Mrs. Yushuang Zhang | Materials Science | Best Researcher Award
Assistant Researcher at National University of Defense Technology, China
Yu-shuang Zhang is a dedicated researcher and lecturer at the National University of Defense Technology (NUDT), China, specializing in materials science and nanotechnology. With a strong academic foundation in electronics and materials science, his research focuses on the development of advanced materials for photonics, optoelectronics, and semiconductor applications. He has published extensively in high-impact journals, including Advanced Materials and Nature Communications, demonstrating his expertise in black phosphorus, infrared photodetectors, and quantum dots. His work has gained significant recognition, earning him prestigious awards such as the 2024 Young Scientist Award and the 2020 China Semiconductor Top Ten Research Progress Nomination Award. As an emerging leader in his field, he continues to contribute to the advancement of materials science through cutting-edge research and innovative technological developments.
Professional Profile
Education
Yu-shuang Zhang completed his Bachelor’s degree in Electronics Science and Technology from HeFei University of Technology, China, in 2016. He then pursued a Ph.D. in Materials Science and Engineering at Hunan University, China, completing his doctoral studies in 2022. During his Ph.D., he also conducted research at the CAS Suzhou Institute of Nano-Tech and Nano-Bionics from May 2021 to December 2021, where he gained hands-on experience in nanomaterials and advanced material characterization techniques. His multidisciplinary education in electronics and materials science has provided him with a strong foundation for research in optoelectronics, photonics, and nanotechnology.
Professional Experience
Since 2022, Yu-shuang Zhang has been serving as a lecturer at the National University of Defense Technology (NUDT), China. In this role, he has been actively involved in teaching, mentoring students, and conducting high-impact research. His work primarily focuses on developing next-generation materials for infrared photodetectors, semiconductor applications, and quantum dot technology. His affiliation with NUDT has provided him access to state-of-the-art research facilities, enabling him to work on innovative projects that contribute to advancements in electronic and optical materials. Through his academic and research engagements, he continues to shape the future of materials science while collaborating with leading scientists in his field.
Research Interests
Yu-shuang Zhang’s research interests lie at the intersection of nanotechnology, optoelectronics, and materials science. His primary focus is on black phosphorus and its applications in wavelength-tunable mid-infrared lasers, quantum dot-based fluorescence enhancement, and high-performance infrared photodetectors. He is also deeply involved in studying the epitaxial growth of high-crystalline materials for semiconductor and photonic applications. His work aims to develop novel materials with enhanced electronic and optical properties for use in advanced sensing, imaging, and communication technologies. His research has significant implications for next-generation semiconductor devices and optical computing systems.
Research Skills
Yu-shuang Zhang possesses a wide range of research skills in materials synthesis, nanofabrication, and advanced characterization techniques. He has extensive experience in chemical vapor deposition (CVD), molecular beam epitaxy (MBE), and quantum dot fabrication for optoelectronic applications. He is proficient in using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) for material characterization. His expertise also includes spectroscopic techniques such as Raman spectroscopy, photoluminescence (PL) spectroscopy, and infrared spectroscopy. Additionally, he has strong analytical and computational skills, enabling him to model and optimize material properties for specific technological applications.
Awards and Honors
Yu-shuang Zhang has received several prestigious awards in recognition of his research excellence. In 2024, he was honored with the Young Scientist Award at the Seminar on Emerging Functional Materials and Devices in China. In 2020, he was nominated for the China Semiconductor Top Ten Research Progress Award, a testament to the significance of his contributions to semiconductor research. He also received multiple academic honors, including the President’s Scholarship and the Yangtze River Environmental Scholarship from Hunan University in 2020. Additionally, he secured second prize at the 13th Hunan Graduate Innovation Forum, highlighting his innovative research in materials science.
Conclusion
Yu-shuang Zhang is a promising researcher with a strong academic and professional background in materials science and optoelectronics. His contributions to black phosphorus-based mid-infrared lasers, quantum dots, and infrared photodetectors have positioned him as an emerging leader in the field. With multiple high-impact publications and prestigious awards to his name, he has demonstrated exceptional research capabilities. As he continues his work at the National University of Defense Technology, further expanding his independent research projects and international collaborations will strengthen his impact. His expertise and dedication make him a strong candidate for recognition as an outstanding researcher in his field.
Publications Top Notes
Title: “Synergistic Enhancement of Fluorescence Through Plasmon Resonance and Interfacial Charge Transfer by AgNC@AgAux Core–Shell Quantum Dots”
-
Authors: Youlong Chen, Yihua Hu, Yushuang Zhang, Hao Huang, Xing Yang, Youlin Gu, Fanhao Meng, Yuhao Xia, Ziwei Fu, Xinyuan Zhang, et al.
-
Year: 2025
-
DOI: 10.1002/adma.202415388
-
Source: Advanced Materials
2. Title: “Plasmon-Enhanced Fluorescence of Gold Nanoparticle/Graphene Quantum Dots for Detection of Cr³⁺ Ions”
-
Authors: You-Long Chen, Yi-Hua Hu, Xing Yang, You-Lin Gu, Xin-Yu Wang, Yu-Hao Xia, Xin-Yuan Zhang, Yu-Shuang Zhang
-
Year: 2023
-
DOI: 10.1364/PRJ.495683
-
Source: Photonics Research
3. Title: “Growth of Single-Crystal Black Phosphorus and Its Alloy Films Through Sustained Feedstock Release”
-
Authors: Cheng Chen, Yuling Yin, Rencong Zhang, Qinghong Yuan, Yang Xu, Yushuang Zhang, Jie Chen, Yan Zhang, Chang Li, Junyong Wang, et al.
-
Year: 2023
-
DOI: 10.1038/s41563-023-01516-1
-
Source: Nature Materials
4. Title: “A Waveguide-Integrated Two-Dimensional Light-Emitting Diode Based on p-Type WSe₂/n-Type CdS Nanoribbon Heterojunction”
-
Authors: Xin Yang, Rong Wu, Biyuan Zheng, Ziyu Luo, Wenxia You, Huawei Liu, Lihui Li, Yushuang Zhang, Qin Tan, Delang Liang, et al.
-
Year: 2022
-
DOI: 10.1021/ACSNANO.1C10607
-
Source: ACS Nano
5. Title: “Controllable Synthesis of Narrow-Gap van der Waals Semiconductor Nb₂GeTe₄ with Asymmetric Architecture for Ultrafast Photonics”
-
Authors: Yongping Dai, Qiang Yu, Xiaoxin Yang, Kun Guo, Yan Zhang, Yushuang Zhang, Junrong Zhang, Jie Li, Jie Chen, Haiqin Deng, et al.
-
Year: 2022
-
DOI: 10.1021/ACSNANO.1C10241
-
Source: ACS Nano
6. Title: “Erbium Chloride Silicate-Based Vertical Cavity Surface-Emitting Laser at the Near-Infrared Communication Band”
-
Authors: Hepeng Zhao, Xinchao Zhao, Xuehong Zhang, Zhuangzhuang Cui, Yu Ou-Yang, Maobin Xie, Min Zheng, Xueyu Guan, Lijun Wu, Xinglei Zhou, et al.
-
Year: 2022
-
DOI: 10.1364/OL.446752
-
Source: Optics Letters
7. Title: “Gallium Doping-Assisted Giant Photoluminescence Enhancement of Monolayer MoS₂ Grown by Chemical Vapor Deposition”
-
Authors: Bo Liu, Ying Chen, Chao Ma, Ying Jiang, Danliang Zhang, Zheyuan Xu, Ziyu Luo, Huawei Liu, Junyu Qu, Xin Yang, et al.
-
Year: 2022
-
DOI: 10.1063/5.0096169
-
Source: Applied Physics Letters
8. Title: “Infrared Photodetector Based on 2D Monoclinic Gold Phosphide Nanosheets Yielded from One-Step Chemical Vapor Transport Deposition”
-
Authors: Yushuang Zhang, Jie Chen, Cheng Chen, Tengfei Xu, Heng Gao, Zhuo Dong, Yan Zhang, Chang Li, Qiang Yu, Wenzhi Yu, et al.
-
Year: 2022
-
DOI: 10.1063/5.0086166
-
Source: Applied Physics Letters