Carmen Vivar | Neuroscience | Best Researcher Award

Dr. Carmen Vivar | Neuroscience | Best Researcher Award

 Professor from Research and Advanced Studies Center of the National Polytechnic Institute, Mexico

Dr. Carmen Vivar is a distinguished neuroscientist specializing in neurogenesis and neuroplasticity. She is currently a professor at the Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute in Mexico City. Dr. Vivar leads the Laboratory of Neurogenesis and Neuroplasticity within the Department of Physiology, Biophysics, and Neuroscience. Her research primarily focuses on the effects of physical activity on brain function, particularly how exercise influences neurogenesis and cognitive processes. Dr. Vivar has an extensive publication record, contributing significantly to the understanding of hippocampal function and its role in learning and memory. Her work has been widely cited, reflecting her impact on the field of neuroscience.

Professional Profile

Education

Dr. Vivar earned her Ph.D. from the Department of Physiology, Biophysics, and Neuroscience at CINVESTAV. During her doctoral studies, she focused on the electrophysiological properties of hippocampal neurons and their role in synaptic plasticity. Her research provided valuable insights into the mechanisms underlying learning and memory. This strong foundation in cellular neuroscience has been instrumental in shaping her subsequent research endeavors.

Professional Experience

Following her Ph.D., Dr. Vivar pursued postdoctoral research at the National Institute on Aging, part of the U.S. National Institutes of Health in Baltimore, Maryland. There, she investigated the impact of aging on neurogenesis and cognitive function. She also served as a guest researcher at the Skirball Institute of Biomolecular Medicine’s Kimmel Center for Biology and Medicine at New York University, where she studied the molecular mechanisms of synaptic plasticity. Dr. Vivar’s international experience has enriched her research perspective and collaborations.

Research Interests

Dr. Vivar’s research interests encompass adult neurogenesis, synaptic plasticity, and the effects of physical exercise on brain function. She is particularly interested in how voluntary physical activity enhances hippocampal neurogenesis and improves cognitive functions such as learning and memory. Her studies aim to bridge the gap between animal models and human applications, providing insights into potential therapeutic strategies for neurodegenerative diseases and age-related cognitive decline.

Research Skills

Dr. Vivar possesses expertise in electrophysiology, neurophysiology, and cellular neuroscience. She is skilled in techniques such as in vivo and in vitro electrophysiological recordings, immunohistochemistry, and behavioral assessments related to learning and memory. Her proficiency in these methodologies enables her to investigate the intricate relationships between neuronal activity, synaptic plasticity, and behavior.

Awards and Honors

Throughout her career, Dr. Vivar has received recognition for her contributions to neuroscience. Her research has garnered significant citations, reflecting its impact on the scientific community. Additionally, she has been invited to speak at various international conferences and seminars, highlighting her expertise in the field. Her role as a guest speaker at events such as the Florida Atlantic Neuroscience Seminar Series underscores her standing in the scientific community.

Conclusion

Dr. Carmen Vivar’s dedication to understanding the mechanisms of neurogenesis and neuroplasticity has significantly advanced the field of neuroscience. Her research on the interplay between physical activity and brain function offers promising avenues for therapeutic interventions in neurodegenerative diseases and cognitive aging. Through her extensive experience and expertise, Dr. Vivar continues to contribute to the scientific community’s understanding of the brain’s capacity for adaptation and regeneration.

Publications Top Notes​

  1. Title: Running Reverses Chronic Stress‐Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses
    Authors: Carmen Soto, Lazaro P. Orihuela, Grego Apostol, Carmen Vivar
    Year: 2025

  2. Title: Entorhinal cortex–hippocampal circuit connectivity in health and disease
    Authors: Melissa Hernández-Frausto, Carmen Vivar
    Year: 2024

  3. Title: Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired
    Authors: Carmen Vivar, Benjamin D. Peterson, Alejandro Pinto, Emma Janke, Henriette van Praag
    Year: 2023

  4. Title: Rabies Virus Tracing of Monosynaptic Inputs to Adult-Born Granule Cells
    Author: Carmen Vivar
    Year: 2022

  5. Title: Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination
    Author: Carmen Vivar
    Year: 2021

  6. Title: Exercise and Hippocampal Memory Systems
    Authors: Voss, M.W.; Soto, C.; Yoo, S.; Sodoma, M.; Vivar, C.; van Praag, H.
    Year: 2019

  7. Title: Running changes the brain: The long and the short of it
    Authors: Vivar, C.; Van Praag, H.
    Year: 2017

  8. Title: Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons
    Authors: Sah, N.; Peterson, B.D.; Lubejko, S.T.; Vivar, C.; Van Praag, H.
    Year: 2017

  9. Title: Adult hippocampal neurogenesis, aging and neurodegenerative diseases: Possible strategies to prevent cognitive impairment
    Author: Vivar, C.
    Year: 2015

  10. Title: Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice
    Authors: Stringer, T.P.; Guerrieri, D.; Vivar, C.; Van Praag, H.
    Year: 2015

  11. Title: Running rewires the neuronal network of adult-born dentate granule cells
    Author: Carmen Vivar
    Year: 2015

 


Mariana Udo | Neuroscience | Best Researcher Award

Dr. Mariana Udo | Neuroscience | Best Researcher Award

Postdoctoral Fellow at University of Texas Health, United States

Dr. Mariana Sayuri Berto Udo is a dedicated researcher with extensive expertise in neurotoxicology, neurodegenerative diseases, cognition impairment, and aging. Currently a Postdoctoral Fellow at the Department of Neurology at Louisiana State University Health Sciences Center (LSU Health Shreveport), her work focuses on understanding vascular dementia and related pathways. Dr. Udo’s career spans multiple countries, including Brazil, Japan, and the United States, reflecting her global research perspective. She has secured prestigious funding from organizations such as the American Heart Association and has earned recognition for her scientific contributions. Dr. Udo has also served in academic mentorship, professional service, and research collaborations, making her a well-rounded scientist in her field.

Professional Profile

Education

Dr. Udo earned her Ph.D. (2013–2018) and MSc. (2010–2012) in Clinical and Toxicological Analysis from the University of São Paulo, Brazil, after completing her B.S. in Pharmaceutical Science at Methodist University of Piracicaba (2002–2006). She also obtained a certification in Clinical and Analytical Toxicology from the University of Campinas in 2007. Currently, she is a Postdoctoral Fellow at LSU Health Shreveport (2021–present), advancing her expertise in neurology. Her multidisciplinary education underlines her comprehensive understanding of pharmaceutical science, toxicology, and neurobiology.

Professional Experience

Dr. Udo has held various academic and research roles. As a Research Assistant at Asahikawa Medical University in Japan (2019–2021), she contributed to projects on neurophysiology and pharmacology. From 2013 to 2018, she was a lecturer at the Psychoanalytic Research Center, São Paulo, Brazil, where she taught neurophysiology and pharmacology. Additionally, she has contributed to scientific committees and evaluation boards, reflecting her dedication to advancing education and research.

Research Interests

Dr. Udo’s research interests encompass neurotoxicology, neurodegenerative diseases, cognition impairment, and aging. She is particularly focused on the organization and derangement of the microvasculature and the role of lipid rafts in neurodegenerative processes. Her work aims to elucidate mechanisms that contribute to vascular dementia, with an emphasis on improving understanding and treatment of age-related neurological disorders.

Research Skills

Dr. Udo is proficient in advanced research methodologies, including molecular and cellular biology, neurophysiological studies, and toxicological analysis. She has experience with preclinical models, pharmacological assessments, and data analysis related to neurodegeneration and cognition. Her ability to design and execute complex experiments, coupled with her analytical skills, has been instrumental in advancing her research objectives.

Awards and Honors

Dr. Udo has received numerous accolades for her work, including the Best Oral Presentation Award at the XXIV Benjamin Eurico Malucelli Scientific Meeting in 2015. She has also secured prestigious funding, such as the American Heart Association Postdoctoral Fellowship (2024–2025) and the Malcolm Feist Cardiovascular Research Fellowship (2023–2024). These recognitions reflect her significant contributions to the field of neurology and toxicology.

Conclusion

Dr. Mariana Sayuri Berto Udo is an excellent candidate for the Best Researcher Award due to her diverse academic background, international research experience, substantial funding achievements, and focus on impactful areas of neurology and toxicology. To further enhance her application, she could focus on increasing her publication record in high-impact journals and expanding global collaborations. Overall, her research and contributions make her a strong contender for this prestigious recognition.

Publication Top Notes

  1. Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats
    Authors: MSB Udo, TM Sandini, TM Reis, MM Bernardi, HS Spinosa
    Journal: Neurotoxicology and Teratology
    Year: 2014
    Citations: 51
  2. Desenvolvimento e estudos preliminares de estabilidade de formulações fotoprotetoras contendo Granlux GAI-45 TS
    Authors: M Chorilli, MS Udo, ME Cavallini, GR Leonardi
    Journal: Revista de Ciências Farmacêuticas Básica e Aplicada
    Year: 2006
    Citations: 36
  3. Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats
    Authors: TM Sandini, MSB Udo, TM Reis-Silva, MM Bernardi, HS Spinosa
    Journal: International Journal of Developmental Neuroscience
    Year: 2014
    Citations: 22
  4. Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats
    Authors: JZ Magalhães, MSB Udo, AM Sánchez-Sarmiento, MPN Carvalho, …
    Journal: Neurotoxicology and Teratology
    Year: 2015
    Citations: 20
  5. M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product
    Authors: RCT Garcia, LMM Dati, LH Torres, MAA da Silva, MSB Udo, FMF Abdalla, …
    Journal: Scientific Reports
    Year: 2015
    Citations: 17
  6. Senecio brasiliensis e alcaloides pirrolizidínicos: toxicidade em animais e na saúde humana
    Authors: TM Sandini, MSB Udo, H de Souza Spinosa
    Journal: Biotemas
    Year: 2013
    Citations: 16
  7. Prenatal exposure to integerrimine N-oxide enriched butanolic residue from Senecio brasiliensis affects behavior and striatal neurotransmitter levels of rats in adulthood
    Authors: TM Sandini, MSB Udo, TM Reis-Silva, D Sanches, MM Bernardi, JC Flório, …
    Journal: International Journal of Developmental Neuroscience
    Year: 2015
    Citations: 13
  8. Fipronil: uses, pharmacological and toxicological features
    Authors: JZ Magalhães, TM Sandini, MSB Udo, A Fukushima, H de Souza-Spinosa
    Journal: Revinter
    Year: 2018
    Citations: 12
  9. Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer’s disease
    Authors: GA Clemons, AC Silva, CH Acosta, MSB Udo, V Tesic, KM Rodgers, …
    Journal: Journal of Cellular Physiology
    Year: 2024
    Citations: 11
  10. Anhydroecgonine methyl ester, a cocaine pyrolysis product, contributes to cocaine-induced rat primary hippocampal neuronal death in a synergistic and time-dependent manner
    Authors: MSB Udo, MAA da Silva, S de Souza Prates, LF Dal’Jovem, …
    Journal: Archives of Toxicology
    Year: 2021
    Citations: 9