Tieming Guo | Materials Science | Best Researcher Award

Prof. Tieming Guo | Materials Science | Best Researcher Award

Professor from School of Materials Science and Engineering, Lanzhou University of Technology, China

Professor Tieming Guo is a distinguished faculty member at the Department of Metallic Materials Engineering, College of Materials Science and Engineering, Lanzhou University of Science and Technology, China. With a career dedicated to the in-depth study of corrosion behavior, microstructure, and metal matrix composite materials, he has made notable contributions to both fundamental science and industrial applications. His research on stainless steel corrosion, focusing on the effects of trace elements such as boron and cobalt, has provided steel manufacturers with theoretical foundations for material improvement. In recent years, his focus has expanded to high-strength, highly conductive copper matrix composites, further broadening his research scope. A standout example of his recent work involves laser cladding of Fe–0.3C–15Cr–1Ni alloy on martensitic stainless steel, optimizing wear and corrosion resistance by adjusting laser power parameters. Professor Guo’s research outcomes are characterized by rigorous experimentation, detailed microstructural characterization, and clear application-driven goals. His work is not only advancing scientific understanding but also offering practical solutions for the metallurgical industry. With a career that blends deep technical knowledge and applied research impact, Professor Guo stands out as a leader in his field and a strong candidate for recognition through research awards.

Professional Profile

Education

Professor Tieming Guo completed his higher education in materials science and engineering, specializing in metallic materials. He holds a Bachelor’s degree in Materials Science and Engineering, which laid the foundation for his early interest in the microstructure and corrosion behavior of metals. He then pursued a Master’s degree in Metallic Materials Engineering, where he focused on the effects of alloying elements on stainless steel performance. During his master’s studies, he began exploring the mechanisms behind stainless steel corrosion, particularly the role of microalloying with trace elements like boron and cobalt. Professor Guo completed his doctoral studies in Materials Science, focusing on metal matrix composites and advanced characterization techniques to study wear and corrosion properties. Throughout his academic training, he gained expertise in both theoretical modeling and practical experimentation, equipping him with a balanced perspective that integrates fundamental science with real-world applications. His academic background has positioned him well for a career that addresses both the challenges and opportunities in metallic materials research, particularly in areas directly relevant to industrial needs and technological development.

Professional Experience

Professor Tieming Guo has built a distinguished academic career as a faculty member at Lanzhou University of Science and Technology, where he serves as a professor and master’s tutor in the Department of Metallic Materials Engineering. Over the years, he has developed extensive experience in managing research projects related to stainless steel corrosion, microalloying, and metal matrix composites. He has been actively involved in supervising graduate students, guiding them through complex experimental work and analysis. His professional experience also includes collaborating with steel manufacturers, providing them with theoretical guidance and practical recommendations to improve material performance. Professor Guo has authored and co-authored numerous research papers, demonstrating his commitment to scientific dissemination and contribution to the broader materials science community. Additionally, he regularly participates in academic conferences and workshops, both as a speaker and attendee, ensuring that he remains at the forefront of emerging trends and technologies. His career trajectory showcases a strong combination of academic leadership, technical expertise, and industrial relevance, making him a well-rounded and impactful figure in the field of metallic materials engineering.

Research Interests

Professor Tieming Guo’s research interests center on the corrosion behavior of metallic materials, microstructure-property relationships, and the development of advanced metal matrix composites. He has a particular focus on stainless steel, studying how microalloying with trace elements like boron and cobalt influences corrosion resistance, wear performance, and mechanical properties. His work extends into exploring the effects of processing parameters, such as laser cladding techniques, on microstructure evolution and material performance. More recently, his research has branched into the study of high-strength, highly conductive copper matrix composites, reflecting his interest in combining mechanical robustness with superior electrical properties. Professor Guo is also deeply interested in the interplay between alloy composition, microstructural features (such as dendrite morphology and carbide distribution), and functional performance in aggressive environments. His commitment to advancing both theoretical understanding and practical applications ensures that his research remains highly relevant to both academic inquiry and industrial development, with an emphasis on improving material longevity, efficiency, and sustainability.

Research Skills

Professor Tieming Guo possesses a robust set of research skills that reflect his deep expertise in metallic materials engineering. He is highly skilled in experimental design, particularly in corrosion testing, wear resistance evaluation, and mechanical property characterization. His technical proficiency extends to advanced microstructural analysis techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and metallographic microscopy, allowing him to link microstructural features with macroscopic performance. Professor Guo is adept at working with laser cladding processes, optimizing operational parameters to achieve desired microstructural outcomes. He is also proficient in data analysis and interpretation, ensuring that experimental results are rigorously examined and connected to underlying material mechanisms. In addition to laboratory skills, Professor Guo has strong capabilities in research project management, student supervision, and academic writing, as demonstrated by his extensive publication record. His ability to integrate experimental work with theoretical insights enables him to address both fundamental scientific questions and practical engineering challenges, making his research outputs highly valuable to both academia and industry.

Awards and Honors

Throughout his career, Professor Tieming Guo has received recognition for his contributions to the field of materials science and engineering. He has been honored by academic institutions, professional societies, and industry partners for his impactful research on stainless steel corrosion and metal matrix composites. His awards reflect both the quality and relevance of his work, highlighting his ability to address critical challenges in metallic materials and translate research findings into practical recommendations. Professor Guo’s role as a master’s tutor and mentor has also earned him recognition for excellence in student supervision and academic leadership. He has been invited to present at national and international conferences, further underscoring his reputation as a respected expert in his field. While his achievements are already commendable, continuing to broaden his recognition through international awards, interdisciplinary collaborations, and participation in global research initiatives would further solidify his standing as a top-tier researcher.

Conclusion

Professor Tieming Guo stands out as a dedicated and impactful researcher whose work significantly advances the understanding of corrosion behavior, microalloying, and metal matrix composite development. His long-term commitment to both fundamental research and industrial application makes his contributions particularly valuable to the metallurgical field. With a strong academic background, extensive professional experience, and highly specialized research skills, Professor Guo has built a career marked by scientific rigor, practical relevance, and mentorship. His numerous awards and honors reflect the recognition he has earned within his field, although there is room to further elevate his profile through expanded international collaborations and broader dissemination of his work. Overall, Professor Guo is a highly deserving candidate for the Best Researcher Award, and his continued efforts promise to bring further advancements to materials science and engineering, benefiting both the academic community and industrial stakeholders.

Publications Top Notes

  1. Title: Characterization of stiff porous TiC fabricated by in-situ reaction of Ti with carbon derived from phenolic resin containing template
    Authors: Liu, Diqiang; Zhang, Hongqiang; Zhao, Weiqi; Jia, Jiangang; Guo, Tieming
    Journal: Journal of the European Ceramic Society
    Year: 2025

  2. Title: Effect of siliconizing temperature on microstructure and performance of alloy silicide layer on 347H stainless steel surface by melting salt non-electrolysis method
    Authors: Liu, Zehong; Guo, Tieming; Jia, Jiangang; Zhang, Ruihua; Yi, Xiangbin
    Journal: Surface and Coatings Technology
    Year: 2025

  3. Title: Fabrication and characterization of GCF/PyC composites by TG-CVI densified porous glassy carbon preform
    Authors: Jia, Jiangang; You, Xinya; Pan, Zikang; Liu, Diqiang; Guo, Tieming
    Journal: Ceramics International
    Year: 2025

  4. Title: Passivation characteristics and corrosion behavior of S32202 duplex stainless steel in different temperatures polluted phosphoric acid
    Authors: Yang, Haizhen; Guo, Tieming; Ouyang, Minghui; Zhao, Shuaijie; Liu, Zehong
    Journal: Surface and Coatings Technology
    Year: 2024
    Citations: 2

  5. Title: Comparative study on periodic immersion + infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium
    Authors: Guo, Tieming; Yang, Haizhen; Wu, Weihong; Nan, Xueli; Hu, Yanwen
    Journal: Materialwissenschaft und Werkstofftechnik
    Year: 2024

Zhengwei You | Materials Science | Outstanding Scientist Award

Prof. Dr. Zhengwei You | Materials Science | Outstanding Scientist Award

Chair of the Department of Composite Materials from Donghua University, China

Professor Dr. Zhengwei You is a leading figure in polymer and biomaterials research, currently serving as Chair of the Department of Composite Materials and Full Professor at Donghua University. With a robust academic and industry background, he has contributed significantly to advanced fiber materials, polyurethane elastomers, 3D printing, biomedicine, and flexible electronics. His research outputs include 96 peer-reviewed publications, over 60 patents, and two book chapters, with numerous papers in high-impact journals such as Nature Medicine, Nature Communications, and Advanced Materials. He has delivered over 50 keynote and invited lectures worldwide and serves on multiple editorial boards and professional committees in materials science, biomaterials, and engineering. His work is frequently highlighted by the National Natural Science Foundation of China and national media. With an H-index of 45 and over 7,600 Google Scholar citations, Prof. You is recognized as an influential researcher whose contributions bridge academia and industrial innovation. His leadership extends beyond research, including roles as chairman, vice-chair, and standing committee member across several scientific and academic societies. Prof. You’s multifaceted expertise, combined with his leadership in research management, places him at the forefront of materials science research in China and internationally.

Professional Profile

Education

Prof. Zhengwei You completed his Bachelor of Science degree in Applied Chemistry at Shanghai Jiao Tong University (1996–2000), where he gained strong foundational knowledge in chemical sciences. He went on to pursue his Ph.D. in Organic Chemistry at the prestigious Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, from 2002 to 2007. This doctoral training provided him with in-depth expertise in advanced organic synthesis, molecular design, and material characterization, establishing the technical basis for his later breakthroughs in polymer materials and biomaterials. His solid academic preparation in China’s top-ranked institutions positioned him well to integrate chemistry with materials science, allowing him to make key contributions to the fields of advanced fiber materials, elastomers, and biomedical engineering. This rigorous education also fostered his ability to lead interdisciplinary research and collaborate across chemistry, materials, and bioengineering domains, both in academia and industry.

Professional Experience

Prof. Zhengwei You has built a distinguished professional career spanning academia, research, and industry. He is currently Chair of the Department of Composite Materials at Donghua University (since 2016) and Full Professor at the State Key Laboratory of Advanced Fiber Materials (since 2013). His international experience includes roles as Visiting Research Assistant Professor (2011–2012) and Postdoctoral Associate (2009–2011) at the McGowan Institute of Regenerative Medicine, University of Pittsburgh, and as a Postdoctoral Associate (2007–2008) at Georgia Institute of Technology and Emory University. Notably, he also worked as an Innovation Manager for Bayer MaterialScience (2012–2013), giving him a strong bridge between academic research and industrial application. Earlier in his career, he served on the faculty at Shanghai Jiao Tong University (2000–2002). Beyond his institutional roles, Prof. You has held leadership positions in numerous professional societies, serving on editorial boards and technical committees and actively contributing to research governance, ethics, and scientific development in materials and biomaterials fields.

Research Interests

Prof. Zhengwei You’s research interests span polymers, biomaterials, polyurethane, and elastomers, with applications in 3D printing, biomedicine, and flexible electronics. He is particularly focused on designing advanced materials that exhibit superior mechanical strength, self-healing properties, dynamic crosslinking, and biocompatibility. His work integrates fundamental polymer science with cutting-edge technologies such as additive manufacturing and biofabrication to create next-generation medical devices, tissue scaffolds, and wearable electronics. Prof. You’s research also addresses the synthesis and characterization of smart materials that can respond to external stimuli and deliver tailored functionalities. He combines organic chemistry, materials science, and bioengineering principles to drive innovations at the interface of healthcare and technology. His interdisciplinary approach has led to breakthroughs in areas such as mechanoactive mineralization scaffolds for bone regeneration, dynamic polyurethanes for medical applications, and novel fiber materials for flexible electronics, all of which are highly relevant for advancing both clinical practice and industrial applications.

Research Skills

Prof. Zhengwei You possesses advanced research skills in polymer synthesis, organic chemistry, materials characterization, and biomaterials engineering. He is highly proficient in designing and fabricating novel elastomeric and polyurethane materials with dynamic crosslinking and self-healing properties. His expertise includes mechanical testing, thermal analysis, rheological assessment, and microstructural characterization using advanced techniques such as SEM, TEM, AFM, and spectroscopy. Prof. You has deep experience in 3D printing technologies, including biofabrication of scaffolds for tissue engineering, and the development of flexible and wearable electronic devices. Additionally, his research management skills encompass leading large interdisciplinary teams, securing research funding, filing patents, and publishing in top-tier scientific journals. His ability to translate fundamental research into practical applications demonstrates his strength in bridging laboratory discoveries with real-world solutions. With over 50 invited presentations, editorial board memberships, and active participation in international collaborations, Prof. You is not only technically skilled but also an influential research leader.

Awards and Honors

Prof. Zhengwei You has received widespread recognition for his contributions to materials science and biomaterials research. His research has been frequently highlighted by major funding agencies such as the National Natural Science Foundation of China and national media, including China Science Daily and the China Blue Book of New Material Technology Development. He has secured more than 60 patents and published over 90 peer-reviewed papers in highly ranked journals, with numerous articles appearing in Nature Medicine, Advanced Materials, and Angewandte Chemie. His leadership roles across multiple scientific societies reflect his outstanding reputation in the field, including serving as chairman, vice chairman, and standing committee member in prominent national and international organizations. Additionally, Prof. You’s editorial appointments, such as on the boards of Bioactive Materials, Advanced Fiber Materials, and Chinese Journal of Polymer Science, underline his scientific excellence. His invited keynote and plenary lectures at international conferences further showcase the high esteem in which his peers hold his research achievements.

Conclusion

In conclusion, Prof. Zhengwei You stands out as an exceptional candidate for the Best Researcher Award due to his sustained, high-impact contributions to polymer science, biomaterials, and advanced fiber materials. His innovative research in polyurethane, elastomers, and biofabrication has resulted in numerous patents, top-tier publications, and real-world applications in healthcare and flexible electronics. Beyond his research output, Prof. You has demonstrated exemplary leadership by guiding interdisciplinary research teams, serving on influential editorial boards, and playing key roles in professional organizations. While his research portfolio is already robust, potential areas for future growth include expanding international collaborations and further enhancing translational impact to bring laboratory discoveries into widespread clinical or industrial use. Overall, Prof. You’s combination of scientific innovation, leadership, and broad recognition makes him a highly deserving recipient of this award, reflecting both his individual excellence and his ongoing contributions to advancing materials science on a global scale.

Publications Top Notes

  1. Title: Multiple dynamic bonds enable high mechanical strength and efficient room-temperature self-healable polyurethane for triboelectric nanogenerators
    Authors: Zhang, Wenwen; Xuan, Huixia; Xu, Xiaofei; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  2. Title: Dynamic cross-linked topological network reconciles the longstanding contradictory properties of polymers
    Authors: Wu, Zekai; Chu, Chengzhen; Jin, Yuhui; Zhang, Wenwen; You, Zhengwei
    Journal: Science Advances
    Year: 2025

  3. Title: One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin
    Authors: Ni, Yufeng; Li, Bing; Chu, Chengzhen; Chen, Shuo; You, Zhengwei
    Journal: Science Bulletin
    Year: 2025
    Citations: 2

  4. Title: Mitochondria-inspired general strategy simultaneously enhances contradictory properties of commercial polymers
    Authors: Wang, Yuepeng; Yang, Lei; Qian, Bo; Jia, Yujie; You, Zhengwei
    Journal: Materials Today
    Year: 2025

  5. Title: Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators
    Authors: Zhang, Xiaoyu; Yan, Xixian; Zeng, Fanglei; Guan, Qingbao; You, Zhengwei
    Journal: Advanced Science
    Year: 2025

  6. Title: Sequence-controlled dynamic covalent units enable decoupling of mechanical and self-healing performance of polymers
    Authors: Zhang, Luzhi; Huang, Hongfei; Sun, Lijie; Tan, Hui; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  7. Title: Readily recyclable, degradable, stretchable, highly conductive, anti-freezing and anti-drying glycerohydrogel for triboelectric nanogenerator
    Authors: Jiang, Sihan; Wang, Yang; Tian, Meiqin; Sun, Wei; You, Zhengwei
    Journal: Chemical Engineering Journal
    Year: 2025
    Citations: 1

  8. Title: Construction of room-temperature self-healing polyurethane-based phase change composites for thermal control and energy supply
    Authors: Ouyang, Yuling; Xu, Xiaofei; Li, Yingqian; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  9. Title: Magnetically Guided Mechanoactive Mineralization Scaffolds for Enhanced Bone Regeneration
    Authors: Guo, Xuran; Tao, Zaijin; Dai, Zhenzhen; You, Zhengwei; Jiang, Jia
    Journal: Advanced Functional Materials
    Year: 2025

  10. Title: Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair
    Authors: Kong, Lingchi; Gao, Xin; Yao, Xiangyun; Qian, Yun; Fan, Cunyi
    Journal: Nature Communications
    Year: 2024
    Citations: 5

Jaroslav Polák | Materials Science | Best Researcher Award

Prof. Jaroslav Polák | Materials Science | Best Researcher Award

Researcher from Institute of Physics of Materials CAS, Czech Republic

Prof. RNDr. Jaroslav Polák, DrSc., dr.h.c., is a globally respected scientist in the field of materials science, particularly known for his pioneering research on the mechanical properties of materials, fatigue behavior, and fracture processes. Born in 1938, Prof. Polák has dedicated over six decades to scientific research, contributing foundational theories and experimental insights that have advanced the understanding of fatigue damage in metals. He has held long-term positions at the Institute of Physics of Materials, Czech Academy of Sciences, and has collaborated internationally in Canada, Japan, Finland, and France. With over 450 publications in leading journals, two monographs, several book chapters, and an h-index of 41, his work has been cited nearly 5,000 times, ranking him among the top 1,000 most cited material scientists globally. Prof. Polák’s achievements extend beyond research; he has played a key role in mentoring young scientists, shaping research agendas, and serving on editorial boards and scientific panels. His leadership in organizing international conferences and editing special journal issues has helped shape the direction of the materials fatigue field. Prof. Polák continues to contribute as a senior scientist, maintaining a central role in advanced materials research groups and European research evaluations.

Professional Profile

Education

Prof. Polák’s educational foundation is firmly rooted in solid state physics. He completed his undergraduate studies at the Faculty of Natural Sciences, Brno, in 1961, earning the RNDr. degree. Shortly after, he pursued further specialization by joining the Institute of Solid State Physics at the Czech Academy of Sciences in Prague for one and a half years, deepening his expertise in materials science. In 1965, Prof. Polák earned his CSc. degree, equivalent to a Ph.D., with a thesis focused on mechanical properties of materials, setting the stage for his lifelong research into fatigue behavior. His academic journey continued with further advanced qualifications: in 1992, he achieved the title of Docent from Brno University of Technology, followed by a habilitation (DrSc.) from the Czech Academy of Sciences in 1993. By 1999, he was appointed Professor in Materials Engineering at Brno University of Technology. These milestones reflect a consistent, high-level academic progression that supported his development as a scientific leader. Over the years, his educational background has enabled him to bridge rigorous theoretical work with experimental research, fostering innovations that have become central to the field of materials fatigue.

Professional Experience

Prof. Polák’s professional experience is both extensive and international. He has been permanently based at the Institute of Physics of Materials, Czech Academy of Sciences, Brno, since 1963, where he led the low-cycle fatigue group from 1986 to 2012. Early in his career, he gained international exposure through a postdoctoral fellowship in Canada (1970–1971) under Dr. Z.S. Basinski, followed by visiting research and teaching positions at Tampere University of Technology, Finland, and multiple long-term collaborations with Ecole Centrale de Lille, France. Between 1994 and 2003, he undertook regular annual stays as “Professeur associé” in Lille, later becoming a member of the Scientific Board. His professional leadership also included membership in the scientific panel of the Grant Agency ČR (2005–2013) and involvement in European research evaluation projects under Horizon 2020 and RFCS. Notably, Prof. Polák has combined research with teaching for over 30 years, mentoring generations of students and researchers at Brno University of Technology. His organizational and editorial roles, such as chairing the 16th International Colloquium on Mechanical Fatigue of Metals, further emphasize his influence in shaping both scientific inquiry and the broader research community.

Research Interests

Prof. Polák’s research interests center on the mechanical behavior of materials, with particular emphasis on fatigue, cyclic plastic deformation, and fracture mechanics. His pioneering work has contributed to understanding thermal fatigue, fatigue-creep interactions, short crack kinetics, and the statistical theory of hysteresis loops. He applies a multiscale approach that integrates macroscopic mechanical testing with detailed microstructural analysis, using advanced techniques to study surface relief formation, crack initiation, and damage evolution. Prof. Polák is particularly interested in high-temperature and thermomechanical fatigue processes, developing models that have practical applications in predicting material lifespan under complex loading conditions. His innovative research has informed both theoretical frameworks and experimental methodologies, bridging the gap between fundamental science and engineering practice. His current involvement with CEITEC advanced material groups reflects his continuous engagement with cutting-edge research on next-generation materials. Additionally, his work increasingly connects with computational and computer-controlled testing methods, ensuring his research remains relevant in an era where materials science is intersecting with informatics and automation.

Research Skills

Prof. Polák brings a robust set of research skills to the field of materials science, particularly in experimental design, advanced mechanical testing, multiscale material characterization, and damage mechanism analysis. His expertise includes designing and conducting low-cycle and high-cycle fatigue experiments, implementing computer-controlled testing systems, and developing predictive models for fatigue life and crack initiation. He is highly skilled in correlating microstructural features with macroscopic mechanical behavior, using techniques such as microscopy, surface relief analysis, and fracture surface examination to understand material failure processes. His background in solid state physics equips him with a deep theoretical understanding, allowing him to derive quantitative models from experimental data, such as his work on the kinetics of short cracks and the evolution of surface structures during fatigue. Furthermore, Prof. Polák’s research management and leadership skills are well established, enabling him to coordinate large-scale collaborative projects, organize international conferences, and mentor junior researchers. His ability to combine theoretical, experimental, and organizational expertise makes him a uniquely well-rounded scientific leader in the field.

Awards and Honors

Prof. Polák’s distinguished career has been recognized through numerous awards and honors, reflecting both his scientific excellence and his service to the global research community. One of his most prestigious honors is the Ernst Mach Honorary Medal for Merit in Physical Sciences, awarded by the Academy of Sciences in 2016, acknowledging his groundbreaking contributions to materials science and fatigue research. His international reputation is further underscored by the honorary doctorate (dr. h.c.) awarded by Ecole Centrale de Lille in 2004, where he also served on the Scientific Board between 2000 and 2003. Prof. Polák has been invited to deliver lectures at top institutions worldwide, including Japan, France, Canada, and Finland, and has frequently served as an invited speaker at international conferences. He chaired the Scientific and Organizing Committees of the 16th International Colloquium on Mechanical Fatigue of Metals, reinforcing his leadership standing. More recently, his expertise has been sought as an evaluator for European research projects under Horizon 2020 and RFCS. Collectively, these recognitions affirm his enduring influence and the high esteem in which he is held by the international scientific community.

Conclusion

Prof. Jaroslav Polák stands out as an extraordinary figure in the global materials science community. His six-decade career has yielded transformative insights into fatigue behavior, cyclic plasticity, and material failure mechanisms, underpinned by rigorous experimental research and innovative theoretical modeling. His contributions extend beyond scientific publications to include leadership in major international collaborations, organization of key scientific conferences, editorial work, and the mentorship of numerous young scientists. Prof. Polák’s impressive record of over 450 publications, thousands of citations, and top rankings among material science researchers underscores his profound and lasting impact. Honors such as the Ernst Mach Medal and honorary doctorate from Ecole Centrale de Lille further validate his status as a leading researcher. While his focus has traditionally been on fundamental aspects of materials behavior, he remains well-positioned to contribute to emerging interdisciplinary and computationally driven areas. Prof. Polák’s lifelong dedication, intellectual leadership, and international reputation make him a highly deserving and exemplary candidate for the Best Researcher Award, as his work continues to shape the understanding and advancement of materials science for future generations.

Publications Top Notes

  1. Title: Dislocation Structure Near the Intergranular Fracture Surface of Cyclically Strained Polycrystalline Copper
    Authors: Polák, Jaroslav; Poczklán, Ladislav; Vražina, Tomáš
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2025

  2. Title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
    Authors: Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš
    Journal: Materials Science and Engineering A
    Year: 2017
    Citations: 54

  3. Title: Experimental evidence and physical models of fatigue crack initiation
    Authors: Polák, Jaroslav; Man, J.
    Journal: International Journal of Fatigue
    Year: 2016
    Citations: 53

  4. Title: Mechanical properties of high niobium TiAl alloys doped with Mo and C
    Authors: Chlupová, Alice; Heczko, Milan; Obrtlík, Karel; Beran, Přemysl; Kruml, Tomáš
    Journal: Materials and Design
    Year: 2016
    Citations: 54

  5. Title: Surface Relief and Internal Structure in Fatigued Stainless Sanicro 25 Steel
    Authors: Polák, Jaroslav; Mazánová, Veronika; Kuběna, Ivo; Heczko, Milan; Man, J.
    Journal: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Year: 2016
    Citations: 24

  6. Title: Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature
    Authors: Polák, Jaroslav; Petráš, Roman; Chai, Guocai; Škorík, Viktor
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 21

  7. Title: Behaviour of ODS Steels in Cyclic Loading
    Authors: Kuběna, Ivo; Kruml, Tomáš; Polák, Jaroslav
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 3

  8. Title: Basic Mechanisms Leading to Fatigue Failure of Structural Materials
    Authors: Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 8

  9. Title: Formation and dissolution of precipitates in IN792 superalloy at elevated temperatures (Open access)
    Authors: Strunz, Pavel; Petrenec, Martin; Polák, Jaroslav; Gasser, Urs; Farkas, Gergely
    Journal: Metals
    Year: 2016
    Citations: 10

  10. Title: Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel
    Authors: Petráš, Roman; Škorík, Viktor; Polák, Jaroslav
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 51

Premalatha Santhanamari | Engineering | Best Researcher Award

Dr. Premalatha Santhanamari | Engineering | Best Researcher Award

Associate Professor from SRMIST, Ramapuram, India

Dr. S. Premalatha is a dedicated Associate Professor at the Department of Information Technology, Sona College of Technology, Salem, India. With over two decades of experience in teaching and research, she has built a distinguished academic career, guiding postgraduate and doctoral scholars. Dr. Premalatha holds a Ph.D. in Information and Communication Engineering from Anna University, Chennai, focusing on wireless mobile ad-hoc networks. Her academic leadership is complemented by numerous publications in reputed international journals and conferences, reflecting her contributions to cutting-edge research. She is deeply committed to fostering academic excellence, mentoring young researchers, and engaging in interdisciplinary collaborations. Dr. Premalatha’s research is particularly focused on artificial intelligence, machine learning, cloud computing, and IoT applications. She has received several accolades recognizing her scholarly achievements and continues to play a key role in advancing the field of information technology through research, teaching, and active participation in professional societies. Her passion for innovation, combined with her strong educational foundation, enables her to address real-world challenges with a problem-solving approach, making her an influential figure in both academic and research communities.

Professional Profile

Education

Dr. S. Premalatha completed her Bachelor’s degree in Computer Science and Engineering, laying a solid foundation in programming, software engineering, and computer systems. She went on to earn her Master of Engineering (M.E.) in Computer Science and Engineering, where she deepened her knowledge in advanced computing concepts and research methodologies. Her academic journey culminated in a Doctor of Philosophy (Ph.D.) in Information and Communication Engineering from Anna University, Chennai. Her doctoral research focused on wireless mobile ad-hoc networks, exploring optimization techniques for improved network performance. Throughout her educational journey, Dr. Premalatha consistently demonstrated academic excellence, engaging in innovative research and earning recognition for her scholarly capabilities. She also pursued various specialized certifications and training programs that enhanced her expertise in artificial intelligence, machine learning, cloud computing, and IoT systems. Her education not only provided her with technical knowledge but also strengthened her analytical and problem-solving abilities, laying the groundwork for her future roles as a teacher, researcher, and mentor. By combining strong academic credentials with continuous learning, Dr. Premalatha has developed a robust skill set that supports her impactful contributions to the field of information technology.

Professional Experience

Dr. S. Premalatha has over 20 years of academic experience, currently serving as Associate Professor in the Department of Information Technology at Sona College of Technology, Salem, India. Throughout her career, she has been involved in both teaching and research, delivering lectures in advanced computing, programming languages, data structures, artificial intelligence, and cloud computing. In addition to teaching, she has guided numerous undergraduate, postgraduate, and Ph.D. students, fostering innovation and critical thinking. Dr. Premalatha has actively contributed to curriculum development, departmental administration, and academic planning, ensuring the delivery of high-quality education. She has also participated in national and international conferences, workshops, and seminars as a speaker, resource person, and session chair. Her professional activities extend to collaborations with industries and research institutions, bridging the gap between academia and real-world applications. She has played key roles in funded research projects, consulted on technology solutions, and contributed to the design and implementation of IT systems in various domains. Dr. Premalatha’s extensive professional experience reflects her dedication to advancing the field of information technology through research, teaching, and innovation.

Research Interest

Dr. S. Premalatha’s research interests span several cutting-edge areas in computer science and information technology. Her primary focus lies in wireless mobile ad-hoc networks (MANETs), where she has explored optimization techniques to improve network performance and reliability. She is also deeply engaged in artificial intelligence (AI) and machine learning (ML), developing intelligent systems for applications such as healthcare, smart cities, and data analytics. Cloud computing and Internet of Things (IoT) are additional areas where she has made significant contributions, investigating resource allocation, load balancing, and security challenges. Her research often integrates interdisciplinary approaches, combining knowledge from software engineering, data science, and communication technologies to address complex problems. Dr. Premalatha is passionate about applying research insights to practical scenarios, developing models and solutions that can be deployed in real-world environments. She regularly publishes her findings in peer-reviewed journals and presents at leading conferences, keeping pace with the latest developments in her fields of interest. By focusing on both theoretical advancements and practical applications, Dr. Premalatha continues to push the boundaries of research in information technology.

Research Skills

Dr. S. Premalatha possesses a broad range of research skills that support her work across multiple domains in computer science and information technology. She is proficient in designing and conducting experiments, statistical analysis, data modeling, and simulation, particularly in the context of wireless networks, cloud systems, and intelligent algorithms. Her technical toolkit includes expertise in programming languages such as Python, Java, and MATLAB, as well as working knowledge of machine learning frameworks like TensorFlow and Scikit-learn. Dr. Premalatha is skilled in using network simulation tools such as NS2 and NS3, enabling her to test and validate complex networking solutions. She has strong abilities in problem formulation, hypothesis testing, and performance evaluation, critical for advancing research projects. Additionally, she is experienced in writing high-impact research papers, preparing grant proposals, and delivering technical presentations. Her collaborative skills allow her to work effectively with interdisciplinary teams, and her mentoring abilities support the development of young researchers. Dr. Premalatha’s research skills enable her to contribute meaningful innovations to both academia and industry.

Awards and Honors

Over her distinguished career, Dr. S. Premalatha has received numerous awards and honors recognizing her excellence in teaching, research, and service. She has been honored with best paper awards at international conferences, acknowledging the novelty and impact of her research work. Dr. Premalatha has also received appreciation awards from her institution for outstanding contributions to academic excellence, research publications, and student mentoring. Her commitment to innovation and scholarly achievements has earned her invitations to serve on editorial boards, technical committees, and as a reviewer for reputed journals and conferences. She has been recognized as a keynote speaker and session chair at several national and international events, reflecting her leadership in the field. Additionally, Dr. Premalatha has been involved in government-funded projects and has been awarded research grants that further validate her expertise and research capabilities. These accolades not only highlight her individual accomplishments but also underscore her role in advancing the reputation of her institution and contributing to the broader research community.

Conclusion

In conclusion, Dr. S. Premalatha stands out as a highly accomplished academic, researcher, and mentor in the field of information technology. Her extensive experience, combined with a passion for innovation and research excellence, positions her as a respected leader within both academic and professional circles. She continues to push the frontiers of research in wireless networks, artificial intelligence, machine learning, and cloud computing, delivering impactful contributions that address contemporary technological challenges. Beyond her research achievements, Dr. Premalatha is deeply committed to teaching, mentoring, and nurturing the next generation of IT professionals, creating a lasting legacy in the academic community. Her numerous awards, publications, and leadership roles reflect her unwavering dedication and influence in the field. Looking ahead, Dr. Premalatha remains focused on driving interdisciplinary collaborations, exploring emerging technologies, and contributing to the development of innovative solutions that benefit society. With her impressive track record and forward-thinking approach, she is well-positioned to continue making significant contributions to the advancement of information technology and inspire future generations of researchers and practitioners.

 Publications Top Notes

  • Security Enhancement in 5G Networks by Identifying Attacks Using Optimized Cosine Convolutional Neural Network

    • Journal: Internet Technology Letters

    • Year: 2025

    • DOI: 10.1002/ITL2.70003

    • Contributors: Santhanamari, Premalatha; Kathirgamam, Vijayakumar; Subramanian, Lakshmisridevi; Panneerselvam, Thamaraikannan; Radhakrishnan, Rathish Chirakkal

  • Hybrid nanofabrication of AZ91D alloy-SiC-CNT and Optimize the drill machinability characteristics by ANOVA route

    • Journal: Optical and Quantum Electronics

    • Year: 2024

    • DOI: 10.1007/s11082-023-06121-9

    • Contributors: Vimala, P.; Deepa, K.; Agrawal, A.; Raj, S.S.; Premalatha, S.; V. Mohanavel; Ali, M.

  • Analysis of single-phase cascaded H-bridge multilevel inverters under variable power conditions

    • Journal: Indonesian Journal of Electrical Engineering and Computer Science

    • Year: 2023

    • DOI: 10.11591/ijeecs.v30.i3.pp1381-1388

    • Contributors: Subramani Chinnamuthu; Vinothkumar Balan; Krithika Vaidyanathan; Vimala Chinnaiyan; Premalatha Santhanamari

  • Protection of stand-alone wind energy conversion system using bridge type fault current limiters

    • Conference: 8th International Conference on Renewable Energy Research and Applications (ICRERA)

    • Year: 2019

    • DOI: 10.1109/ICRERA47325.2019.8996727

    • Contributors: Arun Bhaskar, M.; Premalatha, S.; Parameswaran, A.; Dinesh, P.; Dash, S.S.

  • Optimization of impedance mismatch in distance protection of transmission line with TCSC

    • Conference: Advances in Intelligent Systems and Computing

    • Year: 2016

    • DOI: 10.1007/978-81-322-2656-7_115

    • Contributors: Arun Bhaskar, M.; Indhirani, A.; Premalatha, S.

  • Reactive power compensation with UPQC allocations and optimal placement of capacitors in radial distribution systems using firefly algorithm

    • Journal: International Journal of Control Theory and Applications

    • Year: 2016

    • Contributors: Premalatha, S.; Sukanthan, S.; Sunitha, D.; Umayal Muthu, V.

  • Design of UPFC based Damping Controller using Neuro Fuzzy to Enhance Multi-machine Power System Stability

    • Journal: Indian Journal of Science and Technology

    • Year: 2016

    • DOI: 10.17485/ijst/2016/v9is1/110905

    • Contributors: S. Premalatha; D. Prathima

  • Non-iterative optimization algorithm based D-STATCOM for power quality enhancement

    • Journal: International Review on Modelling and Simulations

    • Year: 2013

    • Contributors: Premalatha, S.; Dash, S.S.; Arun Venkatesh, J.; Rayaguru, N.K.

  • Power Quality Improvement Features for a Distributed Generation System using Shunt Active Power Filter

    • Journal: Procedia Engineering

    • Year: 2013

    • DOI: 10.1016/j.proeng.2013.09.098

    • Contributors: S. Premalatha; Subhransu Sekhar Dash; Paduchuri Chandra Babu

  • PV supported DVR and D-STATCOM for mitigating power quality issues

    • Journal: International Review on Modelling and Simulations

    • Year: 2013

    • Contributors: Premalatha, S.; Dash, S.S.; Sunitha, D.; Mohanasundaram, R.

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Esteban Denecken | Engineering | Best Researcher Award

Dr. Esteban Denecken | Engineering | Best Researcher Award

Researcher from University of Los Andes, Chile

Esteban Jorge Denecken Campaña is a dedicated researcher and electrical engineer specializing in medical image processing and advanced magnetic resonance imaging (MRI) techniques. With a strong background in electrical engineering and ongoing doctoral studies, he has established a clear trajectory in biomedical imaging and computational analysis. His work centers on the development of novel methods for the simultaneous acquisition of water, fat, and velocity imaging using phase-contrast MRI. He has contributed to multiple peer-reviewed journals and has presented at prestigious international conferences including ISMRM. Esteban has collaborated with prominent institutions such as the University of Wisconsin–Madison, where he worked with the Quantitative Body MRI team. His expertise lies at the intersection of image processing, signal acquisition, and algorithmic development for clinical and biological applications. Esteban has also contributed to innovation in image analysis of biological materials and has actively supported undergraduate research and academic mentorship. His professional journey reflects both academic excellence and practical innovation. With solid experience in both academia and industry, he combines technical precision with a creative approach to engineering challenges, particularly in healthcare technologies. His participation in innovation programs and cross-disciplinary research showcases his commitment to translating scientific discovery into practical, impactful solutions.

Professional Profile

Education

Esteban Jorge Denecken Campaña holds a robust academic foundation in electrical engineering and biomedical image processing. He earned both his Bachelor’s and Professional Degree in Civil Electrical Engineering from Universidad de Los Andes in 2015. Currently, he is pursuing a Doctorate in Engineering Sciences with a specialization in Electrical Engineering at Pontificia Universidad Católica de Chile, where his doctoral research focuses on the development of advanced MRI techniques for simultaneous imaging of water, fat, and flow velocity. He has also enhanced his expertise through specialized training, including a Biomedical Imaging course at Northeastern University and practical EEG-fMRI training conducted at Clínica Las Condes. Additionally, Esteban completed the Innovation Academy program at Universidad de Los Andes, where he acquired valuable knowledge in innovation management, intellectual property protection, and science communication. His academic path demonstrates a balanced integration of theoretical knowledge and applied research in electrical engineering, with an increasing focus on medical and biological imaging. His academic excellence is complemented by a commitment to continual learning, evidenced by language training at the University of California, Davis, and participation in multiple research-related technical courses. His educational background positions him as a capable and well-rounded researcher in biomedical engineering.

Professional Experience

Esteban Denecken’s professional experience spans research engineering, doctoral research, and technical innovation within academia and industry. He is currently working as a Research Engineer at the School of Engineering, Universidad de Los Andes, where he develops image processing algorithms for analyzing biological samples, including paletted rich fibrin and microglial cells. As part of his doctoral research at Pontificia Universidad Católica de Chile, he has developed advanced techniques for MRI data acquisition, contributing significantly to the field of simultaneous imaging of biological structures and functions. He also completed a prestigious research internship at the University of Wisconsin–Madison, where he collaborated with leading experts in quantitative MRI. Earlier in his career, Esteban served as an Assistant Scientist at the Advanced Center of Electrical and Electronic Engineering (AC3E), where he enhanced algorithms for displaying HDR content on standard screens. His experience also includes working as a Frontend Developer for Falabella Financiero, where he contributed to the development of digital platforms for credit services in Latin America. Esteban has held roles supporting undergraduate education and research and has served as a teacher assistant for various engineering subjects. His broad professional experience reflects a dynamic balance between academic research, software development, and technical mentorship.

Research Interests

Esteban Denecken’s research interests lie at the intersection of electrical engineering, medical imaging, and computational analysis. His primary focus is the development of novel MRI techniques, specifically aimed at the simultaneous acquisition of water, fat, and velocity imaging. This work enhances the diagnostic capabilities of MRI in clinical settings, particularly in cardiovascular and metabolic imaging. He is also deeply engaged in image processing techniques for analyzing the structural and functional properties of biological tissues. His research addresses challenges in respiratory gating, porosity analysis, and segmentation of microglial cells—topics that are critical in both clinical diagnostics and biomedical research. Esteban is particularly interested in leveraging signal processing, machine learning, and computational modeling to improve the accuracy and efficiency of image-based diagnostics. His interdisciplinary approach involves collaboration with experts in radiology, biomedical engineering, and computer vision. Through his research, Esteban seeks to bridge the gap between engineering innovation and healthcare application, contributing to advances in personalized medicine and non-invasive diagnostics. He continues to explore how computational tools can enhance imaging resolution, data interpretation, and automation in clinical workflows, highlighting his commitment to impactful, translational research in biomedical technology.

Research Skills

Esteban Denecken possesses a wide range of research skills, particularly in medical imaging, signal processing, and algorithm development. His technical proficiency includes the design and implementation of MRI-based techniques for simultaneous imaging of multiple parameters such as water, fat, and blood velocity. He has extensive experience with 4D flow MRI and respiratory gating, which are essential for capturing dynamic physiological processes. Esteban is skilled in biomedical image processing, including tissue segmentation, porosity analysis, and quantitative imaging. He is adept at developing custom algorithms for analyzing both structural and functional aspects of biological materials, using tools such as MATLAB and Python. His research contributions extend to high-impact journal publications and presentations at top-tier international conferences. Additionally, Esteban is experienced in interdisciplinary collaboration, having worked alongside radiologists, physicists, and engineers during his internship at the University of Wisconsin–Madison. He has also mentored undergraduate students, providing guidance in thesis work related to computer vision and image analysis. His ability to communicate complex technical concepts, combined with practical software development experience, further enhances his research effectiveness. Overall, Esteban demonstrates a rare combination of scientific rigor, software engineering capabilities, and collaborative agility.

Awards and Honors

While Esteban Denecken’s formal awards and honors are not explicitly listed, his academic and professional trajectory includes multiple indicators of distinction and recognition. His selection for a competitive internship at the University of Wisconsin–Madison, under the mentorship of renowned radiology expert Dr. Diego Hernando, reflects a high level of international recognition. Participation in leading international conferences such as ISMRM, where he has consistently presented his work since 2021, also underscores the academic community’s acknowledgment of his contributions. His doctoral research at Pontificia Universidad Católica de Chile, one of the most prestigious institutions in Latin America, further attests to his scholarly capabilities and potential. Additionally, Esteban’s role as a mentor to undergraduate thesis students and as a research engineer at Universidad de Los Andes shows that he is entrusted with responsibilities that reflect institutional confidence in his expertise and leadership. Through these roles and invitations to high-level collaborative projects, Esteban has positioned himself as a rising figure in the field of biomedical engineering. His consistent involvement in innovative academic initiatives, such as the Innovation Academy at UANDES, reinforces his proactive engagement in research and innovation ecosystems.

Conclusion

Esteban Jorge Denecken Campaña is a highly promising researcher with a focused expertise in medical image processing and electrical engineering. His academic foundation, hands-on research in advanced MRI techniques, and collaboration with leading international institutions demonstrate a strong alignment with the criteria of a Best Researcher Award. He has contributed to multiple peer-reviewed publications and regularly participates in global scientific forums, reflecting both scholarly productivity and engagement with the research community. His skills in biomedical imaging, algorithm development, and interdisciplinary collaboration are significant strengths that enhance the impact of his work. While he could further benefit from more visible international awards or patents to supplement his growing publication record, his current achievements clearly position him as a valuable asset to the research and academic community. Esteban’s innovative mindset, academic dedication, and technical expertise make him a strong contender for recognition as a best researcher. His work not only advances scientific understanding but also holds practical value in clinical diagnostics and health technologies. Therefore, he is well-suited for consideration for the Best Researcher Award and has the potential to make significant contributions to his field in the coming years.

Publications Top Notes

1. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast T2‐IDEAL Method*

  • Authors: Esteban Denecken, Cristóbal Arrieta, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025

2. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast 3p‐Dixon Method

  • Authors: Esteban Denecken, Cristóbal Arrieta, Diego Hernando, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025​

3. Impact of Respiratory Gating on Hemodynamic Parameters from 4D Flow MRI

  • Authors: Esteban Denecken, Julio Sotelo, Cristobal Arrieta, Marcelo E. Andia, Sergio Uribe

  • Year: 2022

Hadi Hijazi | Materials Science | Best Researcher Award

Dr. Hadi Hijazi | Materials Science | Best Researcher Award

R&D engineer from CEA LETI, France

Dr. Hadi Hijazi is a postdoctoral researcher specializing in microelectronics and semiconductor nanostructures, with extensive experience in epitaxial growth and device fabrication. Based in Grenoble, France, he has developed a strong academic and research background through work at top-tier institutions such as CEA-LETI, CNRS/LTM, and Saint Petersburg State University. His research encompasses the design, modeling, and experimental development of III-V materials and nanostructures for high-performance optoelectronic devices, including visible and near-infrared LEDs. His doctoral studies focused on the epitaxial growth of GaAs nanowires via HVPE and the investigation of spin and charge transport. Dr. Hijazi possesses deep technical expertise in MOCVD, HVPE, and cleanroom operations, supported by his proficiency in a wide range of characterization tools such as XRD, SEM, AFM, PL, and Raman spectroscopy. In addition to his laboratory capabilities, he is skilled in modeling and simulation using tools like Matlab, Nextnano, and Mathematica. Multilingual and collaborative, Dr. Hijazi has a history of successful international projects, combining both theoretical insight and experimental innovation. His contributions to the field are reflected in quality publications in peer-reviewed journals, and he maintains active connections with research leaders and institutions in France and abroad. He is currently an R&D engineer at CEA LETI, contributing to hybrid bonding technologies.

Professional Profile

Education

Dr. Hadi Hijazi holds a Ph.D. in Physics of Materials from Institut Pascal at Université Clermont Auvergne, France, where he worked on the development of GaAs nanowires grown on Si substrates using hydride vapor phase epitaxy (HVPE). His research addressed charge and spin diffusion in nanowires, integrating fundamental physics with advanced material synthesis techniques. Prior to his doctoral studies, Dr. Hijazi completed a Master’s degree (M2) in Nanoelectronics and Nanotechnology from Université Grenoble Alpes, where he received training in nanoscale materials, semiconductor physics, and cleanroom-based device fabrication. He also holds a Master 1 in Fundamental Physics and Nanoscience from Université Joseph Fourier in Grenoble, which laid the foundation for his later specialization in materials and device engineering. His academic training has been interdisciplinary, with strong emphasis on physics, nanotechnology, materials science, and applied electronics. His formal education has equipped him with theoretical depth and practical skill sets, enabling his contributions to multidisciplinary research involving physical modeling, simulation, and experimental validation of micro- and nanoscale structures. These qualifications have prepared him well for complex problem-solving in research-intensive environments, particularly within the highly competitive field of semiconductor materials and microelectronics.

Professional Experience

Dr. Hadi Hijazi has accumulated a robust portfolio of research and development experience across premier academic and industrial research institutions. Since July 2023, he has been serving as an R&D Engineer at CEA LETI in Grenoble, where he works on hybrid bonding technologies, a critical area for 3D integration in microelectronics. From October 2021 to June 2023, he served as a postdoctoral researcher jointly at CEA-LETI and CNRS/LTM, contributing to the IRT Nanoelec project. During this tenure, he focused on the design and simulation of novel heterostructures using III-(As,P) materials for high-performance visible and NIR LEDs. His work included epitaxial process development (MOCVD) on 300 mm substrates and comprehensive characterization of material and device properties. Prior to this, he was a postdoctoral researcher at ITMO University and Saint Petersburg State University in Russia, focusing on growth modeling of III-V and IV-IV micro/nanostructures. Dr. Hijazi also undertook an industrial internship at CEA LETI in 2016, studying the bonding of refractory metal thin films for 3D technologies. Throughout his career, he has demonstrated the ability to integrate theory, simulation, and fabrication in practical research, aligning well with multidisciplinary goals in microelectronics and optoelectronics innovation.

Research Interests

Dr. Hadi Hijazi’s research interests center around advanced semiconductor materials and their integration into high-performance optoelectronic and microelectronic devices. He is particularly focused on the design, epitaxial growth, and characterization of III-V compound semiconductors on silicon substrates, with the goal of enabling new generations of energy-efficient light sources and integrated photonics. His doctoral work involved HVPE growth of GaAs nanowires on Si(111) substrates, aiming to understand charge and spin transport mechanisms at the nanoscale. His postdoctoral research extended to MOCVD-based fabrication of InGaAs and InP heterostructures for LED applications and included structural and electro-optical characterization. He is also interested in hybrid bonding technologies and 3D integration techniques critical to the future of chip stacking and packaging. Dr. Hijazi combines experimental efforts with simulation and modeling, employing tools like Matlab and Nextnano to optimize nanostructure design and predict growth behavior. He is deeply engaged in the physical understanding of epitaxy, surface/interface interactions, and defect formation. These interests place him at the intersection of materials physics, nanotechnology, and applied engineering, with relevance to optoelectronics, spintronics, and next-generation semiconductor device platforms.

Research Skills

Dr. Hadi Hijazi possesses a comprehensive set of research skills that span theoretical modeling, experimental techniques, and process development in nanotechnology and materials science. His expertise in vapor phase epitaxy, including both MOCVD and HVPE methods, allows him to develop high-quality III-V semiconductor nanostructures on various substrates. He has extensive cleanroom experience and is adept in device fabrication processes, material growth protocols, and post-growth characterization. He is proficient in a range of analytical tools such as XRD, AFM, SEM, Raman spectroscopy, photoluminescence (PL), and electrochemical and C-V measurements. Dr. Hijazi is also skilled in simulation and modeling, using software like Matlab, Mathematica, Nextnano, Python, and C++ to analyze material behaviors and guide experimental design. His strong command of semiconductor physics and nanostructure dynamics supports both fundamental research and practical application development. He is an effective communicator in French, English, and Arabic, and his collaborative approach to research is evident in his successful engagements with multidisciplinary teams across France and Russia. Additionally, his organizational and documentation skills are well-developed, contributing to his ability to manage complex research tasks and publish high-quality scientific articles.

Awards and Honors

While specific named awards are not listed in the available information, Dr. Hadi Hijazi’s inclusion in competitive research programs and positions at prestigious institutions such as CEA-LETI, CNRS, and ITMO University itself serves as recognition of his capabilities and achievements. His acceptance into highly selective doctoral and postdoctoral programs in France and Russia, coupled with his contributions to projects such as IRT Nanoelec, suggests a high degree of merit and recognition by the scientific community. His publications in internationally recognized journals such as Nanotechnology and Journal of Physical Chemistry C also indicate the quality and impact of his research. Furthermore, his involvement in international collaborations and multidisciplinary research teams demonstrates the professional trust placed in his expertise and reliability. His continuing employment at CEA LETI in a research and development role is itself a form of institutional endorsement, affirming his value in the innovation ecosystem of advanced microelectronics. With further dissemination of his work and engagement in academic presentations or grant-funded leadership, it is likely he will accrue formal honors and awards in the near future.

Conclusion

Dr. Hadi Hijazi is an accomplished early-career researcher with strong potential for further growth in the field of semiconductor nanotechnology and microelectronics. His academic training and international research experience have equipped him with both depth and versatility, enabling contributions to next-generation devices through innovations in epitaxial growth, material design, and device integration. His ability to bridge theoretical modeling with experimental realization is a key asset, particularly in collaborative research environments. While his current achievements position him as a valuable team member and emerging expert, more visible research leadership, independent project development, and broader dissemination of research outputs could further strengthen his candidacy for major research awards. At present, Dr. Hijazi would be an ideal candidate for recognitions aimed at emerging scientists or rising researchers, and with continued productivity and impact, he is well-poised to become a leading figure in semiconductor device research. His technical expertise, commitment to quality, and collaborative ethos make him a noteworthy contributor to academic and industrial R&D. As he continues his career at CEA LETI and beyond, further contributions in both applied technologies and fundamental science can be expected.

Publications Top Notes

  1. Fine Pitch Superconducting Interconnects Obtained with Nb–Nb Direct Bonding
  • Authors: Candice M. Thomas, Pablo Renaud, Meriem Guergour, Edouard Deschaseaux, Christophe Dubarry, Jennifer Guillaume, Elisa Vermande, Alain Campo, Frank Fournel, Hadi Hijazi, Anne-Marie Papon, Catherine Pellissier, Jean Charbonnier

  • Publication Year: 2025

2. Is NaOH Beneficial to Low Temperature Hybrid Bonding Integration?

  • Authors: Hadi Hijazi¹, Paul Noël¹, Samuel Tardif², Karine Abadie¹, Christophe Morales¹, Frank Fournel¹

  • Publication Date: October 30, 2024

 

Zhiyong Dai | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhiyong Dai | Materials Science | Best Researcher Award

Associate Professor from Bohai Shipbuilding Vocational College, China

Zhiyong Dai is currently serving as an Associate Professor at Bohai Shipbuilding Vocational College, where he has made significant contributions in the field of materials science and engineering, particularly in welding and high-temperature resistant alloys. With a solid academic background culminating in a Doctorate in Materials Processing Engineering from Shenyang University of Technology (2024), he has combined theoretical knowledge with practical teaching and research experience. Over his academic and professional journey, Dr. Dai has been dedicated to both educational excellence and scientific inquiry. His teaching spans core courses in metallurgy, welding technology, and material properties. His research has produced impactful findings on the mechanical behavior and strengthening mechanisms of Inconel 625 and other advanced nickel-based alloys under extreme conditions. He has published in several high-impact journals, including Materials Science and Engineering A and Journal of Materials Research and Technology. His commitment to academic mentorship is evident from his active involvement in curriculum development and participation in student innovation projects. With a combination of applied industrial focus and strong academic contributions, Dr. Dai stands out as a valuable candidate for recognition such as the Best Researcher Award.

Professional Profile

Education

Zhiyong Dai has built a comprehensive and specialized educational foundation in the field of materials science and engineering. He began his academic journey at Liaoning Petrochemical University, where he earned his Bachelor’s degree in Metallurgical Engineering in 2011. He continued at the same institution to pursue a Master’s degree in Materials Science, which he completed in 2014. His growing interest in the advanced mechanical and physical properties of materials led him to enroll in a Ph.D. program in Materials Processing Engineering at Shenyang University of Technology, where he completed his doctorate in 2024. His doctoral research focused on the hot deformation behavior, strengthening mechanisms, and creep deformation of nickel-based alloys—particularly Inconel 625—under high-temperature conditions. This advanced academic training has equipped him with a deep understanding of metallurgical principles, material failure analysis, and solidification theory. The progression from undergraduate to doctoral studies shows a clear and consistent focus on developing both the theoretical and applied aspects of materials engineering, particularly in welding and high-temperature applications. Throughout his educational journey, Dr. Dai has also completed various professional development programs in higher education and has earned a certification as a university-level teacher from the Liaoning Provincial Department of Education.

Professional Experience

Dr. Zhiyong Dai has accumulated nearly a decade of teaching and research experience at Bohai Shipbuilding Vocational College, where he began his academic career in January 2015. He currently holds the position of Associate Professor and has taught a wide range of subjects, including Principles of Metal Melting, Welding Methods and Technology, and Ship Materials and Welding Processes. His pedagogical work has focused on integrating theoretical knowledge with practical application, providing students with essential industry-oriented skills. Beyond classroom instruction, he has played a pivotal role in guiding students through national and regional academic competitions, often earning accolades for both students and himself as a supervising instructor. His professional growth is marked by steady career progression, moving from Assistant Lecturer in 2015 to Lecturer in 2017, and being promoted to Associate Professor in 2024. Additionally, Dr. Dai has actively participated in academic research and curriculum development, contributing to several internal institutional projects focused on vocational training, modern apprenticeship models, and school-enterprise collaboration. This professional trajectory reflects a dedication to both teaching excellence and applied research, reinforcing his impact on vocational education and positioning him as a candidate deserving of national academic recognition.

Research Interests

Zhiyong Dai’s research interests lie at the intersection of materials science, welding engineering, and high-temperature alloy performance. He is particularly focused on the development and performance evaluation of nickel-based and nitrogen-containing alloys under extreme thermal and mechanical conditions. His recent studies have explored the creep deformation behavior, intermediate temperature brittleness, and tensile properties of Inconel 625 deposited metal and similar advanced materials. His work contributes valuable insights into the mechanisms that govern strength and failure in high-performance alloys used in aerospace, marine, and energy industries. Additionally, Dr. Dai is interested in improving welding materials and processes, especially those involving flux-cored wires and laser positioning devices. He also engages in educational research related to vocational training models and the development of innovation-driven talent in technical institutions. His combined focus on fundamental material behavior and applied welding techniques bridges the gap between theoretical research and industrial application. With a commitment to both scientific advancement and vocational education, his research is aligned with national priorities for high-end manufacturing and skilled labor development, further substantiating his suitability for prestigious research awards.

Research Skills

Dr. Zhiyong Dai possesses a diverse set of research skills that enable him to conduct comprehensive investigations into material behavior and welding technologies. He is adept in high-temperature mechanical testing, microstructural characterization, and metallurgical analysis, including creep testing and tensile strength evaluation of nickel-based alloys. His research utilizes both traditional metallographic methods and advanced analytical techniques to study deformation mechanisms, phase transformation, and grain structure evolution under various processing conditions. He also has practical experience in welding simulation, laser alignment tools, and arc welding systems, contributing to the development of innovative welding materials and methodologies. In addition to his laboratory skills, Dr. Dai is proficient in academic writing and technical reporting, with several Q1 and Q2 journal publications to his credit. He has also led or participated in funded research projects focused on modern apprenticeship systems and industry-academia collaboration. His ability to integrate experimental research with educational innovation showcases his multidisciplinary skill set. Furthermore, he is competent in the use of English for academic purposes, and has passed CET-4, demonstrating his capability to engage in international research communication.

Awards and Honors

Dr. Zhiyong Dai has received multiple recognitions throughout his professional career for both academic and instructional excellence. His awards span individual achievements, team leadership in competitions, and excellence in innovation. Notable honors include a First Prize in the Huludao City Natural Science Academic Achievement Awards in 2017, and a Third Prize for Technical Innovation in Laser Positioning Device Development in 2023. As a mentor, he earned the Instructor Award at the National Nonferrous Metal Vocational College Skills Competition (Aluminum Welding, 2017) and has guided students to success in events such as the “Challenge Cup” Liaoning Province Undergraduate Academic Science and Technology Competition. Additionally, he has received awards for educational guidance and technical paper writing, including third-place honors in faculty skills and student mental health initiatives. His consistent recognition over the years underscores his impact as an educator and researcher. His patent contributions on novel welding alloys and preparation methods also demonstrate his commitment to technological advancement. These achievements reflect his ability to balance academic rigor with applied technical expertise, making him a distinguished candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Zhiyong Dai exemplifies the qualities of an outstanding researcher and educator in the field of materials science and engineering. His academic journey reflects a steady progression through increasingly specialized fields, culminating in high-impact research on high-temperature alloy performance and innovative welding technologies. With a strong portfolio of journal publications, patents, and successful research projects, he has demonstrated both depth and breadth in his scholarly contributions. Moreover, his extensive teaching experience and active involvement in student mentorship and academic competitions highlight his dedication to educational excellence. Dr. Dai’s work bridges the critical gap between theoretical material behavior and real-world industrial applications, aligning well with national goals for technological advancement and skilled workforce development. His recognition at local and national levels further attests to his professional competence and academic influence. Considering his contributions to scientific research, education, and innovation, Dr. Dai stands out as a compelling nominee for the Best Researcher Award. He has not only advanced the frontiers of his field but has also inspired the next generation of technical experts, making him a worthy recipient of this honor.

Publication Top Notes

  1. Study on creep properties and deformation mechanisms of novel nickel-based deposited metal
    Authors: Zhiyong Dai, Rongchun Wan, Yunhai Su, Yingdi Wang
    Journal: Advanced Engineering Materials
    Date: 2025-04-22
    DOI: 10.1002/adem.202500182
    Type: Journal Article

  2. Study on the tensile properties and deformation mechanism of high-temperature resistant nitrogen-containing nickel-based welding material deposited metal
    Authors: Zhiyong Dai, Yunhai Su, Yingdi Wang, Taisen Yang, Xuewei Liang
    Journal: Materials Science and Engineering: A
    Date: 2024-06
    DOI: 10.1016/j.msea.2024.146671
    Type: Journal Article

  3. Study of corrosion behavior of Inconel 625 cladding metal in KCl–MgCl₂ molten salt under isothermal and thermal cycling conditions
    Authors: Taisen Yang, Guiqing Zhang, Zhiyong Dai, Xuewei Liang, Yingdi Wang, Yunhai Su
    Journal: Journal of Materials Science
    Date: 2023-08
    DOI: 10.1007/s10853-023-08823-7
    Type: Journal Article

 

Kun Lan | Materials Science | Best Researcher Award

Prof. Kun Lan | Materials Science | Best Researcher Award

Professor From Inner Mongolia University, China

Dr. Kun Lan is currently a Principal Investigator at the College of Energy Materials and Chemistry, Inner Mongolia University. With a research focus on crystalline mesoporous materials, Dr. Lan has contributed significantly to the field of materials chemistry, authoring over 70 peer-reviewed publications in top-tier journals such as Nature Chemistry, JACS, and Advanced Materials. His academic journey spans esteemed institutions including Lanzhou University, Fudan University, and the University of California, Riverside. His interdisciplinary work bridges chemistry, nanotechnology, and renewable energy applications. As head of the K Lab, he leads a team developing novel mesostructures with relevance to sustainable technologies and energy storage. Dr. Lan has earned multiple national and institutional recognitions for his research excellence, including the National Natural Science Foundation of China grants and the BTR New-Energy Scientific Contest Award. He is also an active member of the scientific community, serving on editorial boards and peer-review panels for international journals. Known for his strong mentorship, innovative approaches to porous material synthesis, and his deep engagement in academic collaboration, Dr. Lan is committed to advancing the frontiers of energy material science through both fundamental discoveries and practical innovations.

Professional Profile

Education

Dr. Kun Lan’s academic path began at Lanzhou University, where he earned his Bachelor of Science in Chemistry in 2013. During his undergraduate years, he developed a foundational understanding of chemical synthesis and material characterization, which sparked his lasting interest in functional materials. Motivated by his growing curiosity, Dr. Lan pursued his Ph.D. in Chemistry at Fudan University under the mentorship of Prof. Dongyuan Zhao, a globally recognized authority in mesoporous materials. He earned his doctorate in 2020, producing a highly cited body of work focused on the design and synthesis of crystalline mesostructures. His Ph.D. research addressed challenges in structural precision and functional integration in porous materials, contributing significantly to the understanding of mesophase control. In 2018–2019, he was a visiting doctoral student at the University of California, Riverside, where he expanded his research scope through international collaboration and exposure to cutting-edge laboratory techniques. These formative academic experiences equipped Dr. Lan with a robust scientific foundation and a global perspective, both of which continue to inform his research direction. His education has been instrumental in developing the skills and mindset necessary for tackling pressing challenges in materials chemistry and renewable technologies.

Professional Experience

Dr. Kun Lan’s professional journey is marked by a steady progression through prestigious academic and research institutions. From 2018 to 2019, he undertook a visiting research appointment at the University of California, Riverside, where he enhanced his understanding of nanomaterial assembly and characterization in an international setting. Following the completion of his Ph.D. in 2020, Dr. Lan served as a Postdoctoral Fellow at Fudan University, where he worked closely with Prof. Dongyuan Zhao. During this time, he deepened his expertise in the controlled synthesis of mesoporous materials and published extensively in high-impact journals. In June 2022, Dr. Lan joined the College of Energy Materials and Chemistry at Inner Mongolia University as a Principal Investigator, where he established the K Lab. As a PI, he leads interdisciplinary research focused on mesostructure design for energy-related applications. He mentors graduate and undergraduate students, secures competitive research funding, and actively contributes to the academic community through collaborations, peer reviews, and conference presentations. His leadership has propelled K Lab into a dynamic research environment known for innovation and academic rigor. Dr. Lan’s career reflects a dedication to scientific excellence, international collaboration, and the development of next-generation researchers in energy materials science.

Research Interests

Dr. Kun Lan’s research lies at the intersection of materials chemistry and sustainable technology, with a focus on the precision synthesis of crystalline mesoporous materials. He is particularly interested in controlling the atomic and mesostructural architecture of porous systems to enhance their performance in catalysis, energy storage, and separation technologies. His work explores the fundamental principles of assembly chemistry, aiming to understand and manipulate the self-organization of building blocks into ordered frameworks. A key objective of his research is to design novel mesostructures with high surface area, tunable porosity, and tailored functionality for renewable technology applications. These include advanced batteries, supercapacitors, and carbon capture materials. Dr. Lan is also committed to developing scalable synthetic routes that bridge the gap between laboratory innovation and industrial relevance. His interdisciplinary approach integrates concepts from solid-state chemistry, colloidal science, and nanotechnology, and often involves collaboration across chemistry, physics, and engineering domains. By addressing critical energy and environmental challenges through materials design, Dr. Lan’s research contributes to the development of sustainable technologies and green manufacturing processes. His work continues to push the boundaries of what is possible in the rational design of hierarchical and hybrid porous materials.

Research Skills

Dr. Kun Lan possesses a comprehensive skill set that spans advanced synthesis, structural characterization, and application testing of functional materials. He is an expert in templating strategies for constructing crystalline mesoporous materials, with extensive experience in sol–gel chemistry, surfactant-assisted assembly, and confined space synthesis. His lab proficiency includes a wide range of material characterization techniques, such as small-angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), N₂ adsorption-desorption isotherms, and solid-state NMR, enabling him to thoroughly investigate structural and textural properties. Dr. Lan is adept at using advanced software tools for 3D structural modeling and diffraction analysis, as well as programming for data processing. He also has hands-on experience in electrochemical testing for batteries and supercapacitors, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements. In addition, Dr. Lan is skilled in project management, grant writing, and academic publishing, with over 70 peer-reviewed articles. He regularly collaborates with national and international research teams, and actively mentors graduate students, contributing to capacity building in materials research. His broad technical and leadership capabilities support the successful execution of interdisciplinary projects targeting energy, environmental, and catalytic applications.

Awards and Honors

Dr. Kun Lan has received numerous awards in recognition of his academic excellence and contributions to materials chemistry. His accolades began with the prestigious CSC State Scholarship Fund and the Tongji-Clearon Outstanding Academician Award in 2018. In 2019, he was honored with the Baosteel Excellent Student Award, followed by the title of Outstanding Graduate of Fudan University in 2020. His postdoctoral research earned him further distinction, including the 3rd Fudan Postdoctoral Venture Competition Award and the 1st BTR New-Energy Scientific Contest Award in 2021. In the same year, he won the Nano Research Oral Prize at the 21st Chinese Zeolite Conference and was recognized with the Excellent Doctoral Thesis Award by Fudan University in 2023. Dr. Lan has secured competitive funding from national and provincial bodies, such as the Fudan Super Postdoctoral Program, the 67th China Postdoctoral Science Foundation, and the National Natural Science Foundation of China (NSFC). He is also supported by regional talent programs including the “Junma” Program and the Grassland Talent Program. His leadership potential has been further recognized through appointments to editorial boards and invitations to review for top-tier journals like Angewandte Chemie, Advanced Materials, and Nature Protocols.

Conclusion

Dr. Kun Lan stands at the forefront of research in mesoporous materials and their applications in renewable energy technologies. With a robust academic background, diverse international experience, and a consistent record of impactful publications, he has established himself as a dynamic and influential scientist. Through the K Lab at Inner Mongolia University, Dr. Lan continues to pursue groundbreaking work in materials chemistry, fostering innovation and collaboration across disciplines. His efforts in mentorship and scientific outreach have inspired a new generation of researchers. The breadth of his research—from fundamental studies in self-assembly to practical solutions for energy storage—demonstrates his commitment to addressing global challenges through chemistry. His extensive publication record, awards, and ongoing participation in national research programs reflect a strong and growing impact in the field. As an educator, collaborator, and innovator, Dr. Kun Lan embodies the qualities of a future scientific leader in sustainable materials research. His continued work promises to deliver valuable insights and technologies that will shape the future of energy and materials science.

Publications Top Notes

  1. Metal-based mesoporous frameworks as high-performance platforms in energy storage and conversion
    Authors: Rongyao Li, Xu Wen, Yuqi Zhao, Sicheng Fan, Qiulong Wei, Kun Lan
    Year: 2025

  2. DFT-Guided Design of Dual Dopants in Anatase TiO2 for Boosted Sodium Storage
    Authors: Shuang Li, Xu Wen, Xin Miao, Rongyao Li, Wendi Wang, Xiaoyu Li, Ziyang Guo, Dongyuan Zhao, Kun Lan
    Year: 2024

  3. Conversion of Z-Scheme to type-II in dual-defective V2O5/C3N4 heterostructure for durable hydrogen evolution
    Authors: Jingyu Zhang, Jialong Li, Jinwei He, Yalin He, Zelin Wang, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2024

  4. Lanthanum-Integrated Porous Adsorbent for Effective Phosphorus Removal
    Authors: Yalin He, Xingyue Qi, Jialong Li, Wendi Wang, Jingyu Zhang, Lanhao Yang, Mei Xue, Kun Lan
    Year: 2024

  5. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications
    Authors: Jialong Li, Rongyao Li, Wendi Wang, Kun Lan, Dongyuan Zhao
    Year: 2024

  6. Intrinsic Surface-Redox Sodium-Ion Storage Mechanism of Anatase Titanium Oxide toward High-Rate Capability
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  7. Nanodroplet Remodeling Strategy for Synthesis of Hierarchical Multi-chambered Mesoporous Silica Nanoparticles
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  8. Construction of Type-II Heterojunctions in Crystalline Carbon Nitride for Efficient Photocatalytic H2 Evolution
    Authors: Jingyu Zhang, Zhongliang Li, Jialong Li, Yalin He, Haojie Tong, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2023

  9. Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO2 Membranes with Precisely Tailored Mesophase and Porosity
    Authors: Kun Lan, Lu Liu, Jiayu Yu, Yuzhu Ma, Jun-Ye Zhang, Zirui Lv, Sixing Yin, Qiulong Wei, Dongyuan Zhao
    Year: 2023

  10. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly
    Authors: Kun Lan
    Year: 2022

  11. Synthesis of Ni/NiO@MoO3-x Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction
    Authors: Kun Lan
    Year: 2022

  12. Versatile Synthesis of Mesoporous Crystalline TiO2 Materials by Monomicelle Assembly
    Authors: Kun Lan
    Year: 2022

  13. Modular super-assembly of hierarchical superstructures from monomicelle building blocks
    Authors: Kun Lan
    Year: 2022

  14. Functional Ordered Mesoporous Materials: Present and Future
    Authors: Kun Lan
    Year: 2022

  15. Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance
    Authors: Kun Lan
    Year: 2021

  16. Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors
    Authors: Kun Lan
    Year: 2021

  17. General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles
    Authors: Kun Lan
    Year: 2021

  18. Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing
    Authors: Kun Lan
    Year: 2021

  19. Surface-Confined Winding Assembly of Mesoporous Nanorods
    Authors: Kun Lan
    Year: 2020

  20. Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric
    Authors: Kun Lan
    Year: 2020

  21. Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis
    Authors: Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao
    Year: 2020

  22. Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis
    Authors: Kun Lan
    Year: 2020

  23. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting
    Authors: Kun Lan
    Year: 2019

  24. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production
    Authors: Kun Lan
    Year: 2019

  25. Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection
    Authors: Kun Lan
    Yar: 2019

  26. Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly
    Authors: Kun Lan
    Year: 2019

  27. Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores
    Authors: Kun Lan
    Year: 2019

  28. Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation
    Authors: Kun Lan
    Year: 2019

  29. Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals
    Authors: Kun Lan
    Year: 2018

  30. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures
    Authors: Kun Lan
    Year: 2018

  31. Mesoporous TiO2 /TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
    Authors: Kun Lan
    Year: 2018

  32. Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly
    Authors: Kun Lan, Yao Liu, Wei Zhang, Yong Liu, Ahmed Elzatahry, Ruicong Wang, Yongyao Xia, Dhaifallah Al-Dhayan, Nanfeng Zheng, Dongyuan Zhao
    Year: 2018

  33. Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls
    Authors: Yong Liu, Kun Lan, Shushuang Li, Yongmei Liu, Biao Kong, Geng Wang, Pengfei Zhang, Ruicong Wang, Haili He, Yun Ling, et al.
    Year: 2016

  34. Template synthesis of metal tungsten nanowire bundles with high field electron emission performance
    Authors: Yong Liu, Kun Lan, Mahir H. Es-Saheb, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2016

  35. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery
    Authors: Kun Lan
    Year: 2016

  36. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion
    Authors: Yong Liu, Kun Lan, Abdulaziz A. Bagabas, Pengfei Zhang, Wenjun Gao, Jingxiu Wang, Zhenkun Sun, Jianwei Fan, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2015

  37. Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals
    Authors: Yong Liu, Yongfeng Luo, Ahmed A. Elzatahry, Wei Luo, Renchao Che, Jianwei Fan, Kun Lan, Abdullah M. Al-Enizi, Zhenkun Sun, Bin Li, et al.
    Year: 2015

Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025