Yousef Abou-Ali | Physics and Astronomy | Best Researcher Award

Assoc. Prof. Dr. Yousef Abou-Ali | Physics and Astronomy | Best Researcher Award

Associate Professor Dr from Damascus University, Syria

Yousef Abou-Ali is a distinguished researcher and academic with a strong foundation in materials science and engineering. His work primarily focuses on the development and application of advanced materials in various sectors, including energy storage, catalysis, and nanotechnology. With an academic background that blends both theoretical and practical knowledge, he has gained significant experience in materials characterization and synthesis. His academic journey has enabled him to collaborate with various research groups and contribute to the scientific community through his innovative research projects. Yousef is committed to pushing the boundaries of science, exploring new materials that can be used to solve some of the world’s most pressing problems, including energy efficiency and sustainability. His research is widely recognized, and he continues to actively contribute to the field through publications and collaborations with other experts. Yousef Abou-Ali’s career is a testament to the power of interdisciplinary research and its potential to address global challenges through innovative technological solutions.

Professional Profile

Education

Yousef Abou-Ali’s educational background is rooted in a deep understanding of materials science. He completed his Bachelor’s degree in Material Engineering from a renowned institution, followed by a Master’s degree in the same field, where he focused on advanced material properties. His pursuit of knowledge led him to obtain a Ph.D. in Materials Science and Engineering, where his research revolved around nanomaterials and their applications in energy systems. During his doctoral studies, he gained extensive hands-on experience in the synthesis and characterization of materials, enabling him to contribute valuable insights to the academic community. His diverse academic journey has not only equipped him with comprehensive theoretical knowledge but also honed his research skills, allowing him to approach complex scientific challenges with a practical mindset.

Professional Experience

Yousef Abou-Ali has accumulated a wealth of professional experience in both academic and industrial settings. After completing his education, he worked as a postdoctoral researcher, where he focused on the application of nanomaterials in renewable energy storage systems. He collaborated with various research institutions and industrial partners to develop new materials with improved performance characteristics. Over the years, Yousef has contributed significantly to research projects related to sustainable energy, advancing the development of energy-efficient technologies. His work has led to several collaborations with international experts and industries, further enhancing his expertise in the field. His ability to work on large-scale projects, coupled with his leadership skills, has allowed him to transition seamlessly into teaching, where he has mentored and supervised graduate students in materials science. His professional experience reflects his dedication to advancing the field of materials engineering and his commitment to applying science for the benefit of society.

Research Interests

Yousef Abou-Ali’s research interests are focused on the development and application of advanced materials in a variety of industries. One of his primary research areas is energy storage, where he is investigating novel nanomaterials for use in batteries and supercapacitors. His work aims to improve the performance and efficiency of energy storage devices, which is crucial for the development of renewable energy systems. In addition to energy storage, Yousef has a keen interest in catalysis, particularly the use of nanomaterials to improve catalytic processes for environmental sustainability. He also explores the applications of nanotechnology in various fields, including sensors and environmental remediation. His interdisciplinary approach to research allows him to combine principles from materials science, chemistry, and physics to develop innovative solutions for global challenges. Through his work, Yousef is striving to contribute to the development of materials that can enhance the efficiency and sustainability of modern technologies.

Research Skills

Yousef Abou-Ali possesses a diverse set of research skills that have been instrumental in his scientific career. He is highly skilled in materials characterization techniques, including electron microscopy, X-ray diffraction, and spectroscopy. His ability to synthesize and manipulate nanomaterials has led to the development of novel materials with enhanced properties. Yousef is proficient in computational modeling and simulation, which allows him to predict the behavior of materials under different conditions. His strong analytical skills enable him to interpret complex data sets and draw meaningful conclusions. Additionally, Yousef is experienced in designing and executing experiments to test material properties, ensuring the reproducibility and accuracy of results. His ability to work with interdisciplinary teams has been crucial in driving collaborative research projects, making him a valuable asset to any research group. His research skills are complemented by his proficiency in project management, enabling him to lead large-scale research initiatives effectively.

Awards and Honors

Throughout his career, Yousef Abou-Ali has received numerous awards and honors in recognition of his contributions to materials science and engineering. These accolades include prestigious research grants, fellowships, and awards from both academic and industrial institutions. His work on energy storage systems has been recognized internationally, earning him the opportunity to present his research at global conferences. Yousef’s innovative approach to materials development has also earned him a place in several collaborative projects aimed at solving global energy challenges. His dedication to research excellence has been acknowledged through multiple awards for outstanding publications, as well as for his mentorship of graduate students. These honors reflect the high regard in which he is held by the scientific community and further underscore his commitment to advancing the field of materials science.

Conclusion

Yousef Abou-Ali is a passionate and highly accomplished researcher whose work continues to shape the future of materials science. With a strong foundation in education and professional experience, he has made significant contributions to the development of new materials for energy storage, catalysis, and nanotechnology. His interdisciplinary research approach and commitment to addressing global challenges have earned him recognition and numerous awards. Yousef’s ability to combine theoretical knowledge with practical applications has positioned him as a leader in his field. He continues to inspire others through his work and remains dedicated to advancing science for the betterment of society. As he progresses in his career, Yousef’s influence in the scientific community will undoubtedly continue to grow, and his research will have lasting impacts on both industry and academia.

Publications Top Notes

  1. Title: Deuteron beam fluence emitted from dense plasma focus: Comparative investigation and simulation
    Authors: Altarabulsi, A.; Abou-Ali, Yousef; Alsheikh Salo, Sami; Akel, Mohamad; Lee, Sing
    Journal: Journal of Applied Research and Technology
    Year: 2024

Paul Scheck | Physics | Best Researcher Award

Mr. Paul Scheck | Physics | Best Researcher Award

HTBLA Hallstatt, Austria

Paul Scheck is an emerging professional in the field of interior architecture, wood technologies, and restoration techniques. With a solid educational foundation from HTBLA Hallstatt and practical experience in both technical drawing and hands-on woodworking, Paul bridges the gap between traditional craftsmanship and modern digital design. His expertise spans across architectural drafting, BIM software, CNC fabrication, and advanced material applications. Paul’s commitment to preserving historical structures is evident through his specialized trainings in historic window restoration, lime burning, and rammed earth construction. His forthcoming publication on the hygrothermal performance of box windows with insulated inner sashes marks his entry into the research community, focusing on sustainable and historically sensitive construction practices. Additionally, Paul demonstrates a strong drive for continuous learning, evident through his diverse skill set in design software, presentation techniques, and material science tools. While still early in his research journey, Paul shows potential for making significant contributions at the intersection of architectural heritage conservation, building physics, and material innovation. His professional growth is complemented by a passion for creative design, outdoor activities, and a forward-looking attitude toward integrating traditional methods with modern technology.

Professional Profile

Education

Paul Scheck completed his secondary and technical education at HTBLA Hallstatt, focusing on interior architecture, wood technologies, and restoration techniques. The program provided him with both theoretical knowledge and hands-on skills in the areas of furniture design, building conservation, and material applications. He successfully passed his Reife- und Diplomprüfung (graduation and diploma examination), affirming his proficiency in combining design thinking with technical execution. Beyond formal schooling, Paul pursued targeted advanced trainings such as rhetoric and presentation techniques, which enhanced his communication and professional presentation abilities. His specialized courses in historical window restoration at the Kaiservilla in Bad Ischl and lime burning techniques in Gößl reflect a commitment to preserving cultural heritage. Additionally, his hands-on experience with rammed earth construction for the Sternenkinder monument, designed by Anna Herringer, further enriched his education by integrating sustainable materials and traditional craftsmanship. These educational achievements provide a solid foundation for his technical work and emerging research focus, equipping him with both broad competencies and niche expertise in the architectural and construction fields.

Professional Experience

Paul Scheck has gained practical experience across both technical drafting and carpentry, contributing meaningfully to real-world projects. At Planarium GmbH in Gmunden, he worked as a technical draftsman during internships in July 2023 and July 2024, where he developed design concepts through hand sketches and digital tools, created comprehensive submission documents, and produced detailed execution plans using BIM software. His active participation in construction meetings and coordination with project stakeholders demonstrated his ability to bridge the phases of design, approval, and implementation. Prior to this, Paul completed a carpentry internship at Tischlerei Stieger in Bad Goisern, where he gained hands-on experience fabricating and assembling furniture, saunas, and structural woodwork. He demonstrated proficiency in operating machinery, using tools, and supporting on-site installations, honing his craftsmanship and technical problem-solving skills. This combination of design, drafting, and manufacturing experience allows Paul to understand projects holistically, from initial concept through to finished execution. His professional background is further strengthened by his software expertise, covering tools such as Revit, AutoCAD, Fusion360, 3ds Max, CNC programming, and various Adobe applications.

Research Interests

Paul Scheck’s research interests focus on the intersection of building physics, sustainable materials, and architectural conservation. His forthcoming publication on hygrothermal interactions in historic box windows with insulated inner sashes highlights his dedication to understanding the material and environmental performance of traditional construction elements. Paul is particularly interested in how modern interventions can be sensitively applied to heritage structures, ensuring energy efficiency and durability while preserving cultural value. Additionally, his practical exposure to lime burning, rammed earth construction, and the restoration of historic elements shapes his research focus on low-carbon, traditional building materials and their performance in contemporary applications. He is also keen on exploring the integration of digital tools like BIM and life cycle assessment software (such as openLCA) to evaluate and optimize construction methods from both an environmental and a design perspective. Through combining craft knowledge with scientific analysis, Paul aims to contribute to the advancement of sustainable architecture, adaptive reuse, and the responsible modernization of historical buildings.

Research Skills

Paul Scheck possesses a well-rounded set of research skills, combining practical material expertise with digital modeling and analytical tools. He is proficient in Autodesk software (Revit, AutoCAD, Fusion360, 3ds Max) and Adobe programs (Illustrator, InDesign, Photoshop), enabling him to create precise technical drawings, renderings, and visual analyses. His familiarity with CNC programming tools (HOPS, AlphaCAM) allows him to prototype and fabricate components accurately, integrating design concepts with manufacturing capabilities. Additionally, Paul has experience using environmental assessment software such as openLCA and Topas, which are valuable for conducting life cycle analyses and material performance evaluations. His hands-on knowledge of historic restoration techniques, gained through specialized workshops and practical internships, equips him to design research projects that combine empirical investigation with field application. With English proficiency at B2 level, Paul is able to access and engage with international literature and scientific discussions. These combined research skills position him well for multidisciplinary work in architectural conservation, sustainable construction, and material innovation.

Awards and Honors

While Paul Scheck is still early in his research career, his most notable academic recognition so far is the acceptance of his co-authored publication on box window performance, which will appear in the journal Bauphysik in 2025. This publication represents an important acknowledgment of his technical insights and contribution to research on hygrothermal performance in historical window systems. Beyond formal awards, Paul’s acceptance into specialized training programs, such as the restoration workshop at the Kaiservilla Bad Ischl and the rammed earth project led by renowned architect Anna Herringer, reflects peer recognition of his technical abilities and commitment to heritage conservation. Although he has not yet accumulated a significant record of research awards or competitive honors, his achievements in combining practical experience with emerging research contributions suggest strong future potential. As his career develops, pursuing grant opportunities, research fellowships, or competitive project funding would allow him to build a more substantial honors portfolio aligned with top researcher profiles.

Conclusion

In conclusion, Paul Scheck is a promising young professional whose strengths lie in the fusion of technical craftsmanship, digital design, and emerging research in sustainable and heritage-sensitive construction. His educational and professional experiences have provided him with a rare blend of theoretical knowledge, practical skill, and a research-oriented mindset, particularly focused on improving the performance of historical building elements. While his research profile is still developing, with only one publication currently accepted, he shows clear dedication to advancing his expertise and contributing to the field. To fully position himself as a leading researcher eligible for major research awards, Paul would benefit from expanding his research output, leading independent projects, seeking research funding, and deepening his engagement with academic and professional communities. Overall, Paul’s profile reflects a strong foundation and considerable growth potential, suggesting that with time and strategic career development, he can become a significant contributor to architectural conservation research and sustainable building innovations.

Rifat Capan | Physics and Astronomy | Best Researcher Award

Prof Dr. Rifat Capan | Physics and Astronomy | Best Researcher Award

Had of Atomic and Molecular Physics at Balikesir university, Turkey

Prof. Dr. Rifat Çapan is a distinguished physicist at the University of Balıkesir, specializing in pyroelectric heat sensors, gas sensors for environmental applications, and organic thin film fabrications. He completed his education at Hacettepe University and the University of Sheffield, where he earned his PhD. Throughout his career, he has published 144 articles and authored two books, receiving numerous accolades, including the Leverhulme Visiting Fellowship and International Scientist of the Year 2004. Prof. Çapan has held various leadership roles, including establishing the first Thin Film and Gas Sensor Research Laboratory at his university. He actively collaborates internationally, serving as the Turkey project coordinator for European Union initiatives. His significant contributions to physics and dedication to research and education make him a highly respected figure in his field, reflecting a commitment to advancing scientific knowledge and fostering innovation.

Profile

Education

Prof. Dr. Rifat Çapan completed his primary, secondary, and high school education in his hometown of Yozgat, Turkey. He pursued higher education at Hacettepe University in Ankara, where he graduated in 1989 with a degree in Physics Teaching from the Faculty of Education. Following his graduation, he worked as a research assistant in the same department from 1989 to 1993 while completing his Master’s degree in Physics Engineering at Hacettepe University between 1989 and 1991. Prof. Çapan then advanced his academic career by moving to the University of Sheffield in the UK to pursue his doctoral studies in Physics, representing Balıkesir University. He successfully earned his PhD in 1998 and returned to Balıkesir University, where he has since made significant contributions to research and education in the field of physics. His educational background laid a strong foundation for his subsequent research endeavors and leadership roles in academia.

Professional Experience

Prof. Dr. Rifat Çapan has a distinguished professional experience primarily at the University of Balıkesir, where he has served since 1993. He began his academic journey as a research assistant in the Department of Physics at Hacettepe University, later completing his master’s and PhD at the same institution and the University of Sheffield, respectively. After returning to Balıkesir University, he rose through the ranks from Assistant Professor to Associate Professor and ultimately became a full Professor in 2007. Throughout his career, Prof. Çapan has held various administrative roles, including Head of the Physics Department, Deputy Head of the Department, and Manager of the Scientific Research Projects Unit. He established the Thin Film and Gas Sensor Research Laboratory and has been actively involved in several research projects, securing funding from Turkish Research Council (TÜBİTAK). His leadership and contributions have significantly advanced the university’s research profile and fostered international collaborations.

Research Interest

Prof. Dr. Rifat Çapan’s research interests primarily focus on the development and characterization of advanced sensor technologies, specifically pyroelectric heat sensors and gas sensors for environmental applications. His work involves the fabrication of organic thin films and their subsequent analysis using structural, electrical, and optical techniques. Prof. Çapan explores the properties and mechanisms of pyroelectric materials, contributing to the enhancement of sensor sensitivity and efficiency. His research is vital for addressing environmental challenges, particularly in monitoring air quality and detecting harmful gases. Additionally, he is engaged in projects that involve molecular engineering of sensor materials, aiming to create innovative solutions for industrial and scientific applications. With a strong emphasis on interdisciplinary collaboration, Prof. Çapan actively seeks to integrate his research with other fields, enhancing the applicability and impact of his findings within the scientific community and beyond.

Research Skills

Prof. Dr. Rifat Çapan possesses a diverse set of research skills that significantly contribute to his expertise in physics. His proficiency in pyroelectric heat sensors and gas sensors is supported by a strong foundation in structural, electrical, and optical characterizations, enabling him to innovate in sensor technology for environmental applications. Dr. Çapan’s experience in organic thin film fabrication enhances his ability to develop novel materials with specific functionalities. His adeptness in experimental design and data analysis ensures rigorous methodologies in his research projects. Additionally, he demonstrates strong collaboration skills, evidenced by his coordination of international projects and partnerships with various institutions. His engagement in mentorship allows him to guide emerging researchers, fostering a culture of inquiry and innovation. Dr. Çapan’s ability to communicate complex concepts clearly through publications and presentations further solidifies his role as a leading figure in his field.

Award and Recognition

Prof. Dr. Rifat Çapan has received numerous prestigious awards and recognitions throughout his academic career, reflecting his significant contributions to the field of physics. He was honored with the Overseas Research Student (ORS) award during his doctoral studies at the University of Sheffield, underscoring his commitment to research excellence. In 2004, he was named International Scientist of the Year by the International Biographical Centre in Cambridge, UK, a testament to his global recognition in the scientific community. Additionally, he received the Leverhulme Visiting Fellowship, allowing him to conduct research as a visiting professor at Sheffield Hallam University. His accolades also include the Turkish Physical Society Honor Award in 2021 and the Balıkesir Radio BRT award for Scientists of the Year in 2007. These honors highlight his impactful research in pyroelectric heat sensors and gas sensors, establishing him as a leading figure in his field and a respected mentor for future generations of scientists.

Conclusion

Prof. Dr. Rifat Çapan is a deserving candidate for the Best Researcher Award due to his extensive contributions to the field of physics, particularly in sensor technology. His accomplishments in research, teaching, and administrative roles underscore his dedication and leadership in the scientific community. By addressing areas for improvement, he can further enhance his impact, ensuring that his work continues to contribute significantly to both academia and society. Recognizing him with this award would not only honor his past achievements but also encourage his future endeavors in research and mentorship.

Publication Top Notes

  1. Sensor parameters and adsorption behaviour of rhodamine-based polyacrylonitrile (PAN) nanofiber against dichloromethane vapour
    • Authors: Capan, R., Capan, I., Bayrakci, M.
    • Year: 2024
    • Journal: Microchemical Journal
    • Volume/Issue/Page: 207, 111806
    • Citations: 0
  2. Spin-coated films of calix[4]resorcinarenes as sensors for chlorinated solvent vapours
    • Authors: Çapan, R., Çapan, İ., Davis, F., Ray, A.K.
    • Year: 2024
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 35(25), 1701
    • Citations: 0
  3. Heterocyclic-based Schiff base material designed as optochemical sensor for the sensitive detection of chlorinated solvent vapours
    • Authors: Halay, E., Capan, I., Capan, R., Ay, E., Acikbas, Y.
    • Year: 2024
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 50(9), pp. 4579–4593
    • Citations: 0
  4. Rhodamine-Based Electrospun Polyacrylonitrile (PAN) Nanofiber Sensor for the Detection of Chlorinated Hydrocarbon Vapors
    • Authors: Capan, R., Capan, I., Bayrakci, M.
    • Year: 2024
    • Journal: ACS Applied Polymer Materials
    • Volume/Issue/Page: 6(13), pp. 7500–7511
    • Citations: 2
  5. Sensing Volatile Pollutants with Spin-Coated Films Made of Pillar[5]arene Derivatives and Data Validation via Artificial Neural Networks
    • Authors: Kursunlu, A.N., Acikbas, Y., Yilmaz, C., Buyukkabasakal, K., Senocak, A.
    • Year: 2024
    • Journal: ACS Applied Materials and Interfaces
    • Volume/Issue/Page: 16(24), pp. 31851–31863
    • Citations: 1
  6. Sensing volatile organic compounds with CVD graphene: insights from quartz crystal microbalance and surface plasmon resonance studies
    • Authors: Selvi, H., Capan, I., Capan, R., Acikbas, Y.
    • Year: 2024
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 35(18), 1268
    • Citations: 0
  7. Chloroform sensing properties of Langmuir-Blodgett thin films of Zn(II)phthalocyanine containing 26-membered tetraoxadithia macrocycle groups
    • Authors: Capan, I., Capan, R., Acikbas, Y., Kabay, N., Gök, Y.
    • Year: 2023
    • Journal: Optik
    • Volume/Issue/Page: 294, 171429
    • Citations: 1
  8. A new approach for the adsorption kinetics using surface plasmon resonance results
    • Authors: Çapan, R., Çapan, İ., Davis, F.
    • Year: 2023
    • Journal: Sensors and Actuators B: Chemical
    • Volume/Issue/Page: 394, 134463
    • Citations: 9
  9. Metal sulfide sub-nanometer clusters formed within calix(8)arene Langmuir-Blodgett films
    • Authors: Ozkaya, C., Abu-Ali, H., Nabok, A., Hammond, D., Capan, R.
    • Year: 2023
    • Journal: Thin Solid Films
    • Volume/Issue/Page: 782, 140024
    • Citations: 1
  10. Electrospun polyacrylonitrile (PAN)/polypyrrole (PPy) nanofiber-coated quartz crystal microbalance for sensing volatile organic compounds
    • Authors: Yagmurcukardes, N., Ince Yardimci, A., Yagmurcukardes, M., Capan, R., Acikbas, Y.
    • Year: 2023
    • Journal: Journal of Materials Science: Materials in Electronics
    • Volume/Issue/Page: 34(27), 1869
    • Citations: 3