Yanchun Wei | Optical Material | Best Researcher Award

Prof. Dr. Yanchun Wei | Optical Material | Best Researcher Award

Huai Yin Institute of Techenology | China

Prof. Dr. Yanchun Wei is an esteemed scientist and Associate Professor at the Jiangsu Provincial KEY Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, China, recognized for his pioneering contributions in biophysics, biophotonics, and nanomedicine. He earned his Ph.D. in Optics from the MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, China, following an M.Sc. in Optics from the same institution and a B.Sc. in Physics from Jiangsu Normal University. Over his professional career, he has held positions as Lecturer and Associate Professor at South China Normal University and is currently Professor at Huaiyin Institute of Technology, demonstrating exceptional leadership in academic and research settings. His research interests focus on laser medicine, free radical medicine, biomedical imaging, biosensors, green synthesis of nanoparticles, and targeted drug delivery systems, with expertise in advanced nanomaterials and multifunctional nanoparticle platforms. Dr. Wei possesses extensive research skills in optical imaging, photodynamic therapy, chemiluminescence detection, and nanoparticle characterization, supported by numerous national and provincial grants. He has published over 40 high-impact articles in reputed journals including IEEE Sensors Journal, ACS Sustainable Chemistry & Engineering, and International Journal of Nanomedicine, and has received awards such as Best Poster, Best Paper, and Best Reviewer. With a strong record of mentorship, leadership, and international collaborations, Dr. Wei continues to drive innovation and impactful research in biomedical science.

Profile: Scopus

Featured Publications

  1. Liu, L., Sun, X., Shao, Z., Wei, Y., Liu, S., Yang, Z., Zhang, Q., & Pan, C. (2025). Ratiometric design of optical fiber sensor with temperature correction for detection of hydroxyl radicals. IEEE Sensors Journal, 25(1), 515–522.

  2. Wu, B., Sun, X., Shao, Z., Liu, S., Yang, Z., Zhang, Q., & Wei, Y. (2024). Gold nanoparticle-enhanced D-shaped optical fiber sensor for mercury ion detection. Analytical Methods, 16, 5872–5882.

  3. Zhang, Q., Ma, W., Jia, K., Qian, Z., Xu, Y., Chen, J., Wei, Y., Yang, M., Ding, S., & Pan, C. (2024). A glycocalyx-like multifunctional coating on the titanium surface for simultaneously enhancing anti-biofouling, anticoagulation, and endothelial cell growth. Materials Today Chemistry, 42, 102353.

  4. Yang, Z., Yan, J., Li, X., Liu, S., Zhang, Q., Wei, Y., Quan, L., Ye, W., & Pan, C. (2023). Comparative study of the mechanical, optoelectronic, and photocatalytic properties of the defect-free and oxygen defect induced TiO₂ nanosheets under uniaxial strain conditions by DFT simulations. Physica E: Low-dimensional Systems and Nanostructures, 146, 115556.

  5. Yang, Z., Yan, J., Li, X., Liu, S., Zhang, Q., Wei, Y., Quan, L., Ye, W., & Pan, C. (2022). In situ carbonization combined with a low-temperature graphitization technique for preparation of CdS@graphitic carbon nanorods and their robust photocatalytic performance under visible light. ACS Sustainable Chemistry & Engineering, 10(10), 3311–3322

Qabas Khalid Naji | Material Science | Best Researcher Award

Assist. Prof. Dr. Qabas Khalid Naji | Material Science | Best Researcher Award

University of Babylon | Iraq

Assist. Prof. Dr. Qabas Khalid Naji is a distinguished academic and researcher in the field of Materials and Metallurgical Engineering, with a specialized focus on biomaterials, coatings, and advanced surface modification technologies. With her Ph.D. in Metallurgical Engineering from the University of Babylon, she has established herself as an expert in developing innovative solutions for biomedical applications and industrial engineering challenges. Her doctoral work emphasized Micro-Arc Oxidation (MAO) processes, improving corrosion resistance, mechanical properties, and structural performance of titanium-based alloys, which are highly relevant in medical implant technologies. Dr. Qabas has authored and co-authored multiple research papers in high-impact journals, such as Materials Today: Proceedings, Key Engineering Materials, and Journal of Physics: Conference Series. She has also contributed as a reviewer and evaluator for numerous international conferences, highlighting her academic recognition. Beyond research, she has played an important role in teaching and mentoring students, serving as a lecturer at both the University of Babylon and Al-Mustaqbal University College. Her academic journey reflects a balance of research excellence, teaching leadership, and professional service, positioning her as one of the promising scholars in her field with significant contributions to both science and education.

Professional Profile

Scopus | Google Scholar

Education

Assist. Prof. Dr. Qabas Khalid Naji has pursued a strong academic pathway rooted in Materials and Metallurgical Engineering. She began her higher education at the University of Babylon, where she obtained her Bachelor of Science (B.Sc.) in Material Engineering / Metallurgical Engineering. During this phase, she developed a foundational understanding of material structures, mechanical properties, and engineering applications. She further advanced her expertise by completing a Master of Science (M.Sc.) in Metallurgical Engineering, focusing on metal processing, surface engineering, and quality enhancement techniques. This period allowed her to engage in advanced laboratory practices and develop independent research skills. Her academic journey culminated with a Doctor of Philosophy (Ph.D.) in Metallurgical Engineering, where her dissertation was centered on bioceramic coatings and the application of Micro-Arc Oxidation techniques to improve the biomedical performance of alloys. The Ph.D. phase represented a crucial step in her academic development, equipping her with both theoretical knowledge and practical expertise to carry out innovative, application-oriented research. Her educational background demonstrates a consistent dedication to advancing materials science, and it has laid the foundation for her career as a researcher, lecturer, and scientific contributor in both academic and professional domains.

Professional Experience

Assist. Prof. Dr. Qabas Khalid Naji has built a diverse academic and teaching career with roles that combine research, teaching, and administrative responsibilities. She began her academic career as an external lecturer at the University of Babylon, teaching courses in Laboratory Metals Machining, Industrial Engineering, and Quality Control, where she applied her strong technical knowledge to guide students in practical and theoretical aspects of materials science. She later served as a lecturer at Al-Mustaqbal University College in the Department of Biomedical Engineering, where she also undertook additional responsibilities as a quality officer, ensuring academic and institutional standards. she was officially appointed as a faculty member at the University of Babylon, College of Materials Engineering, where she continues to serve as an Assistant Professor. Alongside teaching, she has played an important role in curriculum design, quality management, and student mentorship. Dr. Qabas has also acted as an evaluator for international research conferences, which highlights her recognition in the global academic community. Her professional journey reflects a strong commitment to education, scientific innovation, and academic leadership, ensuring her continuous growth as a researcher and educator in metallurgical and materials engineering.

Research Interests

Assist. Prof. Dr. Qabas Khalid Naji’s research interests lie primarily in biomaterials, coatings, and advanced metallurgical engineering applications. Her doctoral research focused on the surface modification of titanium alloys through Micro-Arc Oxidation (MAO), which significantly enhances mechanical strength, corrosion resistance, and biocompatibility, making it ideal for biomedical implants. She has also explored layered bioceramic coatings, including hydroxyapatite and titanium dioxide composites, which contribute to advancements in medical device technology. Beyond biomaterials, her research extends into nanostructured materials, corrosion science, heat treatment effects, and aluminum alloy processing, showcasing her ability to bridge both theoretical materials science and practical engineering applications. Her recent publications have investigated the impact of melting and casting parameters on aluminum alloys, reflecting her wide scope of expertise. Dr. Qabas is particularly interested in how surface engineering techniques can improve material performance in biomedical, aerospace, and industrial sectors. She continues to expand her research through collaborative projects, interdisciplinary studies, and applied experimental work, ensuring her contributions remain at the forefront of materials innovation, biomedical engineering, and sustainable industrial technologies. Her research agenda demonstrates a clear vision of bridging scientific discovery with real-world technological applications.

Research Skills

Over the course of her academic and professional journey, Assist. Prof. Dr. Qabas Khalid Naji has developed a comprehensive set of research skills that span experimental, analytical, and academic domains. Her expertise lies in surface modification techniques such as Micro-Arc Oxidation (MAO), which she has extensively applied to titanium-based alloys for biomedical applications. She is skilled in materials characterization methods, including structural, mechanical, and corrosion property testing of advanced alloys and bioceramic coatings. Additionally, she has experience in heat treatment processes, alloy casting, and nanomaterial preparation, making her well-versed in both experimental and industrial metallurgical practices. On the academic side, she is proficient in scientific writing, peer reviewing, and presenting research at international conferences. She has participated in and completed multiple professional training courses in teaching methodology, computer applications, and engineering innovations, further enhancing her technical and academic competencies. Furthermore, Dr. Qabas has served as an evaluator and reviewer for various scientific conferences and research platforms, reflecting her recognition as an expert in her field. Her ability to combine theoretical analysis with experimental practice highlights her strong profile as a well-rounded researcher, capable of contributing both academically and industrially to materials science and engineering.

Awards and Honors

Throughout her career, Assist. Prof. Dr. Qabas Khalid Naji has received recognition for her academic and research contributions in the field of Materials and Metallurgical Engineering. She has been actively involved in evaluating and reviewing international research and scientific conferences, which reflects her respected standing within the global research community. Her publications in reputed, peer-reviewed journals and conference proceedings indexed in Scopus and Web of Science further highlight her scholarly impact. Among her notable works are contributions to journals such as Materials Today: Proceedings, Key Engineering Materials, 3C Tecnología, and Journal of Physics: Conference Series, all of which underline her role as a productive and impactful researcher. She has also been invited to participate in scientific workshops, training courses, and professional development programs, earning certifications that enhance both her teaching and research expertise. While her career is still progressing, her consistent contributions in biomaterials, alloy modifications, and applied surface engineering techniques stand as significant honors to her academic profile. Her growing citation record and recognition as a reviewer reflect her standing as an emerging leader in her discipline, with strong potential to achieve further international awards and honors in the near future.

Publication Top Notes

  • Investigations of structure and properties of layered bioceramic HA/TiO₂ and ZrO₂/TiO₂ coatings on Ti-6Al-7Nb alloy by micro-arc oxidation — 2022 — 20 citations

  • The surface modification of pure titanium by micro-arc oxidation (MAO) process — 2021 — 10 citations

  • Effect of tool shape geometry and rotation speed in friction stir welding of 2024-T3 — 2016 — 5 citations

  • Plasma Electrolytic Oxidation of Nanocomposite Coatings on Ti-6Al-7Nb alloy for Biomedical Applications — 2024 — 2 citations

  • Study of the Effect of Melting and Casting Temperature and Heat Treatment on the Mechanical Properties of Aluminum 7075 — 2024

  • Micro-arc oxidation enhances mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy — 2023

  • Deposition of Layered Bioceramic HA/TiO₂ Coatings on Ti-6Al-7Nb Alloys Using Micro-Arc Oxidation — 2022

Conclusion

Assist. Prof. Dr. Qabas Khalid Naji is an exemplary academic and researcher who has made meaningful contributions to metallurgical and materials engineering, particularly in the area of biomaterials and advanced coating technologies. Her educational journey from B.Sc. to Ph.D. at the University of Babylon reflects her dedication to academic excellence, while her professional experiences as a lecturer, quality officer, and assistant professor demonstrate her commitment to teaching, mentoring, and research leadership. With impactful publications in international journals and presentations in scientific conferences, she has established her research visibility at both national and international levels. Her skills in surface engineering, corrosion science, and biomedical applications highlight her capacity to address pressing challenges in both industrial and medical fields. Beyond research, her involvement in conference evaluation, training courses, and academic quality management underscores her service to the scientific community. Looking ahead, Dr. Qabas is well-positioned to expand her global collaborations, publish in higher-impact journals, and take on greater leadership roles in international research networks. Her achievements and potential make her highly deserving of recognition, such as the Best Researcher Award, reflecting her growing impact in advancing science, engineering, and education.

Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Dr. Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Academic/Researcher from Bernardo O’Higgins University, Chile

Dr. Bárbara Rodríguez Escalona is a distinguished chemist and academic researcher, currently serving at the Universidad Bernardo O’Higgins in Santiago, Chile. Her expertise lies in the sustainable synthesis of nanomaterials, water treatment technologies, and polymer science. With a robust academic background and extensive research experience, she has significantly contributed to the field of environmental chemistry. Her work emphasizes the development of eco-friendly materials and processes, aiming to address pressing environmental challenges. Dr. Rodríguez Escalona’s dedication to research and education underscores her commitment to advancing scientific knowledge and promoting sustainable practices.

Professional Profile​

Education

Dr. Rodríguez Escalona commenced her academic journey with a Bachelor’s degree in Chemistry from the Universidad Central de Venezuela in 2007. She furthered her studies by obtaining a Doctorate in Chemistry from the Instituto Venezolano de Investigaciones Científicas in 2014. Her doctoral research laid the foundation for her future endeavors in sustainable chemistry and nanomaterials. Throughout her academic career, she has demonstrated a profound commitment to scientific excellence and innovation. Her educational background has equipped her with the skills and knowledge necessary to tackle complex environmental issues through chemical research

Professional Experience

Dr. Rodríguez Escalona’s professional trajectory encompasses various academic and research roles. She began her career as a laboratory assistant at the Universidad Central de Venezuela from 2005 to 2007. Following her doctoral studies, she undertook postdoctoral research at the Pontificia Universidad Católica de Chile between 2014 and 2016, focusing on chemical processes and catalysis. Subsequently, she joined the Advanced Mining Technology Center at the Universidad de Chile, where she contributed to projects on sustainable mining technologies from 2016 to 2021. Since 2021, she has been an academic and researcher at the Universidad Bernardo O’Higgins, actively engaging in teaching and research activities. Her diverse experiences have enriched her expertise in environmental chemistry and sustainable technologies.

Research Interests

Dr. Rodríguez Escalona’s research interests are centered around sustainable chemistry, with a particular focus on the synthesis and characterization of nanomaterials for environmental applications. She explores the use of graphene oxide in water treatment, the development of polymers with diverse applications, and the modification of membranes for filtration processes targeting emerging contaminants. Her work aims to create innovative solutions for environmental remediation, emphasizing the importance of eco-friendly materials and processes. Through her research, she seeks to address critical environmental challenges by developing sustainable technologies that can be applied in various industrial and environmental contexts.

Research Skills

Dr. Rodríguez Escalona possesses a comprehensive skill set in chemical research, encompassing the synthesis and characterization of nanomaterials, polymer chemistry, and membrane technology. She is proficient in various analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which she employs to analyze the structural and chemical properties of materials. Her expertise extends to the development of antibacterial agents and the assessment of their efficacy, as demonstrated in her work on copper oxide nanoparticles. Her methodological approach combines experimental rigor with a focus on sustainability, enabling her to contribute significantly to the field of environmental chemistry.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Rodríguez Escalona’s contributions to the field of chemistry are evident through her extensive research and academic endeavors. Her involvement in various research projects and collaborations reflects her recognition within the scientific community. Her commitment to advancing sustainable chemical practices and her role in mentoring emerging scientists underscore her impact on the field. Further details on her accolades may be available through institutional records or professional profiles.

Conclusion

Dr. Bárbara Rodríguez Escalona stands as a prominent figure in the realm of sustainable chemistry, with a career marked by academic excellence and impactful research. Her dedication to developing environmentally friendly materials and processes addresses critical challenges in water treatment and pollution control. Through her roles in academia and research institutions, she has contributed to the advancement of scientific knowledge and the promotion of sustainable practices. Her work not only enhances our understanding of environmental chemistry but also paves the way for innovative solutions to global environmental issues. Dr. Rodríguez Escalona’s ongoing efforts continue to inspire and influence the field of sustainable chemical research.

Publications Top Notes

  1. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties

    • Authors: A. García, B. Rodríguez, D. Oztürk, M. Rosales, D.I. Diaz, A. Mautner

    • Year: 2018

    • Citations: 73

    • Journal: Polymer Bulletin, 75, 2053–2069

  1. Copper-modified polymeric membranes for water treatment: A comprehensive review

    • Authors: A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, …

    • Year: 2021

    • Citations: 50

    • Journal: Membranes, 11(2), 93

  1. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO₂ nanostructures with tunable morphology

    • Authors: M. Rosales, J. Orive, R. Espinoza-González, R.F. de Luis, R. Gauvin, …

    • Year: 2021

    • Citations: 43

    • Journal: Chemical Engineering Journal, 415, 128906

  1. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

    • Authors: B. Rodríguez, D. Oztürk, M. Rosales, M. Flores, A. García

    • Year: 2018

    • Citations: 43

    • Journal: Journal of Materials Science, 53(9), 6325–6338

  1. Lewis Acid Enhanced Ethene Dimerization and Alkene Isomerization—ESI-MS Identification of the Catalytically Active Pyridyldimethoxybenzimidazole Nickel (II) Hydride Species

    • Authors: M.A. Escobar, O.S. Trofymchuk, B.E. Rodriguez, C. Lopez-Lira, R. Tapia, …

    • Year: 2015

    • Citations: 34

    • Journal: ACS Catalysis, 5(12), 7338–7342

  1. Influence of TiO₂ nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes

    • Authors: A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, …

    • Year: 2016

    • Citations: 28

    • Journal: RSC Advances, 6(86), 82941–82948

  1. Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and …

    • Authors: B.E. Rodríguez, M.M. Armendariz-Ontiveros, R. Quezada, …

    • Year: 2020

    • Citations: 23

    • Journal: Polymers, 12(12), 2860

  1. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse

    • Authors: H.F.G. Mejía, J. Toledo-Alarcón, B. Rodríguez, J.R. Cifuentes, F.O. Porré, …

    • Year: 2022

    • Citations: 22

    • Journal: Chemical Engineering Research and Design, 184, 473–487

  1. Mineral nutrients in pasture herbage of central western Spain

    • Authors: A. Garcia, B. Rodriguez, B. Garcia

    • Year: 1990

    • Citations: 17

    • Journal: Not specified

  1. A state-of-the-art of metal-organic frameworks for chromium photoreduction vs. photocatalytic water remediation

  • Authors: A. García, B. Rodríguez, M. Rosales, Y.M. Quintero, P.G. Saiz, A. Reizabal, …

  • Year: 2022

  • Citations: 13

  • Journal: Nanomaterials, 12(23), 4263

Yong Chan Jung | Materials | Best Researcher Award

Mr. Yong Chan Jung | Materials | Best Researcher Award

Principal Researcher at Korea Electric Power, South Korea

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Profile

Education

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Professional Experience

Matt Bunch has a distinguished career in technology and educational innovation. As the Director of Software Engineering at Harvard Medical School, he leads teams in software development, business analysis, and educational technology, overseeing complex projects and ensuring budget adherence. He excels in integrating data from various sources into real-time dashboards, driving strategic initiatives, and improving processes across systems. Previously, as an IoT & Mobile Manager at Arizona State University, Bunch significantly advanced the Smart Campus initiative, which earned recognition in Forbes and won the CDW NACDA Best Game Day Technology Competition. His career also includes founding AllStar Fundraiser Online, a platform that has raised nearly $3 million for nonprofits. With a robust background in software engineering and a commitment to educational technology, Bunch’s work has been marked by innovation, leadership, and impactful contributions to both academia and industry.

Research Interest

Matt Bunch’s research interests are centered on the integration of technology and education, with a focus on enhancing learning experiences through innovative software and data-driven solutions. His work at Harvard Medical School involves directing projects that leverage educational technology and business analysis to optimize learning platforms and data management. He is particularly interested in exploring how data analytics and real-time dashboards can improve educational outcomes and streamline administrative processes. Additionally, Bunch is engaged in research on online course effectiveness and motivational frameworks for educational video engagement. His past projects, such as the Smart Campus and Smart Stadium initiatives, reflect his commitment to advancing technology in academic environments and enhancing user interaction through smart systems. Overall, his research aims to bridge the gap between technology and education, driving forward new solutions that support both institutional goals and learner engagement.

 Research Skills

Matt Bunch demonstrates a robust set of research skills through his extensive experience in software engineering and educational technology. At Harvard Medical School, he integrates Salesforce data, OEE data warehouse, and HMSIT Delphi data into real-time dashboards, showcasing his proficiency in data analysis and visualization tools like Tableau and Looker Studio. His role in developing the Smart Campus and Smart Stadium projects highlights his ability to translate complex data into actionable insights, significantly improving user engagement and system efficiency. Matt’s publication record, including works on online courses and educational video engagement, reflects his commitment to advancing knowledge in educational technology. His technical expertise spans across various systems and platforms, and his leadership in automating processes and managing large-scale projects underscores his capability in applied research and development. His skills in strategic planning, cross-functional collaboration, and innovative problem-solving further enhance his research capabilities.

Award and Recognition

Matt Bunch has earned notable recognition for his exceptional contributions in the field of educational technology and data analytics. His innovative work on the Smart Campus initiative and Smart Stadium project garnered significant accolades, including the CDW NACDA Best Game Day Technology Competition award and a feature in Forbes. His research publications, such as “Online Courses Provide Robust Learning Gains” and “Is Anybody Watching: A Multi-Factor Motivational Framework for Educational Video Engagement,” further demonstrate his impact on educational practices. Matt has also been recognized with various certifications, including Advanced Google Analytics and Data Analytics from Harvard Extension School. His leadership at Harvard Medical School, directing software engineering and educational technology initiatives, showcases his commitment to advancing the integration of technology and education. These accomplishments underline his dedication and influence in enhancing educational experiences through innovative technological solutions.

Conclusion

Matt Bunch is a strong candidate for the Research for Best Researcher Award due to his leadership, innovative projects, and contributions to educational technology and data analytics. His technical expertise and successful track record in managing and improving systems align well with the award’s criteria. However, to further bolster his candidacy, focusing on deepening his research experience, increasing his publication output in high-impact venues, and expanding his collaborative efforts could provide a more robust foundation for his nomination.

Publication Top Notes