Lalhmingsangi Famhawite | Mathematics | Best Researcher Award

Ms. Lalhmingsangi Famhawite | Mathematics | Best Researcher Award

Ms. Lalhmingsangi Famhawite is a dedicated Research Scholar at the Department of Mathematics, University of Delhi, whose research lies at the intersection of Computational Fluid Dynamics (CFD) and Biomedical Engineering. Her academic and scientific pursuits focus on the numerical simulation of bioheat transfer processes in cryosurgical treatment of tumor tissues, applying advanced mathematical models to real-world biomedical challenges. With 4 peer-reviewed publications, 9 citations, and an h-index of 1, her scholarly work demonstrates growing influence in the field of computational biothermal modeling and mathematical applications in health technology. Her research contributions explore the complex interactions between thermal diffusion, vascular networks, and tissue damage during cryoablation procedures—a minimally invasive technique for cancer therapy. By combining finite element analysis, bioheat transfer modeling, and numerical simulation, she has developed innovative approaches to simulate and optimize cryosurgical processes, improving precision and safety in treatment outcomes. Ms. Famhawite’s work includes creating 2D and 3D vascularized liver tumor models, investigating coupled heat-mass transfer phenomena, and evaluating biomechanical effects of tissue freezing, which have significant implications for advancing computational medicine and patient-specific treatment design. Her technical expertise spans COMSOL Multiphysics, MATLAB, and finite element methods, enabling her to conduct high-fidelity simulations that align closely with experimental and clinical observations. She has presented her findings at prestigious international platforms, including the Indian Society of Theoretical and Applied Mechanics (ISTAM) and the International Conference on Recent Trends in Mathematics (ICRTM), reflecting her active engagement with the global research community.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

Tanwar, S., Famhawite, L., & Verma, P. R. (2023). Numerical simulation of bio-heat transfer for cryoablation of regularly shaped tumours in liver tissue using multiprobes. Journal of Thermal Biology, 113, 103531.

Famhawite, L., Tanwar, S., & Verma, P. R. (2024). PERSPECTIVE: Cryosurgery process applications: A mathematical review. CryoLetters, 45(5), 269–278.

Famhawite, L., Tanwar, S., & Verma, P. R. (2025). Numerical simulations to analyze the impact of vascular network complexity over cryosurgical treatment process of two-dimensional liver tumor tissue. International Journal for Computational Methods in Engineering Science and Mechanics.

Tanwar, S., Famhawite, L., & Verma, P. R. (2026). Bioheat transfer simulations of cryoablation and their comparison with different optimization techniques for patient-specific segmented liver tumor tissue. International Journal of Thermal Sciences, 220, 110301.

 

Ilhem Kadri | Mathematics | Best Researcher Award

Dr. Ilhem Kadri | Mathematics | Best Researcher Award

Oran 1 Ahmed Ben Bella University, Algeria

Dr. Ilhem Kadri is an accomplished Associate Professor of Applied Mathematics at the University of Oran 1, Algeria, with a Ph.D. in Applied Mathematics from the University of Jordan (2022) and a Master’s in Applied Mathematics from the University of Oran 1. Her educational foundation, including a Licence in Mathematics and early scientific training in Algeria, laid the groundwork for her expertise in fractional calculus, nonlinear partial differential equations, fractional differential equations, numerical and analytical methods, mathematical computing, and systems of differential equations. Throughout her career, Dr. Kadri has demonstrated strong professional engagement in both research and academic development, contributing significantly to applied and computational mathematics and exploring innovative analytical and numerical methods for solving complex differential systems. Her research interests include the study of atomic solutions, non-equilibrium dynamics, weak chaos in Hamiltonian and driven systems, and computational modeling using fractional and conformable differential equations. Dr. Kadri is proficient in LaTeX, Scientific Workplace, Mathematica, and MATLAB, enabling her to design and implement robust computational frameworks and advanced mathematical models. She has actively disseminated her research through international conferences and workshops, including events in Turkey, Greece, India, Malaysia, and Pakistan, and has authored 4 research documents, accumulating 10 citations with an h-index of 2, reflecting her growing impact in the field. Her academic contributions are complemented by her dedication to mentoring students and promoting research excellence in applied mathematics. Dr. Kadri’s awards and honors underscore her scholarly promise, while her work continues to bridge theoretical and computational approaches to complex mathematical phenomena. Her research vision emphasizes the integration of fractional calculus and computational techniques to address emerging challenges in science and engineering, demonstrating her potential to advance both the theoretical foundations and practical applications of mathematics, contributing significantly to global innovation, industrial solutions, and societal advancement.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate

Featured Publications

  1. Kadri, I., Al-Horani, M., & Khalil, R. (2022). Solution of non-linear fractional Burger’s type equations using the Laplace transform decomposition method. Results in Nonlinear Analysis, 5(2), 131–150.

  2. Kadri, I., Al Horani, M., & Khalil, R. (2023). Solution of fractional Laplace type equation in conformable sense using fractional Fourier series with separation of variables technique. Results in Nonlinear Analysis, 6(2), 53–59.

  3. Kadri, I., Horani, M., & Khalil, R. (2020). Tensor product technique and fractional differential equations. Journal of Semigroup Theory and Applications, Article ID 6.

  4. Ahmed, A. I., Elbadri, M., Alotaibi, A. M., Ashmaig, M. A. M., Dafaalla, M. E., & Kadri, I. (2025). Chaos and dynamic behavior of the 4D hyperchaotic Chen system via variable-order fractional derivatives. Mathematics, 13(20), 3240.

  5. Kadri, I., Saadeh, R. S., AlMutairi, D. M., Dafaalla, M. E., Berir, M., & Abdoon, M. A. (2025). Analytical and numerical investigation of a fractional order 4D chaotic system via Caputo fractional derivative. European Journal of Pure and Applied Mathematics, 18(3), 6381.

Dr. Ilhem Kadri’s work advances the understanding and application of fractional and nonlinear differential equations, providing robust computational tools for modeling complex systems. Her research contributes to scientific innovation, supports industrial problem-solving, and enables the development of advanced technologies with broad societal impact.

Ramoshweu Solomon Lebelo | Mathematics | Best Researcher Award

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo | Mathematics | Best Researcher Award

Vaal University of Technology | South Africa

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo is a distinguished academic and researcher in the field of applied physical sciences, serving at the Vaal University of Technology. With a strong background in Mechanical Engineering and specialization in Theoretical Fluid Dynamics, he has established himself as a recognized authority in Computational Fluid Dynamics (CFD), Mathematical Biology, and Mathematics Education. His career reflects a balance between teaching, research, scholarly publishing, and academic leadership, positioning him as a vital contributor to both local and international scientific communities. He has published extensively in peer-reviewed journals indexed in Scopus and ISI, authored and co-authored books, and contributed to the advancement of research through editorial roles and special issue guest editorships. Dr. Lebelo is also a committed mentor, guiding students in research and academic growth, and has actively participated in more than thirty international conferences where he has shared his expertise and findings. His dedication extends beyond academia through his involvement in volunteer platforms, editorial services, and authorship of books with broader educational and societal impact. Overall, his work demonstrates a unique blend of innovation, leadership, and service that makes him a respected scholar in his field.

Professional Profile

Scopus | ORCID

Education

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo holds a Ph.D. in Mechanical Engineering with a specialization in Theoretical Fluid Dynamics, which laid the foundation for his deep engagement in Computational Fluid Dynamics and applied mathematics research. His educational path provided him with both theoretical insight and practical knowledge, allowing him to pursue a wide range of multidisciplinary research areas. During his doctoral training, he developed advanced computational and mathematical modelling skills, enabling him to approach complex physical and engineering problems with rigorous analytical frameworks. His academic background also extends into applied physical sciences, providing him with a versatile foundation to teach, conduct research, and contribute to academic curricula in engineering and mathematics education. Dr. Lebelo’s educational experience has been marked by a balance of research, teaching, and applied study, equipping him with the capability to supervise postgraduate students and lead interdisciplinary collaborations. His scholarly journey reflects a strong commitment to academic excellence and a determination to contribute to both theoretical understanding and real-world problem-solving. Through his education, he has acquired the skills, knowledge, and academic credibility that continue to guide his contributions as a respected researcher and Associate Professor.

Professional Experience

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo’s professional experience encompasses academic teaching, research leadership, editorial responsibilities, and contributions to scientific dialogue at global platforms. At the Vaal University of Technology, he has played a significant role in advancing research in applied physical sciences while mentoring students and supporting academic programs in engineering and mathematics. His teaching extends to both undergraduate and postgraduate levels, focusing on mechanical engineering, computational techniques, and mathematical modelling. In addition to teaching, he has made substantial contributions as an editor and reviewer for over twenty international peer-reviewed journals, and he serves on editorial boards of several recognized publications. His experience includes guest-editing multiple special issues in fields such as mathematical applications, CFD, and differential equations, demonstrating his leadership in shaping research directions. Beyond editorial service, he has authored textbooks, research monographs, and co-edited volumes that support both academic and applied communities. Participation in international conferences has allowed him to disseminate his research findings, build networks, and engage in global collaborations. This broad professional experience highlights his academic leadership, influence in advancing scientific research, and his role as an educator committed to excellence and innovation in applied sciences.

Research Interests

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo research interests are highly interdisciplinary, bridging Mechanical Engineering, Applied Mathematics, and Biology. His primary specialization lies in Computational Fluid Dynamics (CFD), where he explores complex fluid systems through mathematical modelling and numerical simulations. This area of research allows him to address challenges in engineering, environmental sciences, and biomedical applications. He is equally engaged in Mathematical Biology, contributing models that examine biological processes and systems with applications in medicine and environmental sustainability. His interest in Mathematics Education reflects his commitment to advancing teaching methodologies and improving student engagement in engineering and mathematical sciences. Additionally, he has dedicated his efforts to developing advanced modelling approaches using differential equations, numerical methods, and simulation techniques. Through these research pursuits, Dr. Lebelo contributes not only to theoretical knowledge but also to applied problem-solving in science, technology, and education. His interdisciplinary focus enables him to foster collaborations across academic domains and engage in research that impacts both academia and industry. His body of work reflects a long-term vision to use mathematics and computation as tools for solving complex, real-world problems while simultaneously advancing academic learning and research.

Research Skills

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo possesses a diverse range of research skills that strengthen his ability to conduct and lead multidisciplinary studies. His expertise in Computational Fluid Dynamics equips him with advanced modelling, simulation, and analytical abilities essential for investigating fluid flow and engineering processes. He has strong skills in applied mathematics, particularly in differential equations, numerical analysis, and mathematical modelling, which he applies to both engineering and biological systems. His editorial work further demonstrates his ability to critically evaluate scientific manuscripts and contribute to shaping global research standards. In addition, he is skilled in research communication, having presented at more than thirty international conferences where he has shared complex ideas with clarity. His authorship of textbooks and research books highlights his capacity for synthesizing knowledge into accessible resources for students and professionals. Beyond technical abilities, Dr. Lebelo’s research skills include project leadership, mentoring students, and collaborating across international research teams. His combination of technical, analytical, and leadership skills reflects not only his capacity as a researcher but also as a thought leader who can influence the future of science and education.

Awards and Honors

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo has earned recognition for his academic and professional contributions through numerous honors, roles, and achievements. His reputation as a reviewer for more than twenty peer-reviewed journals highlights his respected standing in the global scientific community. His selection to serve on editorial boards and guest-edit special issues in prestigious journals reflects international acknowledgment of his expertise. Notably, he has edited volumes in areas such as mathematical applications, CFD, and applied mathematics, further strengthening his academic influence. His authorship and co-editorship of textbooks and research monographs, including works published by MDPI, Scientific.Net, and Frontiers, demonstrate his contribution to shaping academic discourse in engineering and applied mathematics. Beyond academic publishing, he has also authored spiritual books, expanding his impact beyond the scientific community into broader cultural and social contexts. His participation in over thirty international conferences, both as a presenter and academic representative, signifies recognition of his expertise on global platforms. These collective honors and accomplishments underscore his dedication, excellence, and leadership in advancing research, education, and societal contributions.

Publication Top Notes

  1. Irreversibility Analysis of Hydromagnetic Casson Fluid Flow Through an Inclined Channel with Isothermal Boundary Conditions — 2025

  2. Energy Efficacy Enhancement in a Reactive Couple-Stress Fluid Induced by Electrokinetics and Pressure Gradient with Variable Fluid Properties — 2025 — 1 citation

  3. Modelling epidemiological dynamics with pseudo-recovery via fractional-order derivative operator and optimal control measures — 2025 — 3 citations

  4. Convective and Radiative Heat Transfer Analysis in a Three-Step Exothermic Chemical Reaction: Case Study—Methane Combustion — 2025

  5. Impact of Optimal Intervention Strategies on Psychoactive Substance Abuse Dynamics With Addicted Immigrants: A Mathematical Study — 2025 — 1 citation

  6. Transformative learning in the PGDHE programmme at one university of technology in South Africa — 2025

  7. Modelling and Optimal Control of Influenza Dynamics with Structured Populations Based on Education and Isolation — 2025 — 1 citation

Conclusion

Assoc. Prof. Dr. Ramoshweu Solomon Lebelo stands out as a remarkable academic whose contributions span teaching, research, publishing, and leadership in applied physical sciences. His work in Computational Fluid Dynamics, Mathematical Biology, and Mathematics Education has not only enriched theoretical understanding but also addressed real-world challenges across multiple disciplines. By publishing extensively, serving as an editor and reviewer, and authoring influential books, he has played a vital role in advancing scientific knowledge and shaping the academic community. His recognition at international conferences, along with his mentorship of students, demonstrates his role as both a leader and educator dedicated to future generations of scientists and engineers. The honors and editorial positions he has earned further solidify his reputation as a trusted and respected figure in the global research community. With a strong vision for interdisciplinary collaboration, he is poised to continue influencing the direction of applied mathematics and engineering research. His career reflects a rare blend of intellectual rigor, professional service, and social impact, making him truly deserving of recognition as a distinguished researcher and academic leader.