Jeng-Shin Sheu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jeng-Shin Sheu | Engineering | Best Researcher Award

National Yunlin University of Science & Technology, Taiwan

Assoc. Prof. Dr. Jeng-Shin Sheu is an accomplished academic and researcher serving as an Associate Professor in the Department of Computer Science and Information Engineering at National Yunlin University of Science and Technology, Taiwan. He earned his B.E. (1995) and M.E. (1997) in Electrical Engineering from National Yunlin University of Science and Technology and completed his Ph.D. in Electrical Engineering at National Chung Cheng University in 2002. Following his doctorate, he advanced his expertise as a Postdoctoral Researcher at National Chiao Tung University (2002–2006), before joining Yunlin University in 2006, where he has continued to contribute significantly to teaching, research, and industry-academia collaboration. His research interests span cellular mobile systems, audio and speech processing, and natural language processing (NLP), with strong applications in artificial intelligence and healthcare technologies. Notable projects include the AI Health Education Teaching and Assessment Robot and the Interactive AI-Powered Voice Personal Health Assistant, reflecting his commitment to leveraging AI for societal benefits. Dr. Sheu is also skilled in advanced computer engineering, signal processing, and AI-driven optimization frameworks, particularly in adaptive energy harvesting for UAV-assisted IRS systems. His contributions are substantiated by 31 research documents, 145 citations, and an h-index of 6, with publications in IEEE and other Scopus-indexed journals and conferences. His excellence has been recognized through several honors, including the prestigious Shīduó Award for Excellence in Teaching (2019) and Outstanding Teacher Awards in 2021 and 2025, showcasing his dual commitment to academic innovation and mentorship. With his strong academic foundation, leadership in research, and impactful projects, Dr. Sheu stands out as a dedicated scholar who has significantly advanced computer science and engineering. His blend of scholarly achievements, industry collaborations, and contributions to student development highlight his potential for further international research leadership and enduring impact on science, technology, and society.

Profile: Scopus

Featured Publications

  1. Developing NLP models for Taiwanese Hokkien with challenges, script unification, and language modeling. Journal of the Chinese Institute of Engineers: Transactions of the Chinese Institute of Engineers, Series A.

  2. Optimising energy harvesting and throughput for UAV-assisted IRS systems with adaptive energy harvesting. IET Communications.

  3. Taiwanese Hokkien in AI: Challenges, approaches, and language modeling. Conference paper.

Sihui Jia | Engineering | Best Researcher Award

Mr. Sihui Jia | Engineering | Best Researcher Award

Shanghai University | China

Sihui Jia is an emerging scholar in the field of Electronic Science and Technology, with a specialized focus on microwave sensing technology. He is currently pursuing a doctoral degree at Shanghai University, where his research is centered on developing innovative sensing systems with wide-ranging applications in communication networks, healthcare, and environmental monitoring. With a strong academic foundation, he has established himself as a promising researcher dedicated to exploring advanced solutions for real-world technological challenges. His journey reflects consistent progress, beginning with an engineering background and moving toward advanced studies in electronics and communication engineering. He has demonstrated a commitment to both theoretical knowledge and practical implementation, which has allowed him to contribute meaningfully to academic research and interdisciplinary projects. His scholarly work has been published in reputed international platforms, highlighting his capability to translate research into impactful results. Alongside his academic pursuits, Jia actively engages in collaborative research, professional communities, and student mentorship, ensuring his contributions extend beyond individual achievements to collective progress. His dedication to research excellence, combined with his vision to advance sensing technologies, positions him as a strong candidate for recognition under the Best Researcher Award category.

Professional Profile

Education

Sihui Jia has pursued a progressive academic path in the field of electronics and communication, building a strong multidisciplinary background that underpins his research excellence. He began with a Bachelor’s degree in Engineering, where he acquired foundational skills in engineering principles, problem-solving, and technical applications. His undergraduate studies provided a platform for developing a keen interest in electronic devices and communication systems. To deepen his expertise, he completed a Master’s degree in Electronics and Communication Engineering, where he specialized in advanced communication techniques, signal processing, and sensor technology. This academic training provided him with the theoretical and practical skills required for tackling complex engineering challenges and laid the groundwork for his research journey. Currently, he is pursuing a Doctoral degree in Electronic Science and Technology at Shanghai University, where his research is centered on microwave sensing technology. His doctoral studies emphasize not only deep technical knowledge but also the integration of innovation, research methodology, and interdisciplinary collaboration. This academic progression demonstrates his commitment to advancing knowledge and contributing significantly to his field. His education highlights his ability to adapt, grow, and innovate, making him well-prepared for impactful contributions in academic research and practical applications.

Professional Experience

In addition to his academic accomplishments, Sihui Jia has accumulated meaningful professional experience that complements his research journey. During his studies, he actively participated in research-driven projects and laboratory work, where he honed his skills in experimental design, data analysis, and practical applications of sensing technologies. His work has been particularly impactful in the area of microwave sensing, a technology that requires both theoretical expertise and experimental validation. Through these experiences, he has demonstrated strong analytical skills, adaptability, and problem-solving capabilities that are essential for addressing complex engineering challenges. He has also taken part in collaborative research initiatives within Shanghai University and beyond, engaging with peers, faculty members, and international partners to advance shared objectives in electronics and communication. His involvement extends to mentoring junior students and assisting in project development, showcasing his leadership and teaching potential. These professional experiences have shaped him into a well-rounded researcher who is not only capable of producing high-quality academic work but also of contributing to teamwork and interdisciplinary efforts. His career path reflects a balance between research excellence, applied practice, and academic collaboration, marking him as a professional dedicated to advancing both knowledge and practice in electronic science.

Research Interests

The primary research interest of Sihui Jia lies in the field of microwave sensing technology, which holds wide-ranging applications in modern society. His work aims to improve the sensitivity, accuracy, and efficiency of sensing systems, with potential applications in healthcare diagnostics, environmental monitoring, security systems, and communication networks. He is particularly motivated by the challenge of bridging theoretical models with practical implementations, ensuring that research outcomes have direct real-world relevance. Beyond microwave sensing, he has a broader interest in signal processing, sensor design, and communication engineering, which provides him with a versatile skill set for addressing diverse scientific problems. His focus on interdisciplinary research allows him to explore how microwave sensing can intersect with other fields, such as biomedical engineering, environmental science, and artificial intelligence. Jia is also interested in developing scalable and cost-effective sensor technologies that can be widely deployed for industrial and societal applications. His curiosity-driven approach and passion for technological innovation ensure that his research contributes to both academic advancement and societal development. His vision is to push the boundaries of sensing technologies to meet the evolving demands of next-generation communication and monitoring systems.

Research Skills

Sihui Jia possesses a diverse set of research skills that support his academic and professional growth. He is proficient in microwave sensing system design, including the theoretical modeling and practical testing of sensors. His expertise extends to signal processing techniques, enabling him to analyze and interpret complex datasets for accurate sensing and communication. He is skilled in electronics and circuit design, which allows him to implement and test prototypes that bridge theory and practice. Additionally, Jia has strong capabilities in simulation tools, data analysis, and experimental validation, which are critical for ensuring the reliability and accuracy of his findings. His training has also provided him with competencies in interdisciplinary research collaboration, enabling him to work effectively with teams from different domains to achieve common goals. Jia demonstrates strong scientific writing and communication skills, as reflected in his publications in international journals and conferences. Furthermore, his ability to adapt to new technologies and methodologies positions him as a forward-thinking researcher ready to engage with emerging innovations. These skills, combined with his problem-solving mindset and technical knowledge, make him a versatile researcher prepared to contribute to cutting-edge advancements in electronic science and technology.

Awards and Honors

Throughout his academic journey, Sihui Jia has been recognized for his dedication, innovation, and research contributions. His participation in academic programs has been marked by consistent performance, which has earned him opportunities to engage in advanced research at Shanghai University. He has presented his work in internationally recognized platforms, contributing to the scientific community by disseminating knowledge in conferences and peer-reviewed journals indexed in IEEE and Scopus. His efforts in developing novel approaches to microwave sensing have been acknowledged through scholarly recognition and growing citations of his published work. While still in the early stages of his research career, his academic trajectory demonstrates potential for greater recognition in the near future, including awards for best papers, research excellence, and contributions to scientific collaborations. His involvement in professional organizations such as IEEE provides further acknowledgment of his active participation in global academic communities. These affiliations reflect his commitment to continuous learning, networking, and professional growth. The honors he has received so far illustrate his promise as a researcher, while his ongoing work positions him for further accolades as his career progresses and his contributions expand in both depth and scope.

Publication Top Notes

  • Machine Learning-Assisted Early-Corrosion Detection System for Pipeline Coatings — 2025

Conclusion

In conclusion, Sihui Jia embodies the qualities of a dedicated and forward-looking researcher in Electronic Science and Technology. His academic achievements, professional experiences, and research pursuits demonstrate a clear trajectory toward impactful contributions in the field of microwave sensing technology. With strong educational training, versatile research skills, and active engagement in academic communities, he has positioned himself as a promising young scholar with the potential to lead innovative projects and inspire future collaborations. His publications, professional involvement, and interdisciplinary approach reflect both technical expertise and a vision for real-world applications. As he continues to expand his research profile, Jia is expected to strengthen his presence in top-tier journals, broaden his global collaborations, and take on leadership roles within professional organizations. These steps will not only enhance his career but also contribute significantly to advancing technology and improving society. His combination of academic excellence, professional dedication, and innovative research direction makes him highly deserving of recognition through the Best Researcher Award, honoring his potential to shape the future of electronic science and its applications.

Jian Qiao | Engineering | Best Researcher Award

Assoc. Prof. Dr Jian Qiao | Engineering | Best Researcher Award

North China Electric Power University | China

Assoc. Prof. Dr. Jian Qiao is a distinguished academic in the field of electrical engineering with a focus on power system relay protection and advanced energy storage systems. He currently serves as an Associate Professor at North China Electric Power University, where he contributes to research, teaching, and professional leadership. His academic journey reflects a strong foundation in electrical and electronic engineering, reinforced by rigorous training and mentorship under leading scholars in the field. With more than fifty research publications indexed in SCI and EI journals and multiple contributions to IEEE Transactions, he has established a solid reputation as a productive and impactful researcher. Beyond publications, he has secured over twenty authorized Chinese invention patents, demonstrating a strong orientation toward innovation and applied science. His work bridges academic research and practical engineering applications, especially in mechanical energy storage technologies such as pumped storage and compressed air energy storage. He has also been actively engaged in professional services as an editor, reviewer, and committee member in several international organizations, which highlights his role as a contributor to the global research community. His combination of academic excellence, leadership, and industry engagement positions him as a rising leader in power system research.

Professional Profile

Scopus | ORCID

Education

Dr. Jian Qiao pursued his academic training in one of China’s top institutions of electrical and electronic engineering, where he built a strong foundation in advanced power systems and energy conversion technologies. He completed his undergraduate studies in electrical engineering with a focus on the principles of electrical machines, grid operations, and control systems. Following his undergraduate education, he continued at the same institution for doctoral research, where he specialized in power system relay protection and energy storage technologies. His doctoral research, conducted under the supervision of a renowned professor and member of the China Electrical Engineering Society, focused on fault modeling, protection mechanisms, and the optimization of energy storage systems including pumped storage and compressed air systems. The research outcomes were published in leading journals such as IEEE Transactions on Power Delivery and IEEE Transactions on Energy Conversion, reflecting both theoretical advancement and practical application. His academic path also included participation in several national research projects, where he gained hands-on experience in handling complex systems. The combination of structured coursework, research excellence, and exposure to large-scale energy systems during his studies provided him with the technical expertise and innovative mindset that continue to shape his professional contributions.

Professional Experience

Assoc. Prof. Dr. Jian Qiao is currently part of the Department of Electric Power Engineering at North China Electric Power University, where he serves as a faculty member actively engaged in research, teaching, and student mentoring. His professional career has been shaped by a blend of academic appointments and industry collaborations, allowing him to balance theoretical insights with practical engineering applications. In academia, he has supervised graduate students, guided undergraduate thesis projects, and contributed to the development of innovative curricula in electrical engineering. His editorial involvement with journals such as Protection and Control of Modern Power Systems and Power System Protection and Control demonstrates his professional recognition and influence. Beyond academia, Dr. Qiao has collaborated with leading power system companies, including Xu Ji Electric, Beijing Sifang, and Nanjing Nanrui, where he has led multiple research and development projects. These initiatives addressed critical challenges in relay protection, governor control systems, and hybrid grid operations. His professional experience also extends to international conference leadership, where he has chaired sessions, presented research, and contributed to global scientific exchange. This combination of teaching, research, and industrial collaboration reflects his role as both an educator and an innovator in the field of power systems.

Research Interests

The research interests of Assoc. Prof. Dr. Jian Qiao are centered on the protection, control, and optimal operation of advanced power systems, with a special emphasis on energy storage technologies. His primary focus lies in power system relay protection, where he explores fault detection, fault modeling, and advanced protection strategies for complex grid operations. He is deeply engaged in the study of pumped storage and compressed air energy storage systems, investigating their role in enhancing the stability and flexibility of modern power networks. His work extends into wide-area measurement control, hybrid AC/DC grid management, and the development of intelligent protection schemes for large-scale energy systems. In addition to technical research, he is interested in the integration of renewable energy into existing grids, ensuring their safe and reliable operation through advanced protective mechanisms. Dr. Qiao also studies fault tolerance in generator and motor systems, focusing on innovative solutions such as injection-based fault detection and differential protection. His research interests align with the urgent global need for sustainable energy solutions, contributing to both academic advancements and industrial practices. His vision is to make energy systems more secure, efficient, and adaptable in the context of future smart grids.

Research Skills

Assoc. Prof. Dr. Jian Qiao has developed a comprehensive skill set that combines theoretical expertise, experimental design, and practical problem-solving in electrical engineering. His technical skills include modeling, analysis, and simulation of power system faults, as well as the design of relay protection strategies for large-scale energy systems. He has extensive experience in working with advanced simulation tools and software platforms used in electrical engineering research. His skills extend to experimental validation, where he has designed and implemented testing frameworks for energy storage systems such as pumped storage units and compressed air stations. Additionally, he possesses strong project management skills, demonstrated through his leadership of multiple national and industry-funded research projects. He is proficient in writing and reviewing scholarly articles for top-tier journals, ensuring both methodological rigor and innovation. As a reviewer and editor, he has gained insights into global research trends and standards. Beyond technical competencies, Dr. Qiao is skilled in academic mentoring, having guided students in research design, experimentation, and publication. His ability to integrate research, teaching, and industry collaboration reflects a versatile skill set. These capabilities enable him to contribute meaningfully to both fundamental science and applied engineering.

Awards and Honors

Throughout his career, Assoc. Prof. Dr. Jian Qiao has received multiple recognitions that highlight his academic excellence, professional service, and innovative contributions. He was selected for the prestigious Young Talents Support Program of the Department of Electric Power Engineering, a recognition awarded to outstanding scholars making significant progress in their fields. His doctoral research was nominated for the Incentive Plan for Doctoral Dissertations of the Chinese Society of Electrical Technology, an achievement limited to only a few candidates nationwide. As an advisor, he has been recognized for guiding excellent undergraduate thesis projects, showcasing his dedication to student development. He has been awarded several best paper prizes, including those at the China Smart Grid Symposium and the New Power System Taihu Forum, reflecting the originality and impact of his research. In addition, he has been acknowledged as an excellent assistant editor by the editorial board of Protection and Control of Modern Power Systems. These recognitions not only demonstrate his research excellence but also his contributions to professional communities, student mentoring, and editorial services. Collectively, these awards and honors illustrate his standing as a highly respected academic and an influential researcher in electrical engineering.

Publication Top Notes

  • A Hybrid Flexible Arc Suppression Method for Generator Stator Ground Faults Based on Slot Potential Analysis Unit — 2025

  • Stator grounding fault severity characterization and novel inverse-time protection method for large generators — 2025

  • Stator Short-Circuit Fault Modeling Method of Turbine Synchronous Generator Considering Winding Potential Phase Distribution — 2025

  • Differential Protection Method of Stator and Rotor Current With Different Frequencies for Variable Speed Pumped Storage Units — 2025

  • Main Protection Optimization Scheme for Generator Parallel Operation of Rotating Asynchronous Machine in Nuclear Power Plants — 2025

  • Analysis of the Depth of Positive Sequence Voltage Sags in Distribution Network Faults and Their Effects on New Energy-Type Equipment — 2024

Conclusion

Assoc. Prof. Dr. Jian Qiao exemplifies the qualities of a leading researcher, educator, and innovator in the field of electrical engineering. His extensive contributions to power system relay protection, energy storage, and hybrid grid operations have advanced both theoretical understanding and industrial practice. His strong publication record in prestigious journals, combined with more than twenty authorized patents, reflects a balance of academic excellence and practical innovation. His leadership roles in professional organizations, editorial boards, and international conferences underline his influence in the global research community. Beyond technical achievements, his dedication to mentoring students and collaborating with industry demonstrates a commitment to advancing knowledge and nurturing the next generation of engineers. The combination of awards, honors, and impactful research positions him as a highly deserving candidate for recognition as one of the leading voices in power system research. Looking forward, Dr. Qiao is poised to expand his international collaborations, contribute further to cutting-edge publications, and play a more prominent role in shaping global energy systems. His vision, expertise, and leadership potential ensure that he will continue to make significant contributions to research, education, and sustainable technological development.

Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019