Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Dr. Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Senior Lecturer from University Sains Malaysia, Malaysia

Dr. Mohammed Ali Dheyab is a distinguished researcher and academic currently serving as a Lecturer in the Medical Physics Department, School of Physics at Universiti Sains Malaysia. With a strong academic foundation and over a decade of research and teaching experience, Dr. Dheyab has established himself as an expert in the interdisciplinary fields of nanotechnology, medical imaging, and materials science. He holds a PhD in Medical Physics from Universiti Sains Malaysia, an MSc in Nanomaterials Physics from Osmania University, and a BSc in Physics from Anbar University, Iraq. Dr. Dheyab has authored and co-authored more than 50 publications indexed in Google Scholar, Scopus, and Web of Science, with over 2,300 citations and an impressive h-index of 30. His work is recognized for its innovative approaches in the synthesis of nanoparticles for medical and diagnostic applications, including cancer treatment. He also actively contributes to academic life through teaching, supervising, and organizing academic and extracurricular events. His professional presence is evident across global platforms such as Google Scholar, LinkedIn, ResearchGate, and Publons. Dr. Dheyab’s ability to merge fundamental research with practical applications positions him as a leading scholar in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Mohammed Ali Dheyab’s educational trajectory reflects a strong interdisciplinary foundation that underpins his innovative research. He earned his PhD in Medical Physics from Universiti Sains Malaysia (2017–2021), where his doctoral work focused on the development of advanced nanomaterials for biomedical applications, particularly in diagnostics and cancer therapy. Prior to that, he completed a Master of Science in Nanomaterials Physics from Osmania University, India (2014–2016), where he was introduced to the synthesis and characterization of nanoscale materials and their electronic properties. His academic journey began with a Bachelor of Science in Physics from Anbar University, Iraq (2009–2013), laying the groundwork in classical and modern physics that would later support his specialization in medical imaging and nanotechnology. His strong educational background across physics, nanomaterials, and medical sciences provides him with a unique interdisciplinary skillset. It enables him to approach complex research challenges with both theoretical knowledge and practical competence. His studies in multiple countries have further enriched his academic exposure and collaborative mindset, equipping him with international perspectives essential for global scientific engagement. Dr. Dheyab’s educational qualifications have played a critical role in shaping his successful academic and research career.

Professional Experience

Dr. Mohammed Ali Dheyab has accumulated a broad and impactful professional experience across academic and research institutions. He is currently employed as a Lecturer at the Medical Physics Department, School of Physics, Universiti Sains Malaysia (USM), where he teaches various subjects including diagnostic radiology, medical lasers, and magnetic resonance imaging. Before assuming this role, he served as a Postdoctoral Fellow at the same institution from July 2021 to 2022, contributing to research in nanomedicine and imaging technologies. Between 2017 and 2020, Dr. Dheyab was affiliated as a Research Assistant with both the School of Physics and NanoBRI Lab at INFORMM, USM, where he worked on nanoparticle synthesis, cancer photothermal therapy, and multimodality imaging probes. In 2020, he also served briefly as a Research Assistant within the School of Physics, further strengthening his technical skills and collaborative research outputs. In addition to his academic roles, Dr. Dheyab has participated in student engagement initiatives as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at USM. His career trajectory showcases a balance between teaching, research, and institutional service, highlighting his adaptability and dedication to both scientific advancement and student development.

Research Interest

Dr. Mohammed Ali Dheyab’s research interests lie at the intersection of nanotechnology, materials science, and medical imaging, with a focus on real-world applications in cancer diagnosis and therapy. His core areas of investigation include the synthesis and characterization of inorganic nanoparticles, molecular and cellular nanoprobes, nanomedicine, and multimodality imaging probes. A key aspect of his work is the development of smart nanoparticles for targeted cancer treatment, utilizing properties like surface chemistry and catalytic behavior for precision medicine. He is also involved in designing photothermal therapy agents and nanozymes to enhance the eradication of cancer cells, especially breast cancer. His interest in multimodal imaging technologies bridges medical physics and materials engineering, enabling improved diagnostic tools using ultrasound, MRI, and optical techniques. Dr. Dheyab also explores the integration of nanomaterials in other domains such as food packaging and environmental sensing. His research is distinguished by a blend of innovation and applicability, aiming to solve complex biomedical problems through interdisciplinary approaches. The translation of fundamental nanoscale research into clinical and industrial settings is central to his scientific vision, positioning him at the forefront of modern medical physics and materials research.

Research Skills

Dr. Mohammed Ali Dheyab possesses an impressive portfolio of research skills that spans experimental, analytical, and computational domains. He is highly proficient in nanoparticle synthesis and surface modification techniques essential for developing functional materials for medical applications. His experience includes electron beam evaporation, sol-gel processing, and colloidal methods for producing nano-scale structures. In terms of characterization, Dr. Dheyab is skilled in a wide range of techniques including UV-Vis spectroscopy, X-ray diffraction, FTIR, SEM, and TEM, which are vital for assessing the structural, morphological, and optical properties of materials. He is also adept in medical imaging instrumentation, particularly in radiological physics, magnetic resonance imaging, and laser technology, which align with his teaching responsibilities and research in cancer diagnostics. His software skills include data analysis tools like OriginLab, Microsoft Excel, and reference management systems such as EndNote and Mendeley. Furthermore, he is familiar with DICOM imaging formats, enhancing his capabilities in clinical image processing. His strong analytical mindset, combined with excellent organizational and communication skills, allows him to manage complex experiments and collaborate across disciplines. Dr. Dheyab’s research skillset is well-suited for cutting-edge investigations in nanomedicine and medical physics.

Awards and Honors

Dr. Mohammed Ali Dheyab has garnered recognition through academic achievements and extracurricular engagement throughout his career. While formal national or international awards are not explicitly listed, his accomplishments in research productivity and scholarly impact speak volumes. With over 2,300 citations and an h-index of 30, he has effectively established his scientific reputation among peers. His selection as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at Universiti Sains Malaysia highlights his commitment to student life and internationalization, serving as a cultural and sports representative. He has also received the Bronze Medallion from the Life Saving Society of Malaysia, reflecting his multifaceted capabilities beyond academia. Furthermore, his role as an organizer of the Ramadan Championship in 2021 and participation in university sports activities showcase his leadership and team-building skills. Though he has not yet been recognized with major scientific awards, his consistent publication in high-impact journals and editorial contributions position him well for future accolades. As his career advances, he is likely to receive greater formal recognition in both scientific and academic circles. His profile demonstrates a blend of academic excellence, community service, and leadership potential.

Conclusion

In conclusion, Dr. Mohammed Ali Dheyab exemplifies the qualities of an emerging academic leader and accomplished researcher. His contributions to nanomedicine, medical physics, and imaging technologies are grounded in rigorous research and supported by a solid educational foundation. With a publication record that includes over 2,300 citations and appearances in high-quality, indexed journals, he has demonstrated a significant impact in his field. Dr. Dheyab’s involvement in teaching, supervision, international collaboration, and university-level engagement illustrates his commitment to the broader academic community. While there is potential for further recognition through competitive research grants, patents, or high-profile scientific awards, his trajectory indicates continuous professional growth. He has already laid the groundwork for future leadership in both research and education. His ability to merge innovative nanotechnology with real-world biomedical applications marks him as a promising candidate for prestigious honors such as the Best Researcher Award. His interdisciplinary expertise, research productivity, and dedication to academic service make him not only a valuable asset to his institution but also a noteworthy contributor to global scientific advancement.

Publications Top Notes

  1. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, P.M. Khaniabadi, B. Mehrdel
    Journal: Scientific Reports, 10(1), 10793
    Year: 2020
    Citations: 206

  2. Recent advances in extraction, modification, and application of chitosan in packaging industry
    Authors: N. Oladzadabbasabadi, A.M. Nafchi, F. Ariffin, M.M.J.O. Wijekoon, et al.
    Journal: Carbohydrate Polymers, 277, 118876
    Year: 2022
    Citations: 168

  3. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles
    Authors: M.S. Jameel, A.A. Aziz, M.A. Dheyab
    Journal: Green Processing and Synthesis, 9(1), 386–398
    Year: 2020
    Citations: 128

  4. Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue
    Authors: M.A. Rabeea, M.N. Owaid, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Journal of Environmental Chemical Engineering, 8(3), 103841
    Year: 2020
    Citations: 127

  5. Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine
    Authors: M.A. Dheyab, A.A. Aziz, P. Moradi Khaniabadi, M.S. Jameel, et al.
    Journal: International Journal of Molecular Sciences, 23(13), 7400
    Year: 2022
    Citations: 100

  6. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, B. Mehrdel
    Journal: Chinese Journal of Physics, 64, 305–325
    Year: 2020
    Citations: 98

  7. Gold nanoparticles-based photothermal therapy for breast cancer
    Authors: M.A. Dheyab, A.A. Aziz, P.M. Khaniabadi, M.S. Jameel, N. Oladzadabbasabadi, et al.
    Journal: Photodiagnosis and Photodynamic Therapy, 42, 103312
    Year: 2023
    Citations: 96

  8. Mechanisms of effective gold shell on Fe₃O₄ core nanoparticles formation using sonochemistry method
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, P.M. Khaniabadi, B. Mehrdel
    Journal: Ultrasonics Sonochemistry, 64, 104865
    Year: 2020
    Citations: 92

  9. Mushroom-assisted synthesis of triangle gold nanoparticles using the aqueous extract of fresh Lentinula edodes (shiitake), Omphalotaceae
    Authors: M.N. Owaid, M.A. Rabeea, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Environmental Nanotechnology, Monitoring & Management, 12, 100270
    Year: 2019
    Citations: 85

  10. Scenario analysis of COVID-19 transmission dynamics in Malaysia with the possibility of reinfection and limited medical resources scenarios
    Authors: A.M. Salman, I. Ahmed, M.H. Mohd, M.S. Jamiluddin, M.A. Dheyab
    Journal: Computers in Biology and Medicine, 133, 104372
    Year: 2021
    Citations: 73

Xiangyang Zhou | Materials Science | Best Researcher Award

Prof. Dr. Xiangyang Zhou | Materials Science | Best Researcher Award

Professor from University of Miami, United States

Dr. Xiangyang Zhou is a seasoned Professor of Materials Science and Engineering at the University of Miami, with a distinguished academic and research career spanning over three decades. His work is recognized internationally, particularly for his contributions to the development of advanced materials for solid-state energy storage systems. With a research emphasis on supercapacitors, polymer electrolytes, and mediator-enhanced energy storage devices, Dr. Zhou has played a pivotal role in advancing the understanding and application of electrochemical energy conversion technologies. His academic journey began in China and continued in the United Kingdom, culminating in a Ph.D. in Materials Science and Engineering. Over the years, he has published extensively in reputed peer-reviewed journals and collaborated on interdisciplinary projects that blend experimental techniques with computational modeling. Dr. Zhou has held prominent positions in academia and research institutes, contributing not only as a scholar but also as a mentor to emerging scientists. His current work focuses on the development of novel composite materials for high-performance, low-temperature solid-state supercapacitors. Known for his methodical and innovative research approach, Dr. Zhou continues to influence the direction of materials science with his commitment to both fundamental studies and applied research.

Professional Profile

Education

Dr. Xiangyang Zhou has a solid educational foundation in physics and materials science, having completed his academic training across some of the most respected institutions in China and the United Kingdom. He earned his Bachelor of Science in Physics from Wuhan University in Hubei, China in July 1984. This early training laid a strong foundation in the physical sciences, providing a gateway to more specialized research in materials engineering. Following his undergraduate education, Dr. Zhou pursued a Master of Science in Materials Science and Engineering at the Institute of Corrosion and Protection of Metals, part of the Academy of Science in Shenyang, China, completing it in July 1988. His graduate work focused on the corrosion behavior of metals, a critical issue in materials durability. To further his expertise, Dr. Zhou undertook doctoral studies at the University of Newcastle Upon Tyne in the United Kingdom, where he received his Ph.D. in Materials Science and Engineering in April 1996. His doctoral research provided him with in-depth knowledge of material behavior at both the micro and macro scales, preparing him for a successful and impactful research career in advanced materials and energy systems.

Professional Experience

Dr. Zhou has a rich and varied professional background in academic and applied research settings. Since 2005, he has served as a Professor at the University of Miami in Coral Gables, Florida, where he leads research initiatives in materials science and electrochemical energy storage systems. His long-standing tenure at the University of Miami reflects his sustained contributions to education, mentorship, and research excellence. Prior to his current position, he held concurrent roles between 2002 and 2005 as a Senior Scientist at the Applied Research Institute and a Research Scientist at the Applied Research Center at Florida International University. These roles allowed him to engage in application-driven research projects and collaborate with industry and governmental stakeholders. From 1996 to 2002, Dr. Zhou worked as a Research Associate at Pennsylvania State University’s Center of Advanced Materials, where he focused on pioneering materials simulation and experimental validation. His early career included a role as an Assistant Researcher at the Institute of Corrosion and Protection of Metals under the Academy of Science in Shenyang, China. Throughout his career, Dr. Zhou has integrated academic excellence with real-world research experience, positioning him as a leader in the development of innovative materials and energy technologies.

Research Interest

Dr. Xiangyang Zhou’s research interests lie at the intersection of materials science, electrochemistry, and energy storage technologies. He is particularly focused on the design, synthesis, and characterization of polymer-based solid-state electrolytes and mediator-enhanced supercapacitors. His work seeks to address critical challenges in energy storage systems, such as improving ionic conductivity, enhancing energy density, and ensuring operational stability at low temperatures. Dr. Zhou is also interested in the molecular mechanisms of proton transport in water and polymeric systems, and his investigations often bridge theoretical simulation with experimental methods. Over the years, he has developed novel polymer membranes, such as polyvinylidene fluoride/lithium trifluoromethanesulfonate systems, which show significant promise for next-generation energy devices. His research is deeply interdisciplinary, integrating principles from physics, chemistry, and materials engineering. In addition to applied device development, Dr. Zhou explores the fundamental electrochemical and spectroscopic properties of materials, employing in situ characterization methods to monitor changes during operation. This comprehensive approach enables him to tackle real-world challenges in energy conversion and storage, while also contributing to fundamental scientific understanding. His research continues to make meaningful contributions to the fields of nanomaterials, energy systems, and green technology.

Research Skills

Dr. Xiangyang Zhou possesses a wide range of technical and analytical research skills that have supported his extensive contributions to the field of materials science. He is adept at both experimental and computational techniques, including ab initio simulations, atomistic modeling, and X-ray absorption spectroscopy. These tools have enabled him to explore conduction and diffusion processes at the atomic level in various polymer electrolyte systems. Dr. Zhou also demonstrates expertise in electrochemical analysis, such as cyclic voltammetry and electrochemical impedance spectroscopy, which he uses to characterize the performance of solid-state supercapacitors and mediator-assisted devices. In terms of materials synthesis, he has experience with the fabrication of polymer composite membranes and the development of nanoporous electrodes. His skills further extend to in situ spectroscopic techniques that allow for real-time monitoring of material behavior under operating conditions. Dr. Zhou’s ability to integrate these skills within a coherent research framework has led to high-impact studies in reputable journals. His strong command of materials characterization tools and simulation software places him at the forefront of materials innovation, particularly in the rapidly evolving domain of energy storage technologies.

Awards and Honors

While the specific awards and honors received by Dr. Zhou are not listed in the biographical sketch provided, his long-standing professorship at the University of Miami and his extensive publication record suggest a career marked by academic excellence and recognition within the scientific community. His leadership in research on solid-state supercapacitors and polymer electrolytes has positioned him as a key contributor to the field, and his work has been published in top-tier journals such as the Journal of Power Sources, Journal of Electrochemical Society, and Journal of Membrane Science. These publications are often peer-reviewed by leading experts, reflecting the high quality and significance of his research. Moreover, his collaborative research with scientists such as A.N. Mansour and participation in interdisciplinary studies indicate a reputation of trust and respect in academic circles. It is likely that Dr. Zhou has also served on editorial boards, scientific committees, or as a reviewer for funding agencies, although these details are not specified. Overall, his enduring academic presence and influential research output highlight the esteem in which he is held by peers in materials science and engineering.

Conclusion

Dr. Xiangyang Zhou emerges as a highly qualified and impactful researcher whose contributions to materials science and energy storage technologies are both innovative and influential. His academic trajectory—from undergraduate studies in physics in China to doctoral work in the United Kingdom—reflects a global perspective on scientific inquiry. Throughout his professional journey, he has consistently advanced the frontier of polymer electrolytes and solid-state supercapacitors, combining theory, simulation, and experimental techniques. His ability to publish in high-impact journals and collaborate across disciplines underscores his effectiveness as a thought leader and innovator. Although formal recognitions and awards were not explicitly listed, his career accomplishments and scholarly output make a compelling case for his nomination for a Best Researcher Award. Dr. Zhou’s research continues to address pressing technological challenges related to clean energy and advanced materials, which are critical areas of global importance. His commitment to mentorship, interdisciplinary collaboration, and scientific rigor exemplifies the qualities of an outstanding researcher. He would be a deserving recipient of the award, and his selection would reinforce the value of sustained academic excellence and forward-thinking innovation in scientific research.

Publications Top Notes

  1. Application of GO anchored mediator in a polymer electrolyte membrane for high-rate solid-state supercapacitors
    Authors: Zhiwei Yan, Xiangyang Zhou, Yuchen Wang, Gordon Henry Waller, Zhijia Du
    Journal: Journal of Membrane Science
    Year: 2023
    Citations: 4

  2. Recent advances in solid-state supercapacitors: From emerging materials to advanced applications (Review)
    Authors: Mert Akin, Xiangyang Zhou
    Year: 2023
    Citations: 33

  3. In situ XAS investigation of K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ redox activity in solid-state supercapacitors
    Authors: Azzam N. Mansour, Jonathan K. Ko, Xiangyang Zhou, Chen Zhang, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2022
    Citations: 4

  4. Co-cured manufacturing of multi-cell composite box beam using vacuum assisted resin transfer molding
    Authors: Mert Akin, Cagri Y. Oztan, Rahmi Akin, Victoria L. Coverstone-Carroll, Xiangyang Zhou
    Journal: Journal of Composite Materials
    Year: 2021
    Citations: 4

  5. Structural analysis of K₄Fe(CN)₆·3H₂O, K₃Fe(CN)₆ and Prussian Blue (Open access)
    Authors: Azzam N. Mansour, Jonathan K. Ko, Gordon Henry Waller, Xiangyang Zhou, Mahalingam Balasubramanian
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2021
    Citations: 17

  6. Electrochemical and in situ spectroscopic study of the effect of Prussian Blue as a mediator in a solid-state supercapacitor (Open access)
    Authors: Xiaoyao Qiao, Zhiwei Yan, Chen Zhang, Curtis A. Martin, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2021
    Citations: 8

  7. Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments (Open access)
    Authors: Yuchen Wang, Mert Akin, Xiaoyao Qiao, Zhiwei Yan, Xiangyang Zhou
    Journal: International Journal of Energy Research
    Year: 2021
    Citations: 3