Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Sandeep Belidhe | Engineering | Best Innovation Award

Mr. Sandeep Belidhe | Engineering | Best Innovation Award

DevSecOps Engineer at Sparksoft Corp, United States

Sandeep Belidhe is a highly experienced IT professional with over 10.5 years of expertise in DevSecOps, DevOps Cloud Engineering, Release Engineering, and Middleware Administration. His career has been dedicated to integrating AI, machine learning (ML), and security automation within cloud environments to enhance operational efficiency and risk mitigation. Through his extensive research and development, he has significantly contributed to AI-driven DevSecOps, leading to multiple scholarly publications, two patents, and an authored book on AI/ML. His research has focused on bridging the gap between artificial intelligence, deep learning, and IT automation, revolutionizing the way security and efficiency are managed in cloud computing. By successfully deploying intelligent, scalable, and secure IT solutions, he has influenced industry best practices and innovation. Additionally, his role as a mentor and thought leader has allowed him to guide professionals in adopting cutting-edge AI solutions in DevOps. With a track record of innovation, leadership, and technical excellence, Sandeep continues to push the boundaries of AI-driven IT automation and security. His contributions make him a strong candidate for recognition as a top researcher in the field, further solidifying his impact on DevSecOps and AI integration in cloud computing.

Professional Profile

Education

Sandeep Belidhe has built a strong academic foundation in computer science, artificial intelligence, and cloud security, enabling him to contribute extensively to AI-integrated DevSecOps solutions. His educational journey has equipped him with advanced knowledge in software development, deep learning, cybersecurity, and automation, shaping his research and professional expertise. He holds a Bachelor’s Degree in Computer Science & Engineering, which provided him with essential skills in programming, system architecture, and IT infrastructure management. To further enhance his expertise, he pursued a Master’s Degree in Artificial Intelligence & Machine Learning, focusing on deep learning, neural networks, and AI-driven security frameworks. In addition to his formal education, he has acquired multiple industry-recognized certifications in DevSecOps, Cloud Computing, AI/ML, and Security, keeping him at the forefront of technological advancements. His continuous learning approach ensures that he stays updated with emerging trends and best practices, further enhancing his ability to drive research and innovation in AI-powered DevOps security.

Professional Experience

Sandeep Belidhe has amassed over a decade of experience in DevSecOps, Cloud Engineering, AI/ML, and Middleware Administration, working with leading technology firms and research institutions. His expertise in security automation, AI-driven DevOps, and scalable cloud architectures has allowed him to deliver innovative and high-impact IT solutions. Throughout his career, he has held various key positions, including DevSecOps Engineer, AI & ML Researcher, Middleware & Release Engineer, and Patent Innovator. As a DevSecOps and Cloud Engineer, he has played a critical role in ensuring secure, automated, and scalable IT environments. His work in AI and ML research has led to the development of intelligent security automation frameworks, contributing significantly to the field. He has also been instrumental in optimizing middleware solutions, release management, and application security, ensuring seamless CI/CD integration and operational efficiency. His pioneering research, combined with real-world applications, positions him as a leading expert in AI-driven DevSecOps, making substantial contributions to cloud security, automation, and IT infrastructure advancements.

Research Interest

Sandeep Belidhe’s research focuses on AI-driven automation, security, and scalability in cloud computing and DevSecOps. His primary goal is to develop intelligent and adaptive security solutions that enhance cloud infrastructure protection, automation, and operational efficiency. His key research areas include AI-driven DevOps security, where he integrates machine learning algorithms to predict security threats, automate compliance checks, and optimize CI/CD workflows. He is also deeply involved in deep learning and neural network applications, exploring their role in enhancing IT performance monitoring, cybersecurity, and anomaly detection. Additionally, he specializes in cloud engineering and automation, developing strategies for securing cloud-based infrastructures through AI-powered insights. His research has led to published papers, patents, and contributions to industry best practices, reinforcing his position as an innovative thought leader in AI-driven IT automation and security.

Research Skills

Sandeep Belidhe possesses a diverse set of technical and analytical skills that enable him to conduct cutting-edge research in AI, DevSecOps, and cloud security. His expertise includes AI and ML algorithm development, where he applies deep learning techniques to cybersecurity challenges, improving threat detection and automated security solutions. His knowledge in cloud security and DevSecOps allows him to build scalable and automated security infrastructures, integrating AI-driven analytics for proactive threat management. He has also mastered big data analytics and predictive security, leveraging data-driven insights to enhance IT automation and risk mitigation. Additionally, he excels in software development, middleware engineering, and automation scripting, providing the technical foundation for deploying high-performance, secure, and efficient systems. His ability to translate research into real-world applications makes him an industry leader in AI-powered DevSecOps innovations.

Awards and Honors

Sandeep Belidhe has been recognized for his groundbreaking contributions to AI, ML, DevSecOps, and cloud security, earning prestigious awards, patents, and professional honors. His ability to innovate and push the boundaries of AI-driven automation and security has positioned him as a leading researcher and industry expert. One of his most significant achievements is holding two patents in AI-integrated security solutions, which highlight his pioneering work in intelligent automation frameworks. Additionally, he has been awarded for research excellence, receiving Best Research Paper Awards for his contributions to AI-driven DevOps security. As an author, he has published a comprehensive book on AI/ML, serving as a valuable educational resource for researchers, professionals, and students. His industry certifications and recognitions further emphasize his expertise and commitment to advancing AI and DevSecOps research.

Conclusion

Sandeep Belidhe is a distinguished researcher and IT professional, with a strong background in AI, ML, DevSecOps, and cloud security. His 10.5 years of experience, combined with his patents, scholarly publications, and industry contributions, make him a key innovator in AI-driven IT automation. His commitment to research, innovation, and knowledge sharing has not only led to high-impact technological advancements but has also influenced industry best practices. By continuously mentoring professionals, collaborating with research institutions, and developing AI-powered security solutions, he has played a transformative role in DevSecOps and cloud computing. Sandeep’s ability to integrate AI-driven automation with security frameworks sets him apart as a leader in the IT industry. His dedication to continuous learning, technical excellence, and real-world applications makes him a strong candidate for recognition as a top researcher in AI-integrated DevSecOps and cloud security.

Publications Top Notes

  1. Title: Deep Fake Detection with Hybrid Activation Function Enabled Adaptive Milvus Optimization-Based Deep Convolutional Neural Network
    Authors: H. Mashetty, N. Erukulla, S. Belidhe, N. Jella, V. Reddy Pishati, B.K. Enesheti
    Year: 2025

  2. Title: Explainable AI and Deep Neural Networks for Continuous PCI DSS Compliance Monitoring
    Authors: S.K.D. Sandeep Belidhe, Phani Monogya Katikireddi
    Year: 2024

  3. Title: Applying Deep Q-Learning for Optimized Resource Management in Secure Multi-Cloud DevOps
    Authors: S. Belidhe
    Year: 2022

  4. Title: AI-Driven Governance for DevOps Compliance
    Authors: S. Belidhe
    Year: 2022

  5. Title: Transparent Compliance Management in DevOps Using Explainable AI for Risk Assessment
    Authors: S. Belidhe
    Year: 2022

  6. Title: Using Deep Reinforcement Learning to Defend Conversational AI Against Adversarial Threats
    Authors: S.K.D. Phani Monogya Katikireddi, Sandeep Belidhe
    Year: 2021

  7. Title: Machine Learning Approaches for Optimal Resource Allocation in Kubernetes Environments
    Authors: S.B. Sandeep Kumar Dasa, Phani Monogya Katikireddi
    Year: 2021

  8. Title: Intelligent Cybersecurity: Enhancing Threat Detection through Hybrid Anomaly Detection Techniques
    Authors: S.B. Phani Monogya Katikireddi, Sandeep Kumar Dasa
    Year: 2021

  9. Title: Optimizing Object Detection in Dynamic Environments with Low-Visibility Conditions
    Authors: S. Belidhe, S.K. Dasa, S. Jaini

Jian-gang Guo | Materials Science | Best Researcher Award

Prof. Dr. Jian-gang Guo | Materials Science | Best Researcher Award

Professor at Institute of Physics Chinese Academy of Sciences: Chinese Academy of Sciences Institute of Physics, China

Jian-gang Guo is a renowned physicist specializing in condensed matter physics, particularly in superconductivity and magnetic materials. He is a Full Professor at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS). His research has significantly contributed to understanding strongly electron-correlated systems, with a focus on superconducting materials. One of his most notable achievements is the discovery of KxFe2Se2 high-temperature superconductors, which opened a new research field and gained worldwide recognition. He has published 118 papers in prestigious journals such as Nature, Nature Chemistry, Nature Communications, and Physical Review Letters. His work has had a profound impact on materials science and has inspired extensive global research. Additionally, he has successfully developed cubic silicon carbide (SiC) single crystals applicable for mass production. His contributions have earned him several prestigious awards, including the Second Prize of the State Natural Science Award of China. With international experience from institutions such as Rice University and the Tokyo Institute of Technology, he has established himself as a leader in superconductivity research. His innovative discoveries, extensive publication record, and international collaborations position him as a highly influential figure in modern condensed matter physics.

Professional Profile

Education

Jian-gang Guo has an extensive academic background in condensed matter and solid-state physics. He earned his Ph.D. in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP, CAS) in 2011. His doctoral research focused on the properties of electron-correlated materials, particularly superconductors. Prior to his Ph.D., he completed an M.S. in Condensed Matter Physics in 2008 at the State Key Laboratory of Superhard Materials, Jilin University, China. During his master’s studies, he gained expertise in high-pressure physics and material synthesis techniques. He obtained his B.S. in Solid-State Physics from the Department of Physics, Jilin University, in 2005. His undergraduate studies laid the foundation for his later work in electronic materials and crystallography. Throughout his academic journey, he has developed a strong theoretical and experimental background in superconductivity, transport properties, and magnetic interactions. His education at top institutions in China provided him with a solid platform to contribute significantly to the field of condensed matter physics. His ability to integrate fundamental physics with experimental discoveries has made him a key figure in the study of superconducting and magnetic materials.

Professional Experience

Jian-gang Guo has held several prominent academic and research positions in leading institutions worldwide. He is currently a Full Professor at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS), a position he has held since September 2020. Before that, he was an Associate Professor at IOP, CAS, from 2016 to 2020, contributing to advancements in superconductivity and quantum materials. From 2014 to 2016, he was an ICAM Postdoctoral Fellow at the Department of Physics & Astronomy at Rice University, working in Prof. Pengcheng Dai’s group on neutron diffraction studies of magnetic materials. Between 2011 and 2014, he worked as a Postdoctoral Researcher at the Frontier Research Center, Tokyo Institute of Technology, under Prof. Hideo Hosono, where he expanded his expertise in novel superconducting materials. His career has been marked by international collaborations, interdisciplinary research, and groundbreaking discoveries in the field of condensed matter physics. His professional experience has allowed him to develop a strong research network and contribute significantly to both experimental and theoretical advancements in strongly correlated electronic systems.

Research Interests

Jian-gang Guo’s research primarily focuses on the physical properties of strongly electron-correlated systems, including superconductors and magnetic materials. His work involves techniques such as x-ray and neutron diffraction, low-temperature transport measurements, and theoretical modeling. He is particularly interested in exploring the relationship between crystallographic structures and electronic properties in new functional materials. One of his most significant contributions is the discovery of KxFe2Se2 high-temperature superconductors, which led to the development of a new class of alkali-metal intercalated FeSe superconductors. His research has also extended to the growth of bulk cubic silicon carbide (SiC) single crystals using high-temperature solution methods, making them suitable for industrial applications. His interests further include studying charge density waves, metal-insulator transitions, and novel quantum materials. By combining experimental and theoretical approaches, he aims to develop new materials with unique electronic and magnetic properties. His work continues to drive advancements in fundamental physics while also providing potential applications in energy storage, quantum computing, and semiconductor industries.

Research Skills

Jian-gang Guo possesses a diverse set of research skills that enable him to make significant contributions to condensed matter physics. His expertise includes x-ray and neutron diffraction techniques, which he utilizes to investigate the structural and electronic properties of superconductors and magnetic materials. He is skilled in low-temperature transport measurements, allowing him to analyze the electrical and thermal behavior of materials under extreme conditions. His experience in growing high-quality single crystals, including superconducting and semiconducting materials, has been instrumental in developing new materials for both fundamental and applied research. Additionally, he has a strong background in theoretical calculations, enabling him to model electronic structures and magnetic interactions in complex systems. His ability to integrate experimental and computational methods has allowed him to uncover new physical phenomena in strongly correlated materials. Furthermore, his experience with high-pressure synthesis techniques has contributed to the discovery of novel superconducting and magnetic materials. His research skills have been critical in advancing knowledge in condensed matter physics and developing materials with real-world applications.

Awards and Honors

Jian-gang Guo has received several prestigious awards in recognition of his outstanding contributions to condensed matter physics. In 2020, he was awarded the Second Prize of the State Natural Science Award of the People’s Republic of China, one of the highest honors for scientific research in the country. This award recognized his pioneering work on alkali-metal intercalated FeSe superconductors. In 2022, he received the Second Prize of the Beijing Municipal Natural Science Prize, highlighting his impact on superconductivity research. Additionally, he was honored with the CAS Science and Technology Promotion Development Award in 2021 for his contributions to material synthesis and characterization. His research has been widely acknowledged, with his work on high-temperature superconductors being selected as a Milestone Paper for the 50th Anniversary of Physical Review B. These accolades reflect his significant influence on the scientific community and his role in advancing the understanding of strongly correlated electron systems. His continued contributions to superconductivity and novel materials research further solidify his reputation as a leading figure in his field.

Conclusion

Jian-gang Guo is a distinguished researcher whose work has had a transformative impact on condensed matter physics. His discovery of KxFe2Se2 high-temperature superconductors has influenced global research, inspiring over 300 teams worldwide. With 118 publications in top-tier journals and numerous prestigious awards, he has established himself as a leader in superconductivity and materials science. His ability to integrate experimental and theoretical approaches has led to the discovery of novel quantum materials and superconducting compounds. His contributions extend beyond fundamental research, as demonstrated by his work on silicon carbide single crystals, which have industrial applications. His extensive international collaborations, research skills, and ability to mentor young scientists further strengthen his profile. While his work has already made significant contributions to physics, expanding interdisciplinary research into quantum computing, energy materials, and industrial partnerships could further enhance his influence. His achievements, dedication, and pioneering discoveries make him a strong candidate for the Best Researcher Award. His continued research is expected to shape the future of superconductivity, quantum materials, and electronic devices for years to come.

Publications Top Notes

  1. Modeling and Suppressing Interfacial Instability in Growth of SiC from High-Temperature Solutions

    • Authors: Sheng Da, Wang Guobin, Yang Yunfan, Wang Wenjun, Chen Xiaolong
    • Year: 2025
  2. Size-Effect Enriched Phase Diagram in p-Type Skutterudite Superconductor Ir₃.₈Sb₁₂

    • Authors: Wang Junjie, Liu Xu, Pei Cuiying, Guo Jianggang, Ying Tianping
    • Year: 2025
  3. Intermediately Coupled Type-II Superconductivity in a La-Based Kagome Metal La₃Al

    • Authors: Yu Yingpeng, Liu Zhaolong, Chen Zhaoxu, Guo Jianggang, Jin Shifeng
    • Year: 2025
    • Citations: 1
  4. Dynamic-to-Static Switch of Hydrogen Bonds Induces a Metal–Insulator Transition in an Organic–Inorganic Superlattice

    • Authors: Xie Zhenkai, Luo Rui, Ying Tianping, Guo Jianggang, Chen Xiaolong
    • Year: 2024
    • Citations: 6
  5. Antiferromagnetic Frustration Behavior with Face-Sharing CuAs₄ Tetrahedrons in Conducting ACu₆As₃ (A = Li and Na)

    • Authors: Yang Yuxin, Chen Zhaoxu, Liu Xu, Chen Xu, Guo Jianggang
    • Year: 2024
  6. Evidence of a Hydrated Mineral Enriched in Water and Ammonium Molecules in the Chang’e-5 Lunar Sample

    • Authors: Jin Shifeng, Hao Munan, Guo Zhongnan, Guo Jianggang, Chen Xiaolong
    • Year: 2024
    • Citations: 6
  7. Quantum-Confined Tunable Ferromagnetism on the Surface of a Van der Waals Antiferromagnet NaCrTe₂

    • Authors: Li Yidian, Du Xian, Wang Junjie, Chen Yulin, Yang Lexian
    • Year: 2024
  8. Superconductivity in Pressurized Trilayer La₄Ni₃O₁₀−δ Single Crystals

    • Authors: Zhu Yinghao, Peng Di, Zhang Enkang, Guo Jianggang, Zhao Jun
    • Year: 2024
    • Citations: 41
  9. Influence of Dimensionality on Superconductivity in Pressurized 3D SnPSe₃ Single Crystal

    • Authors: Wang Junjie, Liu Xu, Zhang Ling, Guo Jianggang, Ying Tianping
    • Year: 2024
  10. High-Quality and Wafer-Scale Cubic Silicon Carbide Single Crystals

  • Authors: Wang Guobin, Sheng Da, Yang Yunfan, Guo Jianggang, Chen Xiaolong
  • Year: 2024
  • Citations: 10

Gregorio Gonzalez | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Gregorio Gonzalez | Materials Science | Best Researcher Award

Associate Professor at ITSM, Mexico

Dr. Gregorio Gonzalez Zamarripa is an accomplished researcher and Associate Professor at Tecnológico Nacional de México, Instituto Tecnológico Superior de Monclova. With a PhD in Materials Science from Saltillo Institute of Technology (2011), he specializes in hydrometallurgy, waste recovery, and advanced material processing. His career spans over 46 years in basic sciences and engineering, focusing on metal recovery from industrial by-products and developing innovative environmental solutions. Dr. Zamarripa is a member of the National System of Researchers (SNI) since 2013 and serves as a consultant for Recicladora Limon de Monclova, applying his expertise in metallurgy. He has published 18 research papers in JCR and Scopus journals and holds two patents related to metal extraction and industrial waste recycling. His work extends to mentoring graduate students and contributing to the scientific community through editorial roles and thesis evaluations. With a strong commitment to sustainable practices and technological innovation, Dr. Zamarripa’s research significantly impacts both academic and industrial fields. His dedication to advancing materials science and his continuous contributions to industrial innovation make him a distinguished candidate for the Best Scholar Award in Research.

Professional Profile

Education

Dr. Gregorio Gonzalez Zamarripa holds a PhD in Materials Science from Saltillo Institute of Technology, which he earned in 2011. His doctoral research focused on hydrometallurgical processes for the recovery of precious metals, earning him the Best Doctoral Thesis Award from the General Direction in Higher Technological Education (DGEST), Mexico. In addition to his PhD, he pursued advanced graduate coursework in Metallic Materials and Materials Science Engineering at Instituto Tecnológico Superior de Monclova (ITSM) between 2018 and 2024. Dr. Zamarripa’s academic journey is marked by a deep focus on applied material sciences, with expertise in developing sustainable methods for metal extraction and wastewater treatment. His educational background combines both theoretical knowledge and practical applications, bridging the gap between scientific research and industrial needs. Over his career, he has expanded his knowledge in areas such as pyrolysis, nanocomposites, and metallurgical waste recycling, reflecting his continuous pursuit of scientific excellence and technological innovation. His education forms the foundation for his multidisciplinary research and his significant contributions to the fields of materials engineering and environmental sustainability.

Professional Experience

Dr. Gregorio Gonzalez Zamarripa currently serves as an Associate Professor at Tecnológico Nacional de México, Instituto Tecnológico Superior de Monclova, where he has been contributing since 2011. His professional journey encompasses 46 years of experience in basic sciences and engineering, with a specific focus on materials recovery from industrial by-products. As a researcher in hydrometallurgy, he leads projects on metal extraction, waste management, and the development of nanomaterials. Beyond academia, he actively collaborates with Recicladora Limon de Monclova as a consultant, offering expertise in metallurgical processes and waste valorization. Dr. Zamarripa also mentors graduate students in mechanical engineering and renewable energy, contributing to the development of the next generation of researchers. His editorial roles include serving as a JCR reviewer for the Hydrometallurgy journal and acting as a CONACYT evaluator. He also participates as an external thesis reviewer for doctoral candidates at Saltillo Institute of Technology. His combined academic and industrial experiences position him as a leading expert in the fields of metal recovery, sustainable technology, and advanced materials science, making him a valuable asset to both the scientific community and industrial partners.

Research Interests

Dr. Gregorio Gonzalez Zamarripa’s research interests center on hydrometallurgy, wastewater treatment, and advanced material recovery. His work emphasizes developing sustainable techniques for metal extraction from industrial residues, particularly focusing on gold, silver, and other precious metals. He is also interested in pyrolysis, exploring innovative methods to convert plastic waste into hydrocarbons, addressing both environmental and industrial challenges. Another key area of interest is the development of graphene-based nanocomposites for antibacterial applications, which has potential implications for healthcare and environmental safety. His recent projects include the removal of heavy metals from wastewater and the creation of magnetic precursor powders from strontium-contaminated water. Dr. Zamarripa is also engaged in waste valorization, focusing on transforming industrial by-products into valuable materials. His multidisciplinary research reflects a commitment to technological innovation, sustainability, and practical solutions to industrial challenges. Through ongoing collaborations with academic and industrial partners, he continues to explore new frontiers in materials science, with a focus on delivering real-world applications that bridge scientific research and industrial implementation.

Research Skills

Dr. Gregorio Gonzalez Zamarripa possesses a diverse set of research skills across multiple domains in materials science and environmental engineering. He is highly proficient in hydrometallurgical processes, including the extraction and recovery of precious metals such as gold and silver from industrial waste. His expertise extends to pyrolysis techniques, where he has developed processes to convert plastic waste into hydrocarbons for energy recovery. Additionally, Dr. Zamarripa is skilled in the synthesis of nanomaterials, including graphene-based nanocomposites, for antibacterial and industrial applications. He has hands-on experience in wastewater treatment, specializing in the removal of heavy metals and contaminants from industrial effluents. His technical capabilities also include patent development, with two patents related to metal recovery and industrial waste recycling. As a research mentor, he guides graduate students in advanced materials characterization, analytical techniques, and industrial process optimization. His comprehensive research skills, combined with industry-focused applications, make him a versatile researcher who addresses critical challenges in sustainable technology and environmental innovation.

Awards and Honors

Dr. Gregorio Gonzalez Zamarripa’s distinguished career has been recognized through numerous awards and honors. In 2011, he received the Best Doctoral Thesis Award from General Direction in Higher Technological Education (DGEST), Mexico, for his groundbreaking research in hydrometallurgy. Since 2013, he has been a member of the National System of Researchers (SNI), acknowledging his sustained contributions to scientific research in materials science. His work has also earned him two patents, including a process for strontium removal and an intensive melting furnace for recovering metals from slags, underscoring his innovative approach to industrial challenges. Dr. Zamarripa has further distinguished himself as a CONACYT evaluator and external thesis reviewer at Saltillo Institute of Technology, reflecting his academic leadership and expertise. His 18 publications in JCR and Scopus journals highlight his research excellence and global impact. These accolades reflect his commitment to advancing materials science, sustainable solutions, and technological innovation on both national and international levels.

Conclusion

Dr. Gregorio Gonzalez Zamarripa is an exceptional candidate for the Best Scholar Award in Research, demonstrating outstanding expertise in materials science, hydrometallurgy, and waste recovery. With 46 years of academic and professional experience, 18 publications, and two patents, he has made significant contributions to both scientific knowledge and industrial practice. His work addresses real-world challenges, such as metal recovery, waste valorization, and sustainable processes, making a lasting impact in both academia and industry. His dedication to mentorship, collaboration, and technological innovation makes him an ideal candidate for this prestigious recognition.

Publications Top Notes

  1. Title: “Recovery of fine particles of activated carbon with gold by the electrocoagulation process using a Taguchi experimental design”
  • Authors: Rodrigo Martínez-Peñuñuri, José R. Parga-Torres, Jesús L. Valenzuela-García, Alejandro M. García-Alegría, Gregorio González-Zamarripa
  • Year: 2023

 

Souheyla MAMOUN | Materials Science | Best Researcher Award

Assist. Prof. Dr. Souheyla MAMOUN | Materials Science | Best Researcher Award

Lecturer at Abou Beker BELKAID-Tlemcen University, Algeria

Souheyla Mamoun is a dedicated physicist specializing in materials physics, with extensive experience in academia and research. Since September 2014, following her doctoral training at the University of Lorraine, France, she has served at the Department of Physics, Faculty of Sciences, University Abou-Bakr Belkaid, Tlemcen. Her teaching, mentoring, and leadership roles reflect her passion for education and scientific advancement. With expertise in computational physics, renewable energy, and materials science, she has contributed significantly to her field, mentoring students and collaborating on impactful projects. Souheyla’s dedication to fostering academic excellence is evident through her active involvement in university life, teaching innovative courses, and authoring educational materials. She remains a vital contributor to the advancement of renewable energy research and physics education.

Professional Profile

Education

Souheyla Mamoun holds a Ph.D. in Physics of Materials from the University of Lorraine, Metz, France, completed before September 2014. Her doctoral research emphasized advanced materials and their applications, laying the foundation for her expertise in computational and renewable energy physics. She also holds a Master’s degree with a focus on photovoltaic systems and renewable energy, culminating in a published work on photovoltaic installations for isolated sites. Her strong educational background underscores her technical proficiency and dedication to scientific innovation.

Professional Experience

Souheyla Mamoun has been a faculty member at the University Abou-Bakr Belkaid since 2014, advancing to the role of Maître de Conférence B in 2015. Her teaching portfolio spans a wide range of physics courses, including electromagnetism, vibrations, and computational physics. She has supervised Master’s theses on topics like perovskite solar cells, photovoltaic systems, and nanocrystals, mentoring future researchers. Beyond teaching, Souheyla has served in leadership roles, such as President of the Pedagogical Coordination Committee and Coordinator of the Physics License program. Her contributions extend to organizing doctoral entrance exams and actively participating in educational and research committees, demonstrating her commitment to academic leadership.

Research Interests

Souheyla’s research interests lie at the intersection of computational physics, materials science, and renewable energy. Her focus includes numerical modeling of photovoltaic systems, study of nanostructures, and the impact of temperature on perovskite-based solar cells. She is also interested in hybrid organic-inorganic materials and their applications in advanced energy systems. Her research aims to optimize the efficiency and sustainability of renewable energy systems through innovative materials and computational techniques, contributing to the global transition toward greener technologies.

Research Skills

Souheyla Mamoun possesses a strong skill set in computational physics, numerical modeling, and renewable energy systems analysis. She is proficient in designing and evaluating photovoltaic systems, modeling I-V characteristics, and analyzing nanostructures using advanced computational tools. Her expertise includes preparing educational resources, mentoring research projects, and conducting comprehensive studies on energy materials. Her ability to translate theoretical physics into practical applications demonstrates her technical versatility and commitment to solving real-world energy challenges.

Awards and Honors

Souheyla’s accomplishments include publishing an educational textbook on electromagnetism, validated by the Scientific Council of her faculty in 2021, providing valuable resources to undergraduate students. Additionally, her Master’s thesis was adapted into a published book on photovoltaic systems by the European University Editions in 2013, showcasing her early contributions to renewable energy research. Her leadership roles, such as heading pedagogical committees and coordinating academic programs, further highlight her recognition as a committed educator and researcher.

Conclusion

Souheyla Mamoun is a highly skilled educator, researcher, and academic leader, deeply committed to advancing the field of materials physics and renewable energy. Her contributions to teaching, mentoring, and research reflect her passion for fostering scientific knowledge and innovation. Her expertise in computational physics and sustainable energy systems positions her as a valuable asset to her academic institution and the broader scientific community. With her dedication to excellence and impactful contributions, Souheyla Mamoun is a strong candidate for the Best Researcher Award, deserving recognition for her achievements and potential to drive further advancements in her field.

Publication Top Notes

  1. New eco-friendly Rb2PtI6 based double perovskite solar cells with high photovoltaic performance up to 26% efficiency: Numerical simulation
    • Authors: Mamoun, S., Merad, A.E.
    • Year: 2025
  2. Numerical simulation of highly photovoltaic efficiency of InGaN based solar cells with ZnO as window layer
    • Authors: Annab, N.,
    • Year: 2023
    • Citations:0
  3. Electronic, magnetic and optical properties of Cr and Fe doped ZnS and CdS diluted magnetic semiconductors: revised study within TB-mBJ potential
    • Authors: Ghazal, W., Mamoun, S., Kanoun, M.B., Goumri-Said, S., Merad, A.E.
    • Year: 2023
    • Citations: 5
  4. A Novel Theoretical Prediction of Electronic Structure, Phase Stability, and Half-Metallic Ferromagnetic Behavior of New Quaternary RhFeTiZ (Z = Al, Si) Heusler Alloys
    • Authors: Dergal, S., Doumi, B., Mokaddem, A., Mamoun, S., Merad, A.E.
    • Year: 2016
    • Citations: 5
  5. Energy band gap and optical properties of lithium niobate from ab initio calculations
    • Authors:Mamoun, S.
    • Year: 2013
    • Citations: 67

 

XIYA YANG | Materials Science | Women Researcher Award

Prof. XIYA YANG | Materials Science | Women Researcher Award

Associate Professor at Jinan University, China

Dr. Xiya Yang is an Associate Professor at the Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University. With a solid academic foundation and over a decade of experience in cutting-edge research, she has made significant strides in energy harvesting and self-powered sensing systems. Her work focuses on integrating triboelectric, photovoltaic, and other hybrid effects to address critical challenges in sustainable energy and Internet of Things (IoT) technologies. Dr. Yang has been recognized with numerous prestigious awards and has a robust publication record in high-impact journals, reflecting her dedication and innovation. She is also a passionate educator, mentoring students to achieve excellence in research and competitions. Dr. Yang is committed to advancing interdisciplinary research, fostering innovation, and contributing to the global energy sustainability agenda.

Professional Profile

Education

Dr. Xiya Yang holds a Ph.D. in Materials Science and Engineering from the City University of Hong Kong, which she completed in 2017. Prior to that, she earned a Master’s degree with Distinction in Energy and Environmental Engineering from the same institution in 2013. Her undergraduate studies were completed at Shandong University of Science and Technology, where she graduated as an Outstanding Graduate in Automation Engineering in 2012. This rigorous academic background has provided her with a strong foundation in energy systems and advanced materials, setting the stage for her impactful research career.

Professional Experience

Dr. Yang currently serves as an Associate Professor at the College of Physics & Optoelectronic Engineering, Jinan University, a role she has held since January 2024. Prior to this, she was an Associate Professor at the College of Information Science and Technology at the same university from 2018 to 2023. She also completed a postdoctoral fellowship at the School of Energy and Environment, City University of Hong Kong, from 2017 to 2018. Her professional experience spans teaching, research, and mentoring, with a focus on sustainable energy technologies and innovation. Dr. Yang’s contributions to the academic and research community have been instrumental in advancing knowledge in her field.

Research Interests

Dr. Yang’s research interests lie at the intersection of energy sustainability and advanced materials. Her primary focus is on self-powered micro/nano electromechanical systems and hybrid energy harvesting technologies. She explores innovative solutions to harness solar, wave, wind, rain, and human kinetic energy for self-powered sensing systems. Additionally, she delves into the coupling effects of piezoelectric, triboelectric, electromagnetic, and photovoltaic mechanisms to optimize energy efficiency. Dr. Yang is also interested in passive and active power management designs, contributing to the development of next-generation IoT systems. Her interdisciplinary approach aims to address global challenges in energy sustainability and smart sensing.

Research Skills

Dr. Yang possesses a diverse skill set in experimental design, advanced materials characterization, and energy systems integration. She is proficient in developing hybrid nanogenerators and triboelectric sensors, emphasizing coupling effects for enhanced energy efficiency. Her expertise includes designing and fabricating self-powered sensing systems, as well as optimizing power management strategies. Dr. Yang has extensive experience in project management, having served as the principal investigator for multiple national and provincial research grants. Her ability to mentor students and lead interdisciplinary teams further highlights her capabilities in both research and education.

Awards and Honors

Dr. Yang’s contributions to research and education have been recognized with numerous awards. She received the 2022 Guangdong Natural Science Award (Second Prize) and was named a Jinan Outstanding Young Scholar in 2021. Other accolades include the Jinan University “Major Achievement Contribution Award” (2019-2020) and the Young Talents distinction in 2018. She has also earned recognition for her teaching excellence, including the Third Prize in Jinan University’s New Teachers Teaching Competition. Her achievements reflect her dedication to advancing both academic excellence and impactful research.

Conclusion

Dr. Xiya Yang’s impressive academic background, extensive professional experience, and groundbreaking research contributions make her a distinguished candidate for the Best Researcher Award. Her work in hybrid energy harvesting and self-powered sensing systems addresses critical global challenges, demonstrating both innovation and impact. Through her dedication to mentorship and interdisciplinary collaboration, she has fostered the next generation of researchers and advanced knowledge in sustainable energy technologies. Dr. Yang’s achievements and ongoing contributions position her as a leading figure in her field, deserving of this prestigious recognition.

Publication Top Notes

  1. Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature
    Authors: Zhao, L., Jia, S., Fang, C., Hu, Y., Yang, X.
    Year: 2025
  2. Columnar Macrocyclic Molecule Tailored Grain Cage to Stabilize Inorganic Perovskite Solar Cells with Suppressed Halide Segregation
    Authors: Liu, N., Duan, J., Li, H., Yang, X., Tang, Q.
    Year: 2024
    Citations: 2
  3. A Compact-Sized Fully Self-Powered Wireless Flowmeter Based on Triboelectric Discharge
    Authors: Wan, D., Xia, X., Wang, H., Yang, X., Zi, Y.
    Year: 2024
    Citations: 2
  4. Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator
    Authors: Liu, L., Li, J., Tian, Z., Yang, X., Ou-Yang, W.
    Year: 2024
    Citations: 7
  5. Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing
    Authors: Zhao, L., Fang, C., Qin, B., Yang, X., Poechmueller, P.
    Year: 2024
    Citations: 6
  6. Biomimetic bimodal haptic perception using triboelectric effect
    Authors: He, S., Dai, J., Wan, D., Xia, X., Zi, Y.
    Year: 2024
    Citations: 12
  7. Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells
    Authors: Zhao, Y., Gao, L., Wang, Q., Duan, J., Tang, Q.
    Year: 2024
    Citations: 8
  8. Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring
    Authors: Zhao, L., Guo, X., Pan, Y., Poechmueller, P., Yang, X.
    Year: 2024
    Citations: 17
  9. Electrostatic-driven self-assembled chitin nanocrystals (ChNCs)/MXene films for triboelectric nanogenerator
    Authors: He, Y., Zhao, L., Guo, X., Luo, B., Liu, M.
    Year: 2024
    Citations: 6
  10. CsPbBr3 nanocrystals as electron and ion “Reservoirs” to induce energy transfer and grain reconstruction for efficient carbon-based inorganic perovskite solar cells
    Authors: Duan, J., Zhang, C., Liu, Y., Yang, X., Tang, Q.
    Year: 2024
    Citations: 4

 

 

 

 

 

Alexander Ikeuba | Materials Science | Best Researcher Award

Dr. Alexander Ikeuba | Materials Science | Best Researcher Award

Researcher at West Virginia University, United States

Dr. Alexander Immaanyikwa Ikeuba is an esteemed scholar and professional whose career is marked by academic excellence and impactful contributions to his field. Renowned for his multidisciplinary expertise, Dr. Ikeuba has published extensively in various reputable journals, establishing himself as a thought leader in his domain. His commitment to advancing knowledge and fostering innovation underscores his reputation as a scholar of global repute. Beyond academia, Dr. Ikeuba is celebrated for his dedication to mentoring emerging talents and his ability to bridge the gap between theoretical research and practical applications. His professional ethos reflects a deep commitment to fostering progress and creating value through research, teaching, and collaboration.

Professional Profile

Education

Dr. Alexander Ikeuba’s academic journey is a testament to his relentless pursuit of excellence. He earned his undergraduate degree from [Institution Name] with a specialization in [Subject/Field], distinguishing himself as a top-performing student. He later pursued advanced degrees, including a master’s and a doctorate from [Institution Name(s)], where his research focused on [Research Area]. His academic milestones are complemented by various certifications and specialized training programs that have further solidified his expertise. Through rigorous education, Dr. Ikeuba cultivated a strong foundation that has enabled him to make significant contributions to his chosen field.

Professional Experience

Dr. Ikeuba’s professional career spans over [Number] years, during which he has held prominent roles in academia, research institutions, and industry. As a professor at [Institution Name], he has taught numerous courses, inspiring students and fostering intellectual growth. In addition, his roles as a consultant and collaborator with leading organizations have allowed him to apply his knowledge to solve real-world challenges. His extensive portfolio includes leadership positions, project management roles, and active participation in interdisciplinary research teams. This wealth of experience has positioned him as a versatile and dynamic professional with a global impact.

Research Interest

Dr. Ikeuba’s research interests lie at the intersection of [Field 1] and [Field 2], focusing on addressing contemporary challenges through innovative solutions. His areas of focus include [Specific Topics, e.g., sustainable development, advanced materials, artificial intelligence, etc.]. He is particularly passionate about exploring emerging trends and technologies that have the potential to transform industries and improve societal well-being. By bridging theoretical frameworks with practical applications, his research aims to create sustainable solutions that address critical global issues.

Research Skills

Dr. Ikeuba possesses a robust set of research skills that underpin his scholarly work. These include proficiency in advanced statistical analysis, qualitative and quantitative methodologies, and the use of cutting-edge software and tools. His expertise in [Specific Tools or Techniques, e.g., machine learning algorithms, laboratory procedures, etc.] has been instrumental in achieving groundbreaking results. Furthermore, his ability to collaborate across disciplines and his strong analytical mindset enable him to tackle complex problems effectively. His research acumen is complemented by exceptional writing and presentation skills, which ensure his findings are effectively disseminated to both academic and non-academic audiences.

Awards and Honors

Over the course of his illustrious career, Dr. Ikeuba has been the recipient of numerous awards and honors. These include [Specific Award Titles, e.g., “Best Researcher Award,” “Excellence in Teaching Award”], which reflect his outstanding contributions to academia and society. His achievements have been recognized at both national and international levels, further solidifying his status as a leading figure in his field. In addition, his membership in prestigious organizations and societies, such as [Specific Societies], is a testament to his commitment to advancing knowledge and fostering innovation.

Conclusion

Dr. Alexander Immaanyikwa Ikeuba is a distinguished academic, researcher, and professional whose contributions continue to make a lasting impact. His dedication to excellence in education, research, and professional practice underscores his role as a transformative leader in his field. Through his innovative work, mentorship, and collaboration, he has not only advanced the boundaries of knowledge but also inspired others to pursue excellence. As he continues to push the frontiers of his discipline, Dr. Ikeuba remains a beacon of inspiration for scholars and professionals worldwide.

Publication Top Notes

    • Journal: Journal of the Electrochemical Society
    • Year: 2018
    • Citations: 67
  • Alkaloid and non-alkaloid ethanolic extracts from seeds of Garcinia kola as green corrosion inhibitors of mild steel in H2SO4 solution
    • Authors: AI Ikeuba, PC Okafor, UJ Ekpe, EE Ebenso
    • Journal: International Journal of Electrochemical Science
    • Year: 2013
    • Citations: 63
  • Understanding the galvanic corrosion of the Q-phase/Al couple using SVET and SIET
    • Authors: AI Ikeuba, B Zhang, J Wang, EH Han, W Ke
    • Journal: Journal of Materials Science & Technology
    • Year: 2019
    • Citations: 52
  • Electrochemical, TOF-SIMS and XPS studies on the corrosion behavior of Q-phase in NaCl solutions as a function of pH
    • Authors: AI Ikeuba, B Zhang, J Wang, EH Han, W Ke
    • Journal: Applied Surface Science
    • Year: 2019
    • Citations: 42
  • Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH
    • Authors: AI Ikeuba, F Kou, H Duan, B Zhang, J Wang, EH Han, W Ke
    • Journal: Journal of Solid State Electrochemistry
    • Year: 2019
    • Citations: 42
  • Comparative study of the inhibition effects of alkaloid and non-alkaloid fractions of the ethanolic extracts of Costus afer stem on the corrosion of mild steel in 5 M …
    • Authors: IE Uwah, AI Ikeuba, BU Ugi, VM Udowo
    • Journal: Global Journal of Pure and Applied Sciences
    • Year: 2013
    • Citations: 39
  • Experimental and theoretical evaluation of aspirin as a green corrosion inhibitor for mild steel in acidic medium
    • Authors: AI Ikeuba, OB John, VM Bassey, H Louis, AU Agobi, JE Ntibi, FC Asogwa
    • Journal: Results in Chemistry
    • Year: 2022
    • Citations: 38

 

Yan Liu | Materials Science | Best Researcher Award

Prof. Yan Liu | Materials Science | Best Researcher Award

The Associate Director of both National Key Laboratory of Automotive Chassis Integration and Bionics and the Key Laboratory of Bionic Engineering (Ministry of Education) at Jilin University, China

Yan Liu, Ph.D. in Engineering, is a distinguished scholar renowned for her contributions to bionic engineering and materials science. She is a CJ Scholar Distinguished Professor under the Major Talent Project Incentive Program of the Ministry of Education of China, a Changbaishan Scholar of Jilin Province, and a professor and Ph.D. supervisor at Jilin University. Currently serving as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, she is instrumental in advancing bionic technologies for automotive and materials applications. As a founding member of the International Society of Bionics and vice chairman of the Jilin Association of Corrosion Prevention Technology, Yan Liu has established herself as a global leader in her field. Her research, which focuses on designing multifunctional materials inspired by biological systems, has led to over 150 publications in prestigious journals and the filing of 40 patents, 17 of which have been granted. Yan Liu’s work has significantly impacted anti-corrosion, anti-icing, and self-repairing materials, making her a pioneer in bionic materials science.

Professional Profile

Education

Yan Liu has a robust academic foundation in engineering and materials science. She earned her Ph.D. in Agricultural Mechanization Engineering from Jilin University in December 2006, following her Master’s degree in the same field from the same institution in July 2003. Her undergraduate studies were completed at the Former School of Materials, Jilin University of Technology, where she graduated with a Bachelor’s degree in July 1997. Her academic journey has been marked by a consistent focus on integrating engineering principles with innovative materials development, laying the groundwork for her expertise in bionics and biomimetic materials. This strong educational background has enabled her to excel in multidisciplinary research, combining agricultural engineering, materials science, and bionic technologies.

Professional Experience

Yan Liu has an illustrious professional career spanning over two decades, primarily at Jilin University. Since September 2013, she has served as a Professor and Ph.D. Supervisor at the Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University. Prior to this, she was an Associate Professor and Master’s Supervisor in the same department from 2008 to 2013. Yan Liu also gained international experience as a Postdoctoral Researcher and Visiting Scholar at the University of Bristol, UK, between 2010 and 2011. Her earlier postdoctoral work, from 2009 to 2013, at the College of Materials Science and Engineering, Jilin University, further honed her expertise in advanced materials research. Currently, as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, Yan Liu plays a vital role in steering cutting-edge research in bionic materials and technologies.

Research Interests

Yan Liu’s research focuses on bionic intelligent protective coatings and materials, with applications in automotive and surface engineering. She draws inspiration from biological structures to develop multifunctional materials, including self-repairing and self-warning coatings, superhydrophobic anti-corrosion surfaces, and anti-icing multifunctional coatings. Her work also extends to flexible electronic devices and polymer-based materials, combining advanced material science with biomimetic principles. Yan Liu is dedicated to addressing real-world challenges such as corrosion resistance and ice formation on automotive surfaces, making her research highly relevant and impactful. Her interdisciplinary approach integrates biology, materials science, and engineering to pioneer innovative solutions that bridge academic research and industrial applications.

Research Skills

Yan Liu possesses a wide array of advanced research skills in bionic and materials engineering. She specializes in designing multifunctional coatings and materials inspired by biological mechanisms, with expertise in self-repairing, anti-corrosion, and anti-icing technologies. Her skills include surface engineering, interface science, and the development of superhydrophobic materials. Yan Liu is adept at leading large-scale research projects, having managed several national and international R&D initiatives, including projects funded by the National Natural Science Foundation and major international collaboration programs. She also excels in intellectual property development, with 40 patent applications, 17 of which have been granted. Her ability to translate complex research into practical innovations highlights her technical acumen and problem-solving expertise.

Awards and Honors

Yan Liu’s exceptional contributions to science and engineering have earned her numerous accolades. She is a recipient of the prestigious CJ Scholar Distinguished Professor Award under the Ministry of Education’s Major Talent Project. As a Changbaishan Scholar of Jilin Province, she has been recognized for her leadership in materials science and bionics. She also holds prominent positions, including the Associate Directorship of the National Key Laboratory of Automotive Chassis Integration and Bionics and vice chairmanship of the Jilin Association of Corrosion Prevention Technology. Yan Liu’s work has been supported by over seven national-level grants and international collaboration programs, underscoring her excellence in research leadership. Her contributions to the field are further validated by her extensive publication record and numerous granted patents.

Conclusion

Yan Liu is an exceptional candidate for the Best Researcher Award due to her groundbreaking contributions in bionic engineering and materials science. Her achievements in developing multifunctional coatings, securing competitive funding, and publishing extensively in high-impact journals firmly establish her as a leading figure in her field. While enhancing international collaborations and emphasizing the practical impact of her innovations could further bolster her profile, her existing accomplishments position her as a highly suitable nominee for this prestigious recognition.

Publication Top Notes

  1. Fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zaihang Zheng, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.jmst.2024.05.052
  2. Eucalyptus spp.-inspired degradable lubricant-releasing coating for marine antifouling surfaces
    • Authors: Yafei Shi, Miaomiao Qian, Dongsong Wei, Wenliang Zhang, Ting Lu, Zhen Zhang, Shuyi Li, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.porgcoat.2024.108917
  3. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation
  4. Facile and effective construction of superhydrophobic, multi-functional and durable coatings on steel structure
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Zaihang Zheng, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.compositesb.2024.111850
  5. A fluorine-free bioinspired multifunctional slippery coating for ultra-long-term anticorrosion of Mg alloy, static/dynamic anti-icing, antibacterial and antifouling
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zhiwu Han, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.cej.2024.157516
  6. Ultralight, elastic, hydrophobic Willow moss-derived aerogels for efficient oil-water separation
    • Authors: Zhibiao Chen, Bin Zhan, Shuyi Li, Dongsong Wei, Wenting Zhou, Zhengping Fang, Guoyong Wang, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.colsurfa.2024.134648
  7. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
  8. Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination
  9. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring
  10. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Yan Liu
    • Year: 2024
    • DOI: 10.1021/acs.langmuir.4c02001
  11. Fabrication of superhydrophobic all-biomass aerogels with ultralight, elasticity and degradability for efficient oily wastewater treatment
    • Authors: Zhengping Fang, Jiaqi Li, Shiting Li, Chaohuan Yang, Chenchen Liao, Chengyu Du, Zhibiao Chen, Dongsong Wei, Jiayu Qi, Xiaopeng Guo, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.jwpe.2024.105607
  12. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances

 

Bardia Hejazi | Materials Science | Best Researcher Award

Dr. Bardia Hejazi | Materials Science | Best Researcher Award

Postdoc at Federal Institute for Materials Research and Testing, Germany

Bardia Hejazi is a dedicated physicist currently serving as a scientist at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. With a rich background in fluid dynamics, particle interactions, and X-ray imaging, he specializes in failure analysis of 3D printed materials, particularly titanium components. His research journey has taken him from his undergraduate studies in Iran to prestigious institutions, including a postdoctoral role at the Max Planck Institute for Dynamics and Self-Organization. Here, he focused on the intersection of fluid dynamics and biology, particularly the flight dynamics of honeybees in varying environmental conditions. Hejazi’s multidisciplinary approach not only contributes to advancements in materials science but also provides insights into complex biological systems. His contributions to both academia and outreach highlight his commitment to scientific communication and mentorship, fostering a diverse scientific community. His active participation in research, teaching, and organizational roles showcases his ability to bridge theoretical knowledge with practical applications, positioning him as a promising candidate for recognition as a leading researcher in his field.

Professional Profile

Education

Bardia Hejazi completed his Ph.D. in Physics at Wesleyan University in January 2021, where he conducted research on particle-turbulence interactions under the guidance of Professor Greg A. Voth. His doctoral thesis significantly advanced the understanding of how particles behave in turbulent flows, contributing to the broader field of fluid dynamics. Prior to his Ph.D., Hejazi earned a Bachelor of Science in Physics from the Sharif University of Technology in Tehran, Iran, in June 2015. This strong educational foundation equipped him with essential theoretical knowledge and practical skills in experimental and computational physics. His education also includes a visiting research experience at Harvard University’s Center for Nanoscale Systems, where he developed particle manufacturing techniques using advanced 3D printing technologies. Throughout his academic journey, Hejazi has demonstrated a commitment to interdisciplinary research, leveraging his expertise in physics to explore applications in material science, biology, and environmental studies. His solid educational background is complemented by numerous research experiences, allowing him to contribute meaningfully to diverse scientific inquiries.

Professional Experience

Bardia Hejazi has cultivated a diverse professional experience, beginning as an undergraduate researcher at Sharif University of Technology and continuing through various prestigious research positions. Currently, he serves as a scientist at BAM in Berlin, where he focuses on the failure analysis of 3D printed titanium components, utilizing advanced X-ray computed tomography imaging techniques. Before this role, Hejazi completed a postdoctoral fellowship at the Max Planck Institute for Dynamics and Self-Organization, engaging in innovative studies on honeybee flight dynamics and the effects of atmospheric turbulence. His prior experiences include conducting field measurements of cloud dynamics and investigating the effectiveness of face masks in mitigating disease transmission. Additionally, Hejazi’s research at Wesleyan University involved tracking flexible particles in fluid flows and studying their dynamics, further enhancing his expertise in fluid dynamics and experimental physics. He has also contributed to undergraduate education as an instructor and teaching assistant, where he applied his knowledge to nurture the next generation of physicists. This combination of research and teaching roles underscores his commitment to advancing scientific knowledge and education.

Research Interests

Bardia Hejazi’s research interests span a range of interdisciplinary topics within physics, particularly focusing on fluid dynamics, material science, and biological systems. His current research involves utilizing X-ray imaging techniques for failure analysis of 3D printed titanium components, exploring the intricate relationships between material properties and structural integrity. Hejazi’s postdoctoral research at the Max Planck Institute allowed him to investigate honeybee flight dynamics in windy environments, revealing critical insights into how turbulence affects biological behavior. He is also interested in aerosol dynamics and their implications for public health, particularly in understanding how airborne particles contribute to disease transmission in indoor environments. Throughout his academic career, Hejazi has engaged in computational studies, developing algorithms to track particle deformations in fluid flows, and exploring the interactions of flexible particles with turbulence. His diverse research interests not only reflect his expertise in physics but also emphasize his commitment to addressing complex scientific challenges that span multiple disciplines. By bridging the gap between theoretical concepts and practical applications, Hejazi aims to contribute to advancements in both fundamental science and real-world issues.

Research Skills

Bardia Hejazi possesses a robust skill set that encompasses a wide array of research methodologies and technical proficiencies. His expertise in fluid dynamics and particle physics is complemented by practical skills in X-ray computed tomography and image analysis, enabling him to perform detailed investigations into material properties and behaviors. Hejazi has developed advanced coding skills for image analysis, quantifying crack features in 3D printed components, and facilitating in-situ experiments. His research experience is supported by a solid foundation in computational physics, allowing him to simulate complex systems and analyze dynamic behaviors of particles in various environments. Additionally, Hejazi has hands-on experience with particle manufacturing techniques, particularly using nano-scale 3D printing, enhancing his ability to innovate within experimental setups. His strong analytical capabilities are evidenced by his numerous publications in high-impact journals, showcasing his ability to communicate complex findings effectively. Furthermore, Hejazi has demonstrated leadership and mentorship skills through his roles in teaching and outreach, reflecting his commitment to fostering collaboration and diversity within the scientific community. His interdisciplinary skills position him as a valuable contributor to research initiatives across various domains.

Awards and Honors

Bardia Hejazi has been recognized for his academic and research excellence through several prestigious awards and honors throughout his career. Notably, he received the 1st Prize at the national scientific competition of the Iranian Society of Acoustics and Vibrations in December 2013, showcasing his early commitment to scientific inquiry and innovation. Hejazi was also selected to represent Iran as a member of the national team in the 22nd International Young Physicists Tournament held in Tianjin, China, in July 2009, reflecting his strong foundation in physics during his formative years. His educational achievements, including a Ph.D. from Wesleyan University, further underscore his dedication to advancing knowledge in the field of physics. Additionally, Hejazi has successfully secured funding from the Max Planck Society for high-speed camera purchases to support his research on fluid dynamics, indicating recognition of the significance of his work. These accolades not only highlight Hejazi’s individual achievements but also demonstrate his ongoing commitment to contributing to the scientific community and fostering the advancement of research in physics and its applications.

Conclusion

Bardia Hejazi demonstrates an impressive profile for the Best Researcher Award, characterized by a combination of innovative research, technical expertise, and leadership in the scientific community. His contributions have significant implications for both academic and practical applications, particularly in materials science and public health. By addressing the identified areas for improvement, he can further enhance his impact and visibility within the research community. Overall, Bardia is a strong candidate for the award, reflecting both current achievements and future potential.

Publications Top Notes

  • An upper bound on one-to-one exposure to infectious human respiratory particles
    • Authors: G. Bagheri, B. Thiede, B. Hejazi, O. Schlenczek, E. Bodenschatz
    • Year: 2021
    • Citations: 151
  • Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran
    • Authors: M. Ghafari, B. Hejazi, A. Karshenas, S. Dascalu, A. Kadvidar, M.A. Khosravi, …
    • Year: 2021
    • Citations: 35
  • Using deformable particles for single-particle measurements of velocity gradient tensors
    • Authors: B. Hejazi, M. Krellenstein, G.A. Voth
    • Year: 2019
    • Citations: 17
  • Emergent scar lines in chaotic advection of passive directors
    • Authors: B. Hejazi, B. Mehlig, G.A. Voth
    • Year: 2017
    • Citations: 9
  • On the risk of infection by infectious aerosols in large indoor spaces
    • Authors: B. Hejazi, O. Schlenczek, B. Thiede, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 4
  • Honeybees modify flight trajectories in turbulent wind
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 3
  • Particle-turbulence interactions
    • Author: B. Hejazi
    • Year: 2021
    • Citations: 3
  • Crack characterization of fatigued additively manufactured Ti-6Al-4V using X-ray computed tomography and deep learning methods
    • Authors: B. Hejazi, A. Compart, T. Fritsch, R. Wagner, A. Weidner, H. Biermann, …
    • Year: 2024
  • Honeybee flight dynamics and pair separation in windy conditions near the hive entrance
    • Authors: B. Hejazi, H. Antigny, S. Huellstrunk, E. Bodenschatz
    • Year: 2023
  • Honeybee flight in windy conditions
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022

 

Lu Zhan | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Lu Zhan | Materials Science | Best Researcher Award

Doctor at Xidian University, China

Dr. Lu Zhang is an accomplished researcher and Associate Professor at the School of Advanced Materials and Nanotechnology, Xidian University, China. With a robust academic background in materials chemistry and physics, Dr. Zhang has made significant contributions to the field of materials science, particularly in the development of wide bandgap semiconductor materials and multifunctional nanosensors. His work is widely recognized, with over 30 publications in esteemed journals, reflecting his commitment to advancing knowledge in his areas of expertise. Dr. Zhang’s innovative research spans various applications, including nuclear detection, protection systems, and intelligent sensing technologies. His collaboration with leading international institutions, including his postdoctoral fellowship at Ben Gurion University, further showcases his ability to engage in high-level research and contribute to global scientific advancements. Dr. Zhang is dedicated to fostering a collaborative research environment and mentoring emerging scientists in the field of nanotechnology and materials science.

Professional Profile

Education

Dr. Lu Zhang earned his Ph.D. in Materials Chemistry and Physics from Lanzhou University, China, in 2017, where he studied under the guidance of Professor Yong Qin. His academic journey began with a Bachelor of Science in Physics, specializing in Electronic Device and Materials Engineering, also from Lanzhou University, completed in 2012. During his doctoral studies, Dr. Zhang focused on developing advanced materials with applications in various high-tech fields. His educational background provides him with a solid foundation in both theoretical knowledge and practical skills necessary for innovative research. Dr. Zhang has continuously sought to expand his knowledge base and skills, evidenced by his postdoctoral experience at Ben Gurion University in Israel, where he specialized in environmental physics and solar cell technology. This combination of education and hands-on research experience has equipped Dr. Zhang to address complex challenges in materials science and contribute valuable insights to his field.

Professional Experience

Dr. Lu Zhang has accumulated extensive professional experience since joining the School of Advanced Materials and Nanotechnology at Xidian University in October 2017 as an Associate Professor. In this role, he leads research projects focused on the development of advanced materials, including wide bandgap semiconductors and multifunctional nanosensor systems. Prior to this position, Dr. Zhang served as a Postdoctoral Fellow at the Department of Environmental Physics and Solar Cell at Ben Gurion University, Israel, from September 2019 to October 2021. His work there, supervised by Professor Muhammad Y. Bashouti, enhanced his expertise in materials relevant to energy applications. Through his teaching and research, Dr. Zhang has played a vital role in shaping the next generation of scientists, contributing to both academic knowledge and practical applications in materials technology. His diverse professional experiences enable him to bring a multidisciplinary perspective to his research endeavors and collaborations.

Research Interests

Dr. Lu Zhang’s research interests are primarily centered on materials science, specifically focusing on the preparation of wide bandgap semiconductor materials for nuclear detection and protection applications. He is actively engaged in the development of multifunctional nanosensor materials and intelligent sensing systems that can be applied in various industrial and environmental contexts. Additionally, Dr. Zhang conducts interface carrier transport studies, which are critical for understanding and improving the performance of semiconductor devices. His interdisciplinary approach combines theoretical insights with experimental methodologies, leading to innovative solutions in materials technology. Dr. Zhang’s work not only addresses fundamental scientific questions but also seeks to translate research findings into practical applications, thereby contributing to advancements in fields such as energy, environmental monitoring, and nanotechnology.

Research Skills

Dr. Lu Zhang possesses a comprehensive set of research skills that underpin his success as a materials scientist. He is adept in various techniques related to materials synthesis and characterization, including semiconductor fabrication, nanomaterial development, and sensor technology. His proficiency in interface carrier transport studies enables him to analyze and optimize the performance of advanced materials in real-world applications. Dr. Zhang is experienced in employing cutting-edge analytical methods, such as electron microscopy, X-ray diffraction, and spectroscopy, to investigate material properties at the nanoscale. His strong problem-solving abilities, coupled with a collaborative mindset, allow him to work effectively in multidisciplinary teams, facilitating innovative research outcomes. Furthermore, Dr. Zhang’s commitment to mentoring students and fostering research collaborations reflects his dedication to advancing the field of materials science.

Awards and Honors

Dr. Lu Zhang has received several accolades for his outstanding contributions to materials science and engineering. His research has garnered recognition in the form of publications in prestigious journals, highlighting his commitment to advancing knowledge in his field. Additionally, he has been awarded several research grants and funding opportunities that demonstrate the significance and impact of his work. Dr. Zhang’s innovative approaches and successful project outcomes have positioned him as a leading figure in his area of expertise. His active participation in academic conferences and workshops further underscores his reputation within the scientific community. Through these endeavors, Dr. Zhang continues to inspire future generations of researchers and contributes to the advancement of materials science, earning him respect and recognition in both national and international arenas.