Year: 2020
    DOI: 10.1007/978-3-030-37051-0_67
    EID: 2-s2.0-85083453429
    ISSN: 2367-4520 / 2367-4512
    Authors: Prathiba, G.; Santhi, M.

  1. Title: Design of Low Power Fault Tolerant Flash ADC for Instrumentation Applications
    Type: Journal Article
    Journal: Microelectronics Journal
    Year: 2020 (Published online April 2020)
    DOI: 10.1016/j.mejo.2020.104739
    EID: Not provided, but appears in Scopus
    Authors: G. Prathiba; M. Santhi

 

 

Guocheng Qin | Engineering | Best Researcher Award

Mr. Guocheng Qin | Engineering | Best Researcher Award

Researcher from Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, China

Qin Cheng is a dedicated and innovative civil engineering researcher with a strong focus on integrating advanced digital technologies such as Building Information Modeling (BIM), 3D laser scanning, and Unmanned Aerial Vehicle (UAV) systems into modern construction and infrastructure projects. Born in March 1994, he has consistently demonstrated academic excellence, practical engineering insight, and a deep interest in smart city development and sustainable infrastructure. His work spans across both academic and applied settings, with a particular emphasis on intelligent monitoring systems, reverse modeling, and digital design optimization. He has contributed to various high-profile research initiatives and collaborative international projects, particularly during his tenure as a visiting scholar at the University of Louvain. Qin Cheng has also been actively involved in training graduate students, guiding technical design, and promoting intelligent construction practices. His experience working with institutions such as the Chongqing Leuven Institute of Smart City and Sustainable Development and contributions to international exhibitions like the China Intelligent Industry Expo reflect his ability to bridge academic research with real-world applications. With a clear commitment to advancing civil engineering practices through technology and innovation, Qin Cheng continues to emerge as a promising voice in the field of smart construction and structural engineering.

Professional Profile

Education

Qin Cheng’s academic journey in civil engineering began with a Bachelor of Engineering from Zhengzhou Institute of Technology and Business, where he studied from September 2013 to July 2017. Building on a solid undergraduate foundation, he pursued a Master of Engineering in Civil Engineering with a structural specialization at Chongqing Jiaotong University from September 2017 to July 2020. During his master’s studies, Qin demonstrated exceptional academic and research abilities, further enriching his education through international exposure. Between October 2018 and January 2019, he served as a visiting scholar at the University of Louvain in Belgium, engaging in scholarly exchanges focused on construction waste regeneration and sustainable urban development. This international experience broadened his perspective on global engineering practices and enhanced his research on smart city applications. His academic background is marked by strong technical competence in structural systems, intelligent monitoring, and construction digitization. Through both domestic and international institutions, Qin Cheng has built a strong academic profile grounded in research excellence, multidisciplinary learning, and hands-on application of modern civil engineering technologies.

Professional Experience

Qin Cheng has built a diverse portfolio of professional experience that merges academic research, international collaboration, and field application. One of his notable professional engagements was his time as a visiting scholar at the University of Louvain (October 2018 to January 2019), where he contributed to academic exchanges on sustainable urban development and construction waste regeneration. He also engaged with world-renowned engineering firms such as Jan de Nul Group to explore cutting-edge civil engineering practices. Qin served as a researcher at the Chongqing Leuven Institute of Smart City and Sustainable Development, where he played a key role in conducting technical breakthroughs in forward design, reverse modeling, and intelligent monitoring systems. His responsibilities included training graduate students in architectural information technology, guiding bridge reverse modeling projects in Norway, and participating in major events such as the China International Intelligent Industry Expo. His professional activities emphasize the integration of BIM and 3D technologies into infrastructure development. Through his involvement in large-scale projects such as the Taihong Yangtze River Bridge and the FAW-Volkswagen Digital Factory, Qin has effectively applied his academic expertise to real-world engineering challenges. His career path reflects a commitment to technological innovation, cross-border collaboration, and the advancement of intelligent infrastructure systems.

Research Interests

Qin Cheng’s research interests center on the integration of advanced digital technologies in civil engineering, with a particular focus on intelligent construction and infrastructure management. He is deeply engaged in developing and applying Building Information Modeling (BIM), 3D laser scanning, and UAV technologies to improve the design, monitoring, and maintenance of civil structures. His work explores how digital tools can optimize construction processes, enhance precision in modeling, and support virtual simulations for pre-assembly. Qin is also interested in reverse modeling techniques for complex structures, smart monitoring of bridges and buildings, and the use of point cloud data in structural analysis. His international collaborations have further shaped his interest in sustainable urban development, where he examines how smart technologies can be leveraged to build resilient, efficient cities. Through projects focused on highway management systems, digital curtain wall design, and large-scale bridge construction, he aims to create innovative solutions that address contemporary challenges in civil engineering. Qin’s research embodies a forward-thinking approach that blends theoretical modeling with practical application, striving to make infrastructure safer, more efficient, and more intelligent through continuous technological advancement.

Research Skills

Qin Cheng possesses a robust set of research skills that enable him to address complex challenges in civil and structural engineering through technological innovation. His core competencies include advanced proficiency in Building Information Modeling (BIM) and 3D laser scanning, which he has used extensively for deformation monitoring, digital pre-assembly, and reverse modeling of both buildings and bridges. He is skilled in UAV route planning and tilt photography for site inspections and large-scale mapping, showcasing his adaptability in remote sensing applications. His hands-on experience with point cloud data processing enables him to conduct accurate structural analysis and digital model construction. Qin is also proficient in integrating BIM with IoT systems for smart bridge management, combining sensor data with digital modeling for real-time infrastructure monitoring. In academic and collaborative environments, he has guided graduate students in technical training and project design, demonstrating strong mentorship capabilities. He is comfortable working across international platforms and has presented his work at major conferences. Qin’s methodological rigor, combined with his technical agility, allows him to innovate across design, monitoring, and operational aspects of civil engineering projects. His ability to apply research techniques to practical scenarios is a key strength in his professional and academic career.

Awards and Honors

Throughout his academic and early research career, Qin Cheng has received several prestigious awards and honors that reflect his dedication, excellence, and potential in the field of civil engineering. During his undergraduate studies, he was consistently recognized with merit-based scholarships, including the National Encouragement Scholarship and first-class and second-class academic scholarships. His excellence continued into his postgraduate years at Chongqing Jiaotong University, where he was awarded the Beijing CCCC Road Tong Million Scholarship and the first-class postgraduate scholarship. In 2020, he won the second prize in the “My College Life” competition and the third prize in the “Transportation BIM Engineering Innovation Award” from the China Highway Society. These accolades highlight both his academic achievements and his contributions to engineering innovation. His participation in various international academic events and his role in large-scale national infrastructure projects further affirm his growing reputation in the field. The consistent recognition of his work through these awards underscores his capability to combine theoretical knowledge with practical engineering excellence. These honors are a testament to his talent, perseverance, and impact in advancing intelligent construction technologies and modern infrastructure development.

Conclusion

In conclusion, Qin Cheng emerges as a highly motivated and capable young researcher with a strong foundation in civil engineering and a clear commitment to technological innovation in infrastructure development. His integration of BIM, 3D laser scanning, and UAV systems into design and monitoring processes showcases his forward-thinking approach and alignment with the needs of smart and sustainable urban construction. With a solid academic background, international experience, and a growing body of research publications, he brings both technical expertise and practical insight to the field. Although he currently holds a master’s degree, his trajectory suggests significant potential for further academic advancement and research leadership. He has demonstrated the ability to bridge academic research with real-world engineering applications, making valuable contributions to both scholarly and professional communities. While increasing publication in top-tier journals and engaging in patent development could further enhance his profile, Qin Cheng has already laid a strong foundation for a successful research career. He is a suitable and deserving candidate for recognition in early-stage researcher or emerging researcher award categories and has the capacity to evolve into a leading expert in smart construction and digital civil engineering in the years ahead.

Publications Top Notes

  1. Title: Automatic Construction of 3D Building Property Rights Model Based on Visual Programming Language in China
    Authors: Qin, Guocheng; Hu, Yuqing; Wang, Ling; Liu, Ke; Hou, Yimei
    Journal: Advances in Civil Engineering
    Year: 2024

Bruno Agard | Engineering | Best Researcher Award

Prof. Bruno Agard | Engineering | Best Researcher Award

Professor from Polytechnique Montréal, Canada

Professor Bruno Agard is a distinguished academic in the field of Industrial Engineering, currently holding a professorship at the École Polytechnique de Montréal within the Department of Mathematics and Industrial Engineering. As a core member of the Laboratoire en Intelligence des Données (LID), he is widely recognized for his applied research on data-driven decision-making across transportation systems, supply chain management, and product design. His academic journey has taken him through top institutions in France, the United States, and Canada, equipping him with a global outlook and a multidisciplinary approach. Professor Agard’s scholarly influence is exemplified through his involvement in collaborative research with CIRRELT and GERAD, as well as through his numerous technical reports and publications. A seasoned educator and mentor, he has supervised a significant number of postdoctoral researchers, doctoral candidates, and master’s students, contributing greatly to the academic community’s growth. His research focuses on integrating intelligent data analysis into real-world systems, thereby enhancing operational efficiency and sustainability. With his innovative contributions and longstanding commitment to research excellence, Professor Agard stands out as a highly deserving nominee for the Best Researcher Award. His work bridges theory and practice, shaping the future of industrial systems in academia and industry alike.

Professional Profile

Education

Professor Bruno Agard’s educational foundation is both extensive and prestigious, reflecting a clear trajectory of excellence in industrial engineering and applied sciences. He earned his Ph.D. in Industrial Engineering with honors in 2002 from the Institut National Polytechnique de Grenoble, France, where his dissertation focused on product design methodologies in contexts of wide diversity. Prior to that, he completed a Master of Science in Industrial Engineering (DEA) in 1999 at the same institution. His academic path also includes a highly competitive 5-year teaching degree (Agrégation) in 1998 from the École Normale Supérieure de Cachan, where he was ranked fourth nationally—an exceptional accomplishment. Additionally, he holds a four-year university degree in Technology (Maîtrise) with honors from Université d’Orléans-Tours (1997), a B.S. in Manufacturing (Licence) from the same university (1996), and a two-year technical degree (DUT) in Technology from Institut Universitaire Technologique de Bourges, where he was ranked second (1995). Professor Agard began his academic pursuit with a high school diploma (Baccalauréat) from Lycée Claude de France in 1992. His education reflects a solid and diverse academic preparation that underpins his expertise in industrial engineering, systems design, and data analysis.

Professional Experience

Professor Bruno Agard has built a remarkable academic and research career spanning over two decades across France, the United States, and Canada. Since 2014, he has served as a full Professor in the Department of Mathematics and Industrial Engineering at École Polytechnique de Montréal. Prior to this, he was promoted through the ranks at the same institution, working as an Associate Professor from 2008 to 2014 and Assistant Professor from 2003 to 2008. His academic journey began with an Assistant Professorship at the IUFM de Grenoble in the Department of Technology, Management, Economics, and Society during 2002–2003. In Spring 2001, he further broadened his academic exposure as a visiting researcher at the Intelligent Systems Laboratory, University of Iowa, USA. Between 1999 and 2002, Professor Agard also worked as a Teaching and Research Assistant at the Ecole Nationale Supérieure de Génie Industriel, part of the Institut National Polytechnique de Grenoble. His diverse academic roles have allowed him to lead cutting-edge research projects, engage with interdisciplinary teams, and contribute to curriculum development. His deep experience across international academic settings has cemented his role as a key figure in advancing industrial engineering, applied data science, and smart systems integration.

Research Interests

Professor Bruno Agard’s research interests lie at the intersection of industrial engineering, data science, and systems optimization. A core area of his expertise is in the application of intelligent data analysis to real-world problems, particularly in transportation systems, supply chain management, and product design. He is passionate about improving decision-making processes by developing data-driven methodologies that support operational efficiency and resilience. One of his notable domains of research is in analyzing smart card data to understand public transit usage patterns—an area where he has co-authored several technical reports in collaboration with CIRRELT. He also explores advanced clustering and segmentation techniques, temporal pattern recognition, and spatial-temporal data modeling. Professor Agard has demonstrated a strong interest in the joint design of product families and supply chains, applying optimization algorithms such as taboo search to solve complex, multi-objective problems. His research extends to occupational health and safety tools, emergency response logistics, and systems interoperability in public transportation during crisis scenarios. With a continuous focus on translating theoretical frameworks into applicable solutions, Professor Agard’s research is both academically rigorous and socially impactful. His work contributes significantly to sustainable urban planning, intelligent manufacturing, and the digital transformation of industrial systems.

Research Skills

Professor Bruno Agard possesses a wide array of advanced research skills that make him a prominent figure in industrial engineering and data intelligence. He is adept in quantitative modeling, optimization techniques, machine learning, and big data analytics—skills that he routinely applies to solve challenges in transportation, supply chains, and manufacturing. His technical proficiency includes developing innovative data mining and clustering algorithms to extract insights from smart card and operational datasets. He has shown a deep understanding of time-series analysis, segmentation methods, and spatial-temporal data integration. Moreover, Professor Agard has expertise in multi-objective optimization, particularly in designing product families and associated supply chains using heuristic and metaheuristic approaches, including taboo search. He is highly experienced in simulation modeling and decision support system design, ensuring his research remains practical and applicable. Additionally, he is a skilled academic mentor and collaborator, having supervised numerous Ph.D., master’s, and postdoctoral researchers. His ability to communicate complex ideas effectively in interdisciplinary and international contexts is further enhanced by his fluency in French, English, and intermediate Spanish. Altogether, Professor Agard’s research skill set positions him as a versatile and impactful contributor to the advancement of intelligent systems in industrial and academic environments.

Awards and Honors

While specific awards are not detailed in the provided information, Professor Bruno Agard’s impressive academic and research trajectory reflects a career marked by excellence, leadership, and scholarly impact. His appointment and promotion through all academic ranks—from Assistant to Full Professor—at École Polytechnique de Montréal is a testament to his sustained contributions and recognition within the academic community. Notably, his national ranking of fourth in the highly competitive Agrégation program at École Normale Supérieure de Cachan is an early indicator of his academic brilliance. Furthermore, his continued affiliation with prominent research institutions such as CIRRELT (Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation) and GERAD (Group for Research in Decision Analysis) highlights the recognition of his research capabilities in elite scholarly circles. His extensive supervision of nearly 120 students across multiple levels, coupled with his leadership in interdisciplinary research projects, further positions him as an academic of high repute. Though no formal honors are listed, Professor Agard’s scholarly outputs, mentorship, and leadership roles within international collaborations demonstrate the impact and esteem he holds in his field. Such accomplishments strongly support his candidacy for distinguished awards recognizing research excellence.

Conclusion

In conclusion, Professor Bruno Agard exemplifies the qualities of a top-tier researcher deserving of the Best Researcher Award. With over two decades of academic experience, he has established himself as a leader in the fields of industrial engineering, intelligent data systems, and optimization. His ability to bridge theoretical innovation with practical applications has yielded valuable insights in public transit analytics, supply chain configuration, and emergency logistics planning. His multidisciplinary research collaborations with renowned institutions like CIRRELT and GERAD reflect his deep integration into Canada’s leading research ecosystems. Furthermore, his mentorship of over 120 students underscores his dedication to shaping the next generation of scholars and practitioners. Professor Agard’s methodological rigor, combined with a deep understanding of complex data environments, positions him as a transformative figure in his discipline. While his formal awards may not be extensively documented, the breadth of his contributions—spanning high-impact publications, student development, and applied industrial solutions—speak volumes about his research excellence. Recognizing Professor Agard with the Best Researcher Award would not only celebrate his achievements but also highlight the value of integrating data intelligence with industrial systems for societal advancement.

Publications Top Notes

  • Title: Machine Learning Tool for Yield Maximization in Cream Cheese Production
    Authors: L. Parrenin, A. Dupuis, C. Danjou, B. Agard

  • Title: An Inventory Management Support Tool Through Indirect Q-Value Estimation: A Combined Optimization and Forecasting Approach
    Authors: A.R. Delfiol, C. Dadouchi, B. Agard, P. St-Aubin

  • Title: Modulated spatiotemporal clustering of smart card users
    Authors: R. Decouvelaere, M.M. Trépanier, B. Agard
    Year: 2024
    Citations: 4

  • Title: A decision support tool to analyze the properties of wheat, cocoa beans and mangoes from their NIR spectra
    Authors: L. Parrenin, C. Danjou, B. Agard, G. Marchesini, F. Barbosa
    Year: 2024
    Citations: 1

  • Title: Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering
    Authors: C. Ducharme, B. Agard, M.M. Trépanier
    Year: 2024
    Citations: 1

  • Title: Improvement of freight consolidation through a data mining-based methodology
    Authors: Z. Aboutalib, B. Agard
    Year: 2024

  • Title: Digital Technologies and Emotions: Spectrum of Worker Decision Behavior Analysis
    Authors: A. Dupuis, C. Dadouchi, B. Agard

  • Title: A decision support system for sequencing production in the manufacturing industry
    Authors: A. Dupuis, C. Dadouchi, B. Agard
    Year: 2023
    Citations: 1

  • Title: A decision support tool for the first stage of the tempering process of organic wheat grains in a mill
    Authors: L. Parrenin, C. Danjou, B. Agard, R. Beauchemin
    Year: 2023
    Citations: 5

 

Macdex Mutema | Engineering | Excellence in Research Award

Dr. Macdex Mutema | Engineering | Excellence in Research Award

Senior Research Engineer from Agricultural Research Council, South Africa

Dr. Macdex Mutema is an accomplished water resources scientist with extensive experience in surface water hydrology, irrigation systems, soil and water conservation, and climate-smart agriculture. His career spans over two decades, encompassing roles in research, academia, program management, and technical engineering. Currently a Senior Researcher at the Agricultural Research Council in South Africa, Dr. Mutema is recognized for his leadership in national and international projects addressing irrigation efficiency, sustainable land management, and agricultural resilience. He has served as a mentor and supervisor to postgraduate students, while simultaneously lecturing at the University of Venda. Dr. Mutema has reviewed numerous academic papers for leading journals and examined advanced theses, reflecting his respected status within the academic and professional community. He holds professional affiliations with SACNASP and SABI, reinforcing his credibility and commitment to scientific advancement. His research activities are complemented by his ability to translate knowledge into practical applications for farming communities and stakeholders. With a strong background in both the technical and socio-environmental aspects of water resource engineering, Dr. Mutema’s contributions stand out in terms of impact, sustainability, and innovation. He is a suitable candidate for recognition in excellence in research, particularly in fields related to environmental sustainability and agricultural water management.

Professional Profile

Education

Dr. Macdex Mutema’s educational journey reflects a focused trajectory in agricultural engineering, soil science, and hydrology. He earned his PhD in Hydrology from the University of KwaZulu-Natal, South Africa, between 2012 and 2016. His doctoral studies provided a robust foundation in hydrological modeling, water resource management, and applied environmental research. Prior to this, he completed a Master of Science in Soil and Environmental Management at the University of Zimbabwe (2007–2010), equipping him with analytical and field-based knowledge essential for tackling soil degradation and water conservation issues. His undergraduate training includes a Bachelor of Science Honors Degree in Agricultural Engineering from the University of Zimbabwe (1994–1997), where he developed the engineering and technical skills foundational to his long-term career in irrigation, hydrology, and land management. In addition to formal academic qualifications, Dr. Mutema has continuously enhanced his expertise through specialized short courses. These include training in advanced irrigation design, outcomes-based education, moderation, and facilitation skills—all of which contribute to his effectiveness in both research and pedagogy. His educational background is multidisciplinary, combining engineering, environmental science, and hydrology, and aligns seamlessly with his professional focus on sustainable water use and climate-resilient agricultural systems.

Professional Experience

Dr. Macdex Mutema possesses an impressive and diverse professional history in research, academia, and development sectors. Since 2017, he has served as a Senior Researcher at the Agricultural Research Council-Institute for Agricultural Engineering in South Africa. His core responsibilities include research on irrigation systems, soil and water management, environmental protection, and training module development. He also mentors postgraduate students and contributes to policy-relevant project proposals. Concurrently, Dr. Mutema has worked as a part-time Senior Lecturer at the University of Venda since 2018, where he teaches engineering science courses and supervises both undergraduate and postgraduate research. From 2015 to 2017, he was a Postdoctoral Research Fellow at the Centre for Water Resources Research, University of KwaZulu-Natal, where he focused on soil, water, and nutrient fluxes. He also has significant experience in NGO sectors, having held key technical and managerial roles in organizations like CADS Trust, VeCO Zimbabwe, and CoopIBO Zimbabwe. These roles involved irrigation design, natural resource management, project leadership, and community engagement. His early academic career includes lectureships at the University of Zimbabwe. With over two decades of multidisciplinary experience, Dr. Mutema bridges applied research, academic training, and practical implementation across southern Africa.

Research Interests

Dr. Macdex Mutema’s research interests span a wide spectrum of interconnected fields in water resources and environmental sustainability. His primary focus is on surface water hydrology, agricultural water use, irrigation technologies, and soil and water conservation engineering. He is particularly passionate about optimizing irrigation systems for both smallholder and commercial farms to enhance water use efficiency and crop productivity. A significant portion of his work is dedicated to climate-smart agriculture, including rainwater harvesting and adaptive water management strategies tailored for semi-arid regions. His research also addresses the broader challenges of sustainable land management and ecosystem services restoration in degraded landscapes. As global environmental concerns intensify, Dr. Mutema has engaged in interdisciplinary work that bridges hydrology with policy, education, and community-based development. His commitment to applied solutions is evident in his project leadership, which translates scientific findings into practical interventions. His interests are also aligned with the evolving needs of African agriculture in the face of climate change, where water scarcity and soil degradation remain pressing issues. Dr. Mutema’s work contributes both to academic knowledge and to tangible improvements in resource management, making his research interests highly relevant to regional and international development agendas.

Research Skills

Dr. Macdex Mutema possesses a robust skill set that spans theoretical modeling, field-based research, academic supervision, and project implementation in the realm of water and environmental sciences. His technical expertise includes advanced irrigation system design, surface water analysis, soil-water interactions, and conservation engineering. He is skilled in hydrological modeling and has experience working with GIS-based tools to map water usage and inform sustainable land-use practices. As a research leader, he is adept at securing competitive funding and managing large-scale, multi-year projects, evidenced by his coordination of programs funded by agencies like the UNDP/GEF and the South African Water Research Commission. Dr. Mutema is also highly experienced in scientific writing, peer review, and thesis examination. His communication and facilitation skills, bolstered by formal training, enable him to effectively mentor students and engage stakeholders. Furthermore, he has strong pedagogical abilities, having taught at both undergraduate and postgraduate levels. He excels at integrating interdisciplinary approaches to address complex agricultural and hydrological challenges. His ability to translate technical findings into actionable strategies for farmers and policy-makers underscores the applied strength of his research skills. These competencies make him a valuable asset in both academic and development contexts.

Awards and Honors

While Dr. Macdex Mutema’s portfolio does not explicitly list formal awards or honors, his body of work and professional affiliations reflect substantial peer recognition and leadership in his field. His inclusion as a thesis examiner for PhD and MSc candidates, as well as his role as a reviewer for over a dozen respected journals such as Hydrology and Earth System Sciences, Journal of Hydrology, and Geoderma, demonstrates the high regard in which his scholarly judgment is held. His registered professional scientist status with SACNASP and membership in the South African Irrigation Institute (SABI) further validate his professional standing. Notably, Dr. Mutema has successfully led and contributed to high-impact research projects funded by prominent national and international agencies—including the Department of Agriculture, Land Reform and Rural Development, the Water Research Commission, and the UNDP—indicating trust in his leadership and scientific acumen. His ongoing engagement in research, teaching, and consultancy highlights his dynamic contribution to science and development. Although not formally titled as awards, these milestones collectively serve as honors and indicators of excellence within the academic and research communities in South Africa and beyond.

Conclusion

Dr. Macdex Mutema stands out as a leading researcher and practitioner in the fields of water resource management, irrigation engineering, and environmental sustainability. With over 25 years of experience spanning academia, applied research, and international development, he brings a unique blend of technical, educational, and managerial skills. His contributions are evident in the successful implementation of nationally funded projects, postgraduate mentorship, and peer-reviewed publications. He is also actively engaged in training and capacity building, reflecting a commitment to both knowledge generation and dissemination. While a more detailed publication record and international engagement could further enhance his academic profile, his proven impact on practical agricultural and environmental challenges remains undeniable. Dr. Mutema’s ability to bridge the gap between science and real-world application makes him a valuable asset to both research institutions and policy-making bodies. His work aligns closely with the objectives of the Excellence in Research Award, which recognizes individuals who demonstrate innovation, leadership, and meaningful societal impact through research. Given his record of achievement, Dr. Mutema is a strong and deserving candidate for this award, representing excellence in both the advancement of science and its application for sustainable development.

Publications Top Notes

  1. Title: A Study on the Difference Between the Green Coverage and the Green Evaluation Captured from the Impressive Landscape
    Authors: Mamiko Numata
    Year: 2022

  2. Title: A Study on the Consistency of the Plan of the Area Around the Wards Boundary to Improve the Wooden Densely-Built Urban Area
    Authors:Year : 2021Sakiko Hamada; Norihiro Nakai; Mamiko Numata; Kei Sakamura
    Year: 2021

  3. Title:Authors : Hayato Ihara ; Norihiro Nakai ; Mamiko Numata ; Kei SakamuraA Study on the Making of Flood Risk Reduction Measures of Cities Damaged by Floods
    Authors: Hayato Ihara; Norihiro Nakai; Mamiko Numata; Kei Sakamura Year
    :

  4. Title: Study of the Division of Functions Among Urban Centers and Their Changes in Cities with Two Urban Centers
    Authors: Yasuki Tsuchiya; Norihiro Nakai; Mamiko Numata; Kei Sakamura
    Year: 2021

  5. Title: A Study of the Effects of Buildings on the Surroundings Environment of Flagpole-Shaped Sites
    Authors: Mamiko Numata; Norihiro Nakai
    – The Best Of Norihiro Nakai

  6. Title: A Study on the Land Use Changes After Large Factory Closure
    Authors: Yasuki Tsuchiya; Norihiro Nakai; Mamiko Numata
    Year: 2019

  7. Title: [Title Not Provided — based on DOI: 10.11361/journalcpij.57.569]
    Authors: On Takasaki; Norihiro Nakai; Mamiko Numata; Kei Sakamura
    Year: Not explicitly listed (likely 2023 or 2024 based on DOI numbering sequence)

Degefu Dogiso | Engineering | Best Researcher Award

Mr. Degefu Dogiso | Engineering | Best Researcher Award

PhD candidate from Hawassa University, Ethiopia

Degefu Dogiso is an emerging researcher in the field of Agricultural Engineering, with a strong focus on soil and water conservation. An Ethiopian national, he has built a solid academic and professional foundation in environmental and watershed management. Currently pursuing his PhD at Hawassa University Institute of Technology, he demonstrates deep commitment to research that addresses critical environmental challenges, including soil erosion, climate change impacts, and sustainable land use. Degefu has published peer-reviewed articles in reputable journals such as Land Degradation & Development and Agrosystem, Geoscience and Environment, showcasing his ability to contribute meaningful scientific insights. His technical proficiency spans across advanced modeling tools like SWAT and InVEST-SDR, GIS applications, and machine learning for environmental analysis. Additionally, his practical experience in governmental and conservation roles strengthens his applied understanding of the field. Degefu’s research integrates technology, field knowledge, and policy application, reflecting a well-rounded profile suitable for academic and practical impact. His career trajectory, marked by consistent growth and relevance, positions him as a promising candidate for future academic honors and research leadership. His dedication to both knowledge generation and environmental sustainability underpins a scholarly path rooted in impact, innovation, and responsibility.

Professional Profile

Education

Degefu Dogiso has built a robust academic foundation in the field of soil and water conservation through a progressive and focused educational journey. He is currently pursuing a PhD in Agricultural Engineering, specializing in Soil and Water Conservation Engineering, at the Hawassa University Institute of Technology. His doctoral research emphasizes the modeling of soil erosion and the impact of climate change on natural resources, showcasing a research direction with high environmental relevance. Prior to his PhD, Degefu earned a Master of Science (MSc) in Soil and Water Conservation Engineering from the same institution, where he cultivated expertise in hydrological modeling, conservation practices, and sustainable watershed management. His academic roots trace back to his undergraduate studies at the Hawassa University Wondo Genet College of Forestry and Natural Resources, where he completed his Bachelor of Science (BSc) in Soil Resources and Watershed Management. Each phase of his academic path reflects a commitment to advancing scientific knowledge and practical solutions in environmental resource management. Through these rigorous academic programs, he has developed a deep theoretical understanding and practical skill set that now support his growing contributions to scientific literature and environmental policy. His educational trajectory reinforces his credibility as a research-oriented professional.

Professional Experience

Degefu Dogiso brings significant professional experience that complements his academic background, highlighting his ability to translate research into action. Over the span of eight years, he has served in key roles that demonstrate leadership, technical expertise, and community engagement. For five years, he worked as a Soil and Water Conservation Expert, where he was responsible for implementing conservation strategies, conducting erosion assessments, and advising on sustainable land management practices. This role involved hands-on project management and provided him with critical insights into the ecological and social dynamics of conservation in Ethiopia. Following this, Degefu advanced to the position of Agricultural Office Head for three years. In this role, he oversaw agricultural development projects, coordinated with stakeholders, and led initiatives focused on soil and water conservation across regional agricultural zones. His leadership helped bridge policy with practice and ensured the effective implementation of environmentally responsible agricultural strategies. These experiences have equipped him with a practical understanding of the challenges and opportunities in soil and water resource management. His professional journey demonstrates not only a commitment to environmental stewardship but also the capacity to lead, implement, and innovate within both technical and administrative frameworks.

Research Interests

Degefu Dogiso’s research interests lie at the intersection of environmental science, engineering, and sustainable land management. His primary focus is on soil erosion modeling and conservation strategies, a field critical to mitigating land degradation and maintaining agricultural productivity. He is deeply engaged in examining the impacts of land use and land cover change (LULCC) on soil and water resources, particularly in ecologically sensitive and heavily farmed regions of Ethiopia. His interests also extend to assessing the impacts of climate change on soil and water systems, an area with growing urgency due to shifting rainfall patterns and increasing vulnerability in the Global South. Hydrological modeling and watershed management form another core area of his research, as he seeks to understand and optimize water resource distribution within complex ecological systems. Additionally, Degefu is passionate about applying remote sensing and GIS technologies in environmental monitoring, combining spatial data analysis with modern computing tools to inform conservation strategies. His research interests are not only scientifically relevant but also have practical implications for environmental planning and agricultural resilience. This wide-ranging, yet interconnected, portfolio reflects a comprehensive and forward-thinking approach to tackling contemporary environmental challenges.

Research Skills

Degefu Dogiso possesses a robust set of research skills that equip him to tackle complex environmental and agricultural challenges with precision and innovation. He is proficient in soil erosion modeling using advanced tools such as USLE, RUSLE, SWAT, and InVEST-SDR, which allow for detailed simulations and analysis of erosion patterns under various land use and climate scenarios. Additionally, he has experience with Object-Based Image Analysis (OBIA), which enhances the accuracy of land classification and landscape interpretation. His skill set also includes climate change impact assessment, particularly using the CMIP6 model suite, which enables him to analyze future climate trends and their implications on soil and water systems. In the realm of geospatial analysis, Degefu is highly skilled in GIS and remote sensing platforms, including Google Earth Engine, ArcGIS, and ERDAS, tools essential for environmental monitoring and decision-making. He complements his spatial and modeling expertise with strong abilities in data analysis and visualization, using programming languages like Python and R, alongside traditional tools like Excel. Furthermore, his application of machine learning in land use and land cover classification demonstrates a commitment to integrating cutting-edge technology into his research. These combined skills make him a versatile and capable researcher.

Awards and Honors

While specific formal awards or honors are not listed in Degefu Dogiso’s curriculum vitae, his academic and professional achievements suggest a strong trajectory toward future recognition. His publication of peer-reviewed research in respected journals such as Land Degradation & Development and Agrosystem, Geoscience and Environment is itself a significant academic accomplishment, often regarded as a marker of excellence in research communities. In addition, his selection and continued progress as a PhD candidate at Hawassa University Institute of Technology reflect the institutional recognition of his research potential and technical competence. His leadership as an Agricultural Office Head further implies a level of trust and respect within his professional sphere, particularly in overseeing large-scale conservation and agricultural initiatives. Moreover, his ability to publish internationally relevant research while engaging in on-the-ground conservation work distinguishes him among his peers. As he completes his PhD and expands his academic output, Degefu is well-positioned to receive formal accolades, research grants, and conference invitations. Continued contributions to interdisciplinary research and international collaboration will likely bring him closer to notable awards in soil and water conservation, climate change research, and environmental engineering.

Conclusion

In conclusion, Degefu Dogiso is a dedicated and forward-thinking researcher whose work bridges science, technology, and environmental sustainability. With a solid academic background in soil and water conservation, ongoing PhD research, and years of field experience, he has developed a comprehensive understanding of ecological systems and sustainable land management. His skill set spans critical tools and methodologies, from erosion modeling and hydrological simulation to remote sensing and machine learning-based analysis. His recent publications in reputable international journals affirm his capacity for high-quality research and his commitment to addressing pressing environmental challenges in Ethiopia and beyond. While he is still in the early stages of his academic career, Degefu has laid a strong foundation for future scholarly and professional success. Continued growth in international collaboration, diversified research output, and completion of his doctoral studies will further enhance his qualifications for top-tier academic awards. As such, Degefu Dogiso not only demonstrates potential for recognition as a leading researcher but also embodies the values of applied science, community engagement, and environmental responsibility that are crucial in addressing the global challenges of our time.

Publications Top Notes

  1. Title: Assessment of soil erosion and sedimentation dynamics in the Rift Valley Lakes Basin, Ethiopia
    Authors: Degefu Dogiso, Alemayehu Muluneh, Abiot Ketema
    Year: 2025

  2. Title: Soil Erosion Responses to CMIP6 Climate Scenarios and Land Cover Changes in the Gidabo Watershed, Ethiopia: Implications for Sustainable Watershed Management
    Authors: Degefu Dogiso, Alemayehu Muluneh, Abiot Ketema
    Year: 2025

  3. Title: Soil Erosion Responses to CMIP6 Climate Scenarios and Land Cover Changes in the Gidabo Watershed, Ethiopia: Implications for Sustainable Watershed Management
    Author: Degefu Dogiso
    Year: 2025

  4. Title: Assessment of soil erosion and sedimentation dynamics in the Rift Valley Lakes Basin, Ethiopia
    Author: Degefu Dogiso
    Year: 2025

Hulya Sen Arslan | Engineering | Women Researcher Award

​Assist. Prof. Dr. Hulya Sen Arslan | Engineering | Women Researcher Award

KARAMANOĞLU MEHMETBEY UNIVERCITY, Turkey

Dr. Hülya Şen Arslan is a distinguished academic specializing in Food Engineering, with a focus on functional foods, food chemistry, and food microbiology. She is currently serving as an Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. Dr. Arslan has an extensive educational background, having completed her undergraduate studies at Selçuk University, followed by a master’s degree at Erciyes University, and a doctorate at Selçuk University. Her research interests are deeply rooted in food sciences, particularly in the development and analysis of functional foods and the chemical and microbiological aspects of food products. Throughout her career, Dr. Arslan has contributed to the academic community with several publications and has actively participated in peer review processes. Her dedication to research and education in the field of food engineering underscores her commitment to advancing knowledge and promoting innovation in food science.

Professional Profile

Education

Dr. Hülya Şen Arslan’s academic journey commenced with a Bachelor of Science degree from Selçuk University’s Faculty of Agriculture, where she studied from 2009 to 2014. She then pursued a Master of Science in the Institute of Science at Erciyes University between 2014 and 2017. Her doctoral studies were conducted at Selçuk University’s Institute of Science from 2018 to 2022. This comprehensive educational background has provided Dr. Arslan with a solid foundation in agricultural and food sciences, equipping her with the necessary skills and knowledge to excel in her field.

Professional Experience

Currently, Dr. Hülya Şen Arslan holds the position of Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. In this role, she is responsible for teaching undergraduate and graduate courses, mentoring students, and conducting research in her areas of expertise. Her professional experience is marked by a commitment to academic excellence and a dedication to advancing the field of food engineering through both education and research.

Research Interests

Dr. Arslan’s research interests encompass several critical areas within food sciences. She focuses on functional foods, exploring how bioactive components can enhance health benefits. Her work in food chemistry involves analyzing the molecular composition and properties of food substances, while her studies in food microbiology examine the role of microorganisms in food production, preservation, and safety. These research pursuits aim to contribute to the development of healthier and safer food products.

Research Skills

With a robust background in food sciences, Dr. Arslan possesses a diverse set of research skills. She is proficient in laboratory techniques pertinent to food chemistry and microbiology, including chromatographic and spectroscopic methods for analyzing food components, as well as microbiological assays for detecting and characterizing foodborne pathogens. Additionally, her expertise extends to the design and implementation of studies related to functional foods, encompassing both the development of novel food products and the assessment of their health impacts.

Awards and Honors

While specific awards and honors have not been detailed, Dr. Arslan’s contributions to the field of food engineering are evident through her active participation in research and academia. Her publications and involvement in peer review activities reflect a recognition of her expertise and dedication to advancing knowledge in food sciences.

Conclusion

In summary, Dr. Hülya Şen Arslan is a dedicated academic and researcher in the field of food engineering. Her comprehensive education and professional experience have enabled her to contribute significantly to the understanding and development of functional foods, food chemistry, and food microbiology. Through her teaching, research, and service to the academic community, Dr. Arslan continues to play a vital role in advancing the science of food and promoting innovations that enhance food quality and safety.

Publications Top Notes​

  • Title: Simultaneous extraction of phenolics and essential oil from peppermint by pressurized hot water extraction
    Authors: M. Cam, E. Yüksel, H. Alaşalvar, B. Başyiğit, H. Şen, M. Yılmaztekin, et al.
    Year: 2019
    Citations: 34

  • Title: Antioxidant and chemical effects of propolis, sage (Salvia officinalis L.), and lavender (Lavandula angustifolia Mill) ethanolic extracts on chicken sausages
    Authors: S. Yerlikaya, H. Şen Arslan
    Year: 2021
    Citations: 15

  • Title: Antibacterial and antioxidant activity of peach leaf extract prepared by air and microwave drying
    Authors: H. Şen Arslan, A. Cabi, S. Yerlikaya, C. Sariçoban
    Year: 2021
    Citations: 8

  • Title: Comparison some microbiological and physicochemical properties of freeze dryed and spray dryed milk powder
    Authors: S. Yerlikaya, H. Ş. Arslan
    Year: 2019
    Citations: 8*

  • Title: Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates
    Authors: H. Şen Arslan, C. Sariçoban
    Year: 2023
    Citations: 7

  • Title: Use of fruits and vegetables in meat and meat products in terms of dietary fiber
    Authors: H. Şen Arslan, C. Sariçoban, S. Yerlikaya
    Year: 2021
    Citations: 4

  • Title: Effects of various plant parts on storage stability and colour parameters of beef extracts
    Authors: B. A. Oğuz, C. Sarıçoban, H. Şen Arslan
    Year: 2019
    Citations: 4

  • Title: Ultrason destekli elma atık özütlerinin bazı biyoaktif özellikleri
    Authors: H. Ş. Arslan
    Year: 2023
    Citations: 3*

  • Title: Karaman İl Merkezinde Yaşayan Halkın Bilinçli Gıda Tüketim Derecesinin Araştırılması
    Authors: S. Yerlikaya, Ş. N. Karaman, S. Tuna, H. Ş. Arslan
    Year: 2020
    Citations: 3

  • Title: Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant …
    Authors: S. Yasar, H. S. Arslan, K. Akgul
    Year: 2024
    Citations: 2

Atiqur Rahman | Engineering | Best Researcher Award

Mr. Atiqur Rahman | Engineering | Best Researcher Award

PhD Researcher from University of Bolton, United Kingdom

Md Atiqur Rahman is a passionate aerospace engineering professional with a rich background in both academia and research. Currently serving as an Engineering Lecturer at Blackpool & The Fylde College in the UK, he also pursues a Ph.D. at the University of Bolton, focusing on sustainable composite materials for aerospace applications. With over nine years of experience in aeronautical education, his expertise spans curriculum development, student mentorship, assessment, and instructional leadership. He has taught at multiple institutions including Preston College, University of Bolton, and Cambrian International College of Aviation. His research is deeply rooted in innovation, particularly in the area of natural fiber-reinforced composites, with a specific emphasis on Borassus flabellifer (palmyra palm) husk fibers. Rahman has published six research articles and actively participates in academic conferences and seminars. Known for his technical abilities and practical knowledge, he integrates tools like Ansys, SolidWorks, and Matlab in both research and teaching. Awarded Best Lecturer in 2022 and a mentor to an award-winning student in 2021, he exemplifies academic dedication. Md Rahman is committed to advancing aerospace engineering through sustainable innovations while nurturing student growth in higher education. His profile reflects a balance of scholarly excellence, practical engineering acumen, and a deep commitment to teaching.

Professional Profile

Education

Md Atiqur Rahman has pursued a solid academic trajectory in aerospace and mechanical engineering. He is currently enrolled in a Ph.D. program at the University of Bolton, United Kingdom, where his research centers on the development of natural fiber-based composite materials for aerospace applications. This research is both timely and impactful, aligning with global movements toward sustainable aviation technology. Concurrently, he completed a Master of Philosophy (MPhil R2) in Mechanical Engineering at the same institution between July 2022 and November 2024, further sharpening his expertise in advanced material science and structural mechanics. His academic foundation began with a Bachelor of Engineering (Honours) degree in Aerospace Engineering from the University of Hertfordshire, UK, which he completed in 2012. The rigorous curriculum provided him with strong fundamentals in aerodynamics, propulsion systems, and aerospace structures. Throughout his educational journey, Md Rahman has consistently demonstrated academic excellence, integrating theory with hands-on research and software simulation. His academic path underscores a clear focus on applied engineering, sustainability, and innovation. This robust combination of qualifications positions him well for continued leadership in both academia and the aerospace research community, particularly in the development and application of bio-composites and eco-friendly engineering solutions.

Professional Experience

Md Atiqur Rahman has accumulated a diverse and extensive professional background in engineering education, spanning over nine years across the UK and Bangladesh. He currently serves as an Engineering Lecturer at Blackpool & The Fylde College, where he teaches and manages students up to Level 6, designs course materials, assesses learners, and supports curriculum alignment with Lancaster University and employer standards. Previously, he worked at Preston College, teaching aeronautical engineering to students in BTEC Pearson, City & Guilds, and EAL programs. At the University of Bolton, he served as a variable-hours lecturer, contributing to module delivery, exam preparation, and student guidance. In Bangladesh, Rahman held academic and leadership roles at Cambrian International College of Aviation and United College of Aviation, Science & Management. At Cambrian, he also acted as Internal Quality Assurer (IQA), leading BTEC curriculum development and internal training for faculty. Across all institutions, he has shown excellence in teaching, curriculum design, academic support, and student engagement. His ability to adapt his instruction based on learner capabilities has significantly enhanced academic outcomes. Rahman’s teaching is enriched by his research pursuits and practical skills, creating a well-rounded, impactful educational approach that bridges theory, practice, and innovation.

Research Interests

Md Atiqur Rahman’s research interests are centered around sustainable and advanced materials for aerospace applications. His current Ph.D. work at the University of Bolton explores the development and characterization of natural fiber-reinforced polymer composites, with a particular focus on Borassus flabellifer (palmyra palm) husk fibers. He investigates their physical, thermal, mechanical, and dynamic properties to evaluate their viability as lightweight, eco-friendly alternatives to traditional aerospace materials. His broader research interest encompasses aerodynamics, structural mechanics, hypersonic flight technologies, and bio-composite development. By aligning material science with aerospace engineering, Rahman seeks to address the increasing demand for sustainability in aviation. He is particularly drawn to the lifecycle assessment of natural fibers and their transformation through alkali treatments, aiming to enhance their bonding, thermal stability, and mechanical resilience. His work has practical implications for aircraft manufacturing, structural component design, and green engineering practices. He also maintains an interest in the pedagogical methods for engineering education and how research can be translated into real-world classroom application. This multi-dimensional research approach not only contributes to the scientific community but also supports the global push for environmentally responsible aerospace solutions through academic innovation and practical application.

Research Skills

Md Atiqur Rahman possesses a well-rounded and technically proficient set of research skills that support his specialization in material science and aerospace engineering. He is highly skilled in experimental research methodologies, particularly in characterizing bio-composite materials. His hands-on expertise includes the use of advanced lab instruments such as TA Instruments (TGA, DSC, DMA) for thermal analysis, Instron for tensile and flexural testing, and FTIR spectroscopy for chemical characterization. He is also proficient in density and water uptake measurements using pycnometers and ovens, and in the preparation of composite materials through hand lay-up techniques. Rahman complements his experimental skills with strong computational abilities, using tools like Ansys for finite element analysis, SolidWorks and Fusion 360 for design modeling, and Matlab for mathematical modeling and simulations. He applies these tools to optimize material properties and validate experimental outcomes. In addition, he demonstrates strong academic writing and data interpretation skills, having authored several scientific articles. His research workflow also reflects a robust understanding of ethics, literature review, statistical analysis, and research dissemination. These combined skills allow him to carry out comprehensive investigations in aerospace material development and communicate findings effectively to both academic and industry audiences.

Awards and Honors

Md Atiqur Rahman has earned notable recognition for his excellence in both teaching and research throughout his academic career. One of his most distinguished accolades is the Best Lecturer Award (2022) from Cambrian International College of Aviation, a testament to his commitment to student engagement, curriculum innovation, and instructional excellence. His mentorship has also yielded impressive results—most notably when one of his students was selected for the BTEC Award (2021) and received the Bronze Certificate for Engineering Learner of the Year, highlighting his ability to inspire and guide learners toward excellence. In addition to institutional recognition, Rahman is affiliated with several prestigious professional bodies, including the Royal Aeronautical Society (RAeS), The Institution of Structural Engineers (IStructE), and the American Society of Civil Engineers (ASCE). His active involvement in these societies, coupled with his participation in high-profile events like the RAeS Aerodynamics Specialist Conference and Government HE Events, showcases his commitment to lifelong learning and professional development. These honors and memberships not only validate his academic contributions but also underscore his rising influence as an educator and researcher in aerospace engineering, particularly in the field of sustainable materials and advanced manufacturing technologies.

Conclusion

Md Atiqur Rahman stands as a dynamic and impactful figure in the realms of aerospace education and research. His journey—from a dedicated lecturer to an innovative Ph.D. researcher—demonstrates a rare blend of academic rigor, teaching excellence, and research innovation. His work on natural fiber-based composites is not only scientifically significant but also timely, addressing pressing environmental challenges within aerospace engineering. With a growing list of publications, conference presentations, and teaching awards, Rahman has established himself as a promising academic professional committed to excellence. His ability to bridge the gap between research and education ensures that his findings contribute directly to student learning and industry advancement. His diverse teaching experiences across different academic systems further enhance his instructional agility and global outlook. As he continues to expand his research collaborations, aim for high-impact journals, and pursue research leadership roles, his contributions will undoubtedly strengthen the field of sustainable aviation and engineering education. Md Atiqur Rahman is a deserving candidate for recognition such as the Best Researcher Award, with strong potential for continued academic and research leadership. His trajectory reflects both deep expertise and future promise in advancing environmentally responsible technologies within aerospace engineering.

Publications Top Notes

  1. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 2: Insights into Its Thermal and Mechanical Properties
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2024
    Citations: 3

  2. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 1: Insights into Its Physical and Chemical Properties
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski
    Year: 2024
    Citations: 3

  3. Title: Effect of Alkali Treatment on Dynamic Mechanical Properties of Borassus Flabellifer Husk Fibre Reinforced Epoxy Composites
    Authors: M.A. Rahman, Mamadou Ndiaye, Bartosz Weclawski, et al.
    Year: 2025
    Citations: 2

  4. Title: Palmyra Palm Shell (Borassus flabellifer) Properties Part 3: Insights into Its Morphological, Chemical and Thermal Properties after Alkali Treatment
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2024
    Citations: 2

  5. Title: Optimizing Borassus Husk Fibre/Epoxy Composites: A Study on Physical, Thermal, Flexural and Dynamic Mechanical Performance
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2025
    Citations: 1

  6. Title: Enhancing Thermal and Dynamic Mechanical Properties of Lignocellulosic Borassus Husk Fibre/Epoxy Composites through Alkali Treatment
    Authors: M.A. Rahman, M. Ndiaye, B. Weclawski, P. Farrell
    Year: 2025

Yang Xiang | Structural Engineering | Best Researcher Award

Assoc. Prof. Dr. Yang Xiang | Structural Engineering | Best Researcher Award

Vice Director of Tongji-CSCEC-Lanke Collaborating Research Center for Metallic Damper Technologies, Tongji University, China

Dr. Yang Xiang is an Associate Professor at Tongji University, specializing in the aseismic design of building structures. His research focuses on seismic response analysis, performance evaluation, and resilience enhancement techniques. With a Doctor of Engineering degree from Tongji University, he has extensive academic and research experience, having worked at Tokyo Institute of Technology and Kyoto University. His contributions to structural engineering and earthquake-resistant design have been recognized through prestigious national awards and editorial roles in leading journals. Dr. Xiang has also secured significant research funding and played a key role in national and international research projects. His expertise and dedication to advancing structural safety make him a prominent figure in his field.

Professional Profile

Education

Dr. Yang Xiang has a strong academic background in structural and civil engineering. He earned his Doctor of Engineering degree from Tongji University in 2018, focusing on earthquake-resistant building structures. Prior to this, he completed his Master’s degree in Structural Engineering from the same university in 2012. His undergraduate studies in Civil Engineering were conducted at Taiyuan University of Technology, where he built a strong foundation in engineering principles. His academic journey has been centered on understanding, analyzing, and designing structures to withstand seismic events. Through his studies at top engineering institutions, Dr. Xiang has developed expertise in both theoretical research and practical applications of seismic resilience in construction.

Professional Experience

Dr. Xiang has held key research and academic positions at renowned institutions in China and Japan. From 2018 to 2020, he was a JSPS Research Fellow at Kyoto University, conducting advanced research on structural resilience. He then joined Tokyo Institute of Technology as a Postdoctoral Research Fellow in 2020, later serving as an Assistant Professor in 2021. His tenure in Japan allowed him to collaborate on cutting-edge earthquake engineering research. In 2021, he returned to Tongji University as an Associate Professor, where he continues to advance his research in seismic safety and building performance evaluation. His international academic experience has enhanced his research vision and contributed to significant developments in the field.

Research Interests

Dr. Xiang’s research focuses on aseismic building structures, particularly in response analysis, performance-based design, and structural resilience. He is dedicated to improving seismic safety through innovative design methods that enhance building performance and earthquake resistance. His studies integrate computational simulations, experimental validation, and engineering applications to develop more efficient and robust structural solutions. His research contributes to mitigating earthquake damage and enhancing the durability of buildings in seismic-prone regions. Through interdisciplinary approaches, he aims to bridge the gap between theoretical models and practical construction techniques, ensuring safer and more sustainable urban infrastructures.

Research Skills

Dr. Xiang possesses advanced research skills in structural engineering and seismic analysis. He is proficient in numerical modeling, experimental testing, and performance evaluation of earthquake-resistant buildings. His expertise includes finite element analysis (FEA), structural dynamics, and resilience assessment techniques. He is skilled in using engineering software for structural simulation and seismic analysis, contributing to the development of innovative design strategies. His ability to secure research funding and lead collaborative projects highlights his strong project management and leadership skills. Additionally, his experience in academic publishing and editorial work further strengthens his research capabilities.

Awards and Honors

Dr. Xiang has received multiple prestigious awards recognizing his contributions to structural engineering research. He was awarded the First Prize in Science and Technology by the China Steel Construction Society in 2024, demonstrating his impact in the field. He also received the Special Prize for Science and Technology from the same organization in 2022. Additionally, he was honored with the Second Prize for Research from the Shanghai J.Z. Huang Education Development Foundation in 2023. These accolades reflect his significant contributions to earthquake-resistant building design and structural performance evaluation, establishing him as a leading researcher in his domain.

Conclusion

Dr. Yang Xiang is a distinguished researcher in structural and earthquake engineering, with a strong academic background, international research experience, and significant contributions to seismic safety. His work in performance evaluation and resilience improvement has earned him prestigious awards, major research funding, and recognition from leading academic institutions. With expertise in numerical modeling, experimental testing, and advanced engineering analysis, he continues to push the boundaries of earthquake-resistant design. His editorial roles, research leadership, and commitment to enhancing structural safety position him as a highly qualified candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Amplitude-dependent modal viscous damping for distributed stick–slip systems

    • Authors: C. He, Chong; F. Sun, Feifei; G. Li, Guoqiang; Y. Xiang, Yang
    • Year: 2024
  2. Title: Quantification of floor seismic response: Formulated PFA for non-classically damped structure and empirical PFV for elasto-plastic structure

    • Authors: S. Guo, Shili; Y. Xiang, Yang; L. Dai, Liusi; G. Li, Guoqiang
    • Year: 2024
  3. Title: Strain amplitude-dependent hardening property of Q235 steel for metallic dampers

    • Authors: Y. Zhong, Yunlong; G. Li, Guoqiang; Y. Xiang, Yang
    • Year: 2024
    • Citations: 2
  4. Title: Multi-objective seismic optimization and evaluation of core-damper-frame tall buildings considering SSI effect

    • Authors: M. Wang, Meng; Y. Xiang, Yang; F. Sun, Feifei; G. Li, Guoqiang
    • Year: 2024
    • Citations: 3
  5. Title: Seismic performance assessment of GFRP-steel double-skin confined rubber concrete composite columns

    • Authors: J. Yan, Jianhuang; J. Wu, Junchao; Y. Xiang, Yang; X. Han, Xue; H. Li, Haifeng
    • Year: 2024
    • Citations: 4

 

Ali Nawaz Sanjrani | Engineering | Best Researcher Award

Assist. Prof. Dr Ali Nawaz Sanjrani | Engineering | Best Researcher Award

Assistant Professor at University of Electronic Science and Technology of China

Dr. Ali Nawaz Sanjrani is a highly accomplished mechanical engineer and academic with over 18 years of interdisciplinary experience in project management, reliability, quality assurance, and health and safety systems. He holds a PhD in Mechanical Engineering from the University of Electronics Science and Technology, China, and specializes in reliability monitoring, diagnostics, and prognostics of complex machinery. Dr. Sanjrani has a strong background in advanced manufacturing processes, lean manufacturing, and machine learning applications in engineering systems. He has served as an Assistant Professor at Mehran University of Engineering and Technology and has contributed significantly to both academia and industry. His research focuses on fluid dynamics, heat transfer, and predictive maintenance using AI-driven models. Dr. Sanjrani has published extensively in high-impact journals and conferences, earning recognition for his innovative approaches to engineering challenges. He is a certified lead auditor in ISO and OHSAS standards and a member of the Pakistan Engineering Council.

Professional Profile

Education

Dr. Ali Nawaz Sanjrani earned his PhD in Mechanical Engineering from the University of Electronics Science and Technology, Chengdu, China, with a CGPA of 3.89/4. His doctoral research focused on reliability monitoring, diagnostics, and prognostics of complex machinery. He completed his M.Engg. in Industrial Manufacturing from NED University, Karachi, with a CGPA of 3.04/4, specializing in lean manufacturing. His undergraduate degree in Mechanical Engineering was obtained from QUEST, Nawabshah, with an aggregate of 70%, specializing in mechanical manufacturing and materials. Throughout his academic journey, Dr. Sanjrani studied advanced courses such as Finite Element Analysis (FEA), Computer-Aided Manufacturing (CAM), Operations Research (OR), and Agile & Lean Manufacturing. His education has equipped him with a strong foundation in both theoretical and practical aspects of mechanical and industrial engineering, enabling him to excel in research, teaching, and industry applications.

Professional Experience 

Dr. Ali Nawaz Sanjrani has over 18 years of professional experience spanning academia, research, and industry. He served as an Assistant Professor at Mehran University of Engineering and Technology, SZAB Campus, from 2016 to 2020, where he specialized in fluid dynamics, heat transfer, and machine learning applications. Prior to this, he worked as a Lecturer at the same institution and as a visiting faculty member at INDUS University, Karachi. In the industry, Dr. Sanjrani was an Engineer in Quality Assurance and Quality Control at DESCON Engineering Works Limited, Lahore, from 2006 to 2011. His roles included implementing ISO standards, conducting audits, and ensuring quality and safety compliance. Dr. Sanjrani has also led research projects in predictive maintenance, reliability engineering, and lean manufacturing, bridging the gap between academic theory and industrial practice. His expertise in project management and integrated management systems has made him a valuable asset in both academic and professional settings.

Awards and Honors

Dr. Ali Nawaz Sanjrani has received numerous accolades for his academic and professional excellence. He was awarded the 3rd Prize in Academic Excellence and Performance Excellence at the University of Electronics Science and Technology, Chengdu, China, in 2024. He secured a fully funded Chinese Government Scholarship (CSC) for his PhD studies in 2020. Dr. Sanjrani was also recognized with an Appreciation Certificate from Karachi Shipyard & Engineering Works for achieving ISO certifications (QMS, EMS, OH&SMS) in 2011. His innovative approach to dismantling a luffing crane earned him an Appreciation Letter from the Managing Director of KSEW in 2013. Additionally, Dr. Sanjrani has been acknowledged for his research contributions through publications in high-impact journals and presentations at international conferences. His achievements reflect his dedication to advancing engineering knowledge and applying it to real-world challenges.

Research Interests

Dr. Ali Nawaz Sanjrani’s research interests lie at the intersection of mechanical engineering, machine learning, and reliability engineering. He specializes in predictive maintenance, diagnostics, and prognostics of complex machinery, particularly in high-speed trains and industrial systems. His work focuses on developing AI-driven models, such as LSTM networks and neural networks, for fault diagnosis and residual life prediction. Dr. Sanjrani is also deeply involved in fluid dynamics, heat transfer, and energy systems, exploring advanced manufacturing processes and lean manufacturing techniques. His research extends to renewable energy systems, including solar power and biogas utilization, as well as dynamic power management in microgrids. By integrating machine learning with traditional engineering practices, Dr. Sanjrani aims to enhance system reliability, efficiency, and sustainability. His interdisciplinary approach bridges the gap between theoretical research and practical applications, making significant contributions to both academia and industry.

Research Skills

  • Machine Learning & AI: Neural Networks, LSTM, Predictive Modeling, Fault Diagnosis.
  • Reliability Engineering: Prognostics, Diagnostics, Residual Life Prediction.
  • Fluid Dynamics & Heat Transfer: Modeling, Simulation, and Analysis.
  • Advanced Manufacturing: Lean Manufacturing, FEA, CAM, Agile Processes.
  • Renewable Energy Systems: Solar Power, Biogas, Microgrids.
  • Software Proficiency: Python, MATLAB, SolidWorks, Auto CAD, FEA Tools.
  • Certifications: ISO 9001, ISO 14001, OHSAS 18001 Lead Auditor.

Conclusion

Dr. Ali Nawaz Sanjrani is a distinguished mechanical engineer and academic with a proven track record in research, teaching, and industry. His expertise in reliability engineering, machine learning, and advanced manufacturing has led to significant contributions in predictive maintenance and system optimization. With numerous publications, awards, and certifications, Dr. Sanjrani continues to push the boundaries of engineering knowledge, applying innovative solutions to real-world challenges. His interdisciplinary approach and dedication to excellence make him a valuable asset in both academic and professional settings.

Publication Top Notes

  1. Ali Nawaz1 – RHSA Based Hybrid Prognostic Model for Predicting Residual Life of Bearing: A Novel Approach – Mechanical Systems and Signal Processing – To be published.
  2. Ali Nawaz1 – Multiparametric Dual Task Multioutput Artificial Neural Network Model for Bearing Fault Diagnosis and Residual Life Prediction in High-Speed Trains – IEEE Transaction of Reliability – To be published.
  3. Ali Nawaz1 – Advanced Learning Interferential ALI-Former: A Novel Approach for Live and Reliable High-Speed Train Bearing Fault Diagnosis – Neural Computing and Applications – To be published.
  4. Ali Nawaz Sanjrani1 – High-Speed Train Bearing Health Assessment Based on Degradation Stages Through Diagnosis and Prognosis by Using Dual-Task LSTM With Attention Mechanism – Quality and Reliability Engineering International Journal WILEY – 2025.
  5. Ali Nawaz Sanjrani3 – Dynamic Temporal LSTM-Seqtrans for Long Sequence: An Approach for Credit Card and Banking Accounts Fraud Detection in Banking System – 2024 21st International Computer Conference on Wavelet Active Media Technology and Information Processing – 2025.
  6. Ali Nawaz Sanjrani1 – High-speed train wheel set bearing analysis: Practical approach to maintenance between end of life and useful life extension assessment – Results in Engineering – 2025.
  7. Ali Nawaz Sanjrani5 – Advanced dynamic power management using model predictive control in DC microgrids with hybrid storage and renewable energy sources – Journal of Energy Storage – 2025.
  8. Ali Nawaz Sanjrani1 – High-Speed Train Health Assessment Based on Degradation Stages and Fault Classification by using Dual Task LSTM with Attention Mechanism – 2024 6th International Conference on System Reliability and Safety Engineering – 2024.
  9. A.N. Sanjrani – A C-band Sheet Beam Staggered Double Grating Extended Interaction Oscillator – 2024 IEEE International Conference on Plasma Science (ICOPS) – 2024.
  10. Ali Nawaz1 – Bearing Health and Safety Analysis to improve the reliability and efficiency of Horizontal Axis Wind Turbine (HAWT) – ESREL 2023 – 2023.
  11. Ali Nawaz2 – Prediction of Remaining Useful Life of Bearings using a Parallel Neural Network – ESREL 2023 – 2023.
  12. Ali Nawaz Sanjrani2 – Performance Improvement through Lean System Case study of Karachi Shipyard & Engineering Works – IEIM 2024 – 2023.
  13. Ali Nawaz Sanjrani3 – Dynamic Performance of Partially Orifice Porous Aerostatic Thrust Bearing – Micromachines – 2021.
  14. Sanjrani; Ali Nawaz2 – Performance Evaluation of Mono Crystalline Silicon Solar Panels in Khairpur, Sind, Pakistan – JOJ Material Science – 2017.
  15. A. N. Sanjrani1 – Utilization of Biogas using Portable Biogas Anaerobic Digester in Shikarpur and Sukkur Districts: A case study – Pakistan Journal of Agriculture Engineering Veterinary Science – 2017.
  16. A. N. Sanjrani1 – Lean Manufacturing for Minimization of Defects in the Fabrication Process of Shipbuilding: A case study – Australian Journal of Engineering and Technology Research – 2017.