Yong Chan Jung | Materials | Best Researcher Award

Mr. Yong Chan Jung | Materials | Best Researcher Award

Principal Researcher at Korea Electric Power, South Korea

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Profile

Education

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Professional Experience

Matt Bunch has a distinguished career in technology and educational innovation. As the Director of Software Engineering at Harvard Medical School, he leads teams in software development, business analysis, and educational technology, overseeing complex projects and ensuring budget adherence. He excels in integrating data from various sources into real-time dashboards, driving strategic initiatives, and improving processes across systems. Previously, as an IoT & Mobile Manager at Arizona State University, Bunch significantly advanced the Smart Campus initiative, which earned recognition in Forbes and won the CDW NACDA Best Game Day Technology Competition. His career also includes founding AllStar Fundraiser Online, a platform that has raised nearly $3 million for nonprofits. With a robust background in software engineering and a commitment to educational technology, Bunch’s work has been marked by innovation, leadership, and impactful contributions to both academia and industry.

Research Interest

Matt Bunch’s research interests are centered on the integration of technology and education, with a focus on enhancing learning experiences through innovative software and data-driven solutions. His work at Harvard Medical School involves directing projects that leverage educational technology and business analysis to optimize learning platforms and data management. He is particularly interested in exploring how data analytics and real-time dashboards can improve educational outcomes and streamline administrative processes. Additionally, Bunch is engaged in research on online course effectiveness and motivational frameworks for educational video engagement. His past projects, such as the Smart Campus and Smart Stadium initiatives, reflect his commitment to advancing technology in academic environments and enhancing user interaction through smart systems. Overall, his research aims to bridge the gap between technology and education, driving forward new solutions that support both institutional goals and learner engagement.

 Research Skills

Matt Bunch demonstrates a robust set of research skills through his extensive experience in software engineering and educational technology. At Harvard Medical School, he integrates Salesforce data, OEE data warehouse, and HMSIT Delphi data into real-time dashboards, showcasing his proficiency in data analysis and visualization tools like Tableau and Looker Studio. His role in developing the Smart Campus and Smart Stadium projects highlights his ability to translate complex data into actionable insights, significantly improving user engagement and system efficiency. Matt’s publication record, including works on online courses and educational video engagement, reflects his commitment to advancing knowledge in educational technology. His technical expertise spans across various systems and platforms, and his leadership in automating processes and managing large-scale projects underscores his capability in applied research and development. His skills in strategic planning, cross-functional collaboration, and innovative problem-solving further enhance his research capabilities.

Award and Recognition

Matt Bunch has earned notable recognition for his exceptional contributions in the field of educational technology and data analytics. His innovative work on the Smart Campus initiative and Smart Stadium project garnered significant accolades, including the CDW NACDA Best Game Day Technology Competition award and a feature in Forbes. His research publications, such as “Online Courses Provide Robust Learning Gains” and “Is Anybody Watching: A Multi-Factor Motivational Framework for Educational Video Engagement,” further demonstrate his impact on educational practices. Matt has also been recognized with various certifications, including Advanced Google Analytics and Data Analytics from Harvard Extension School. His leadership at Harvard Medical School, directing software engineering and educational technology initiatives, showcases his commitment to advancing the integration of technology and education. These accomplishments underline his dedication and influence in enhancing educational experiences through innovative technological solutions.

Conclusion

Matt Bunch is a strong candidate for the Research for Best Researcher Award due to his leadership, innovative projects, and contributions to educational technology and data analytics. His technical expertise and successful track record in managing and improving systems align well with the award’s criteria. However, to further bolster his candidacy, focusing on deepening his research experience, increasing his publication output in high-impact venues, and expanding his collaborative efforts could provide a more robust foundation for his nomination.

Publication Top Notes

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali, Shahrood University of technology, Iran.

Assist. Prof. Dr. Meysam Jalali is a prominent researcher in Materials Science, with a focus on innovative materials and their applications. His academic journey is marked by a commitment to excellence, culminating in significant contributions to the field. Dr. Jalali’s research interests include the development and characterization of advanced materials with a particular emphasis on their industrial applications. His work has been recognized through numerous publications in high-impact journals, reflecting his dedication to advancing the frontiers of Materials Science. Dr. Jalali’s expertise and commitment to research make him a leading figure in his field.

Profile
Education

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he focused on cutting-edge research in structural integrity and resilience. He completed his MSc in Civil/Earthquake Engineering at the University of Tehran, specializing in the study of seismic effects on structures. Dr. Jalali began his academic journey with a BSc in Civil Engineering from Shahrood University of Technology, laying a solid foundation for his expertise in civil engineering. His educational background underpins his extensive research and contributions to the field of Materials Science.

Professional Experience

Assist. Prof. Dr. Meysam Jalali is a Professional Engineer certified by the Tehran Engineering Organization in Iran. He has served as a consultant engineer with the Iran Water & Power Resources Development Company (IWPCO) and the Tehran Engineering and Technical Consultant Organization (TETCO), focusing on underground structures. His project management expertise includes leading the Hakim Twin Tunnels project in Tehran and overseeing the engineering efforts for Tehran Metro Line 7, East-West Lot. Additionally, Dr. Jalali has played a crucial role in the design of various structural projects, leveraging his extensive knowledge and experience to drive engineering excellence.

Research Project

Assist. Prof. Dr. Meysam Jalali has made significant contributions to the field of Civil/Structural Engineering through his research and innovations. His work includes the invention of novel fibers for reinforcing Ultra High-Performance Cementitious Composites (UHPC) and Engineered Cementitious Composites (ECC), which is currently under patent and will be detailed in a forthcoming paper for the Cement and Concrete Composites journal. Dr. Jalali has also published a study on the mechanical behavior of spiral fibers for concrete reinforcement in the Construction and Building Materials journal (2022).

His research extends to the development of an innovative apparatus and molds for direct tension testing of fibrous composites, with a patent nearing finalization. Dr. Jalali’s work on predicting fiber pull-out from cement-based composites using advanced soft computing methods (ANN, GEP, ANFIS, GMDH) has been accepted for publication in the Journal of Building Engineering. Additionally, he has explored ECC behavior prediction using adaptive network-based fuzzy inference systems.

Other notable research includes improvements in ductility for FRP RC beams, with papers accepted for the Journal of Composite Materials. He has proposed innovative geometry for precast RC tunnel linings under high concentrated loads, with his findings accepted in the Saze va Sakht Persian journal. His experimental studies on bond behavior of headed bars in FRC/UHPC and numerical investigations into rebar pull-out from cement-based matrices further demonstrate his expertise. Lastly, his work on the effects of steel and polypropylene fibers, as well as recycled aggregates, on concrete’s mechanical properties, has been accepted for publication in the Sharif University Persian journal.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research encompasses a broad range of experimental investigations in construction materials and structures. His work includes the study of various cement-based materials such as Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly focused on the development of innovative fiber types for enhancing the performance of cementitious composites.

His expertise extends to the application of soft computing methods in Civil Engineering, including the use of advanced numerical modeling and multi-scale testing techniques. Dr. Jalali is also committed to exploring net-zero construction practices and the integration of additive manufacturing technologies, such as 3D concrete printing, into construction processes. His comprehensive research addresses both the theoretical and practical aspects of modern construction materials and methods.

 Publications Top Notes
  1. Pull-out Behavior of Twin-Twisted Steel Fibers from Various Strength Cement-Based Matrices
    1. Construction and Building Materials
    2. 2024-09
    3. DOI: 10.1016/j.conbuildmat.2024.137855
    4. Source: Crossref
  2. Experimental Investigation of Ductility in GFRP RC Beams by Confining the Compression Zone
    1. Advances in Civil Engineering
    2. 2024-05-18
    3. DOI: 10.1155/2024/4268615
    4. Source: Crossref
  3. Machine Learning Prediction of Fiber Pull-Out and Bond-Slip in Fiber-Reinforced Cementitious Composites
    1. Journal of Building Engineering
    2. 2023-01
    3. DOI: 10.1016/j.jobe.2022.105474
    4. Source: Crossref
  4. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. Construction and Building Materials
    2. 2022-09
    3. DOI: 10.1016/j.conbuildmat.2022.128569
    4. Source: Crossref
  5. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. SSRN
    2. 2022
    3. EID: 2-s2.0-85130694443
    4. Source: Meysam Jalali via Scopus – Elsevier
  6. Flexural Characteristics of Fibre Reinforced Concrete with an Optimised Spirally Deformed Steel Fibre
    1. International Journal of Engineering Transactions C: Aspects
    2. 2021
    3. DOI: 10.5829/ije.2021.34.06c.01
    4. EID: 2-s2.0-85107745927
    5. Source: Meysam Jalali via Scopus – Elsevier
  7. Performance of Reinforced Concrete Shear Wall Equipped with an Innovative Hybrid Damper
    1. International Journal of Engineering, Transactions A: Basics
    2. 2021
    3. DOI: 10.5829/IJE.2021.34.07A.08
    4. EID: 2-s2.0-85110294151
    5. Source: Meysam Jalali via Scopus – Elsevier
  8. Effect of Seawater on Micro-Nano Air Bubbles Concrete for Repair of Coastal Structures
    1. Journal of Rehabilitation in Civil Engineering
    2. 2020
    3. DOI: 10.22075/JRCE.2018.13791.1252
    4. EID: 2-s2.0-85103080479
    5. Source: Meysam Jalali via Scopus – Elsevier
  9. Experimental and Analytical Investigations on Seismic Behavior of Ductile Steel Knee Braced Frames
    1. Steel and Composite Structures
    2. 2014
    3. DOI: 10.12989/scs.2014.16.1.001
    4. EID: 2-s2.0-84893868990
    5. Source: Meysam Jalali via Scopus – Elsevier
  10. Novel Manually Made NSM FRP (MMFRP) Bars for Shear Strengthening of RC Beams
    1. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012)
    2. 2012
    3. EID: 2-s2.0-84924368581
    4. Source: Meysam Jalali via Scopus – Elsevier
  11. Shear Strengthening of RC Beams Using Innovative Manually Made NSM FRP Bars
    1. Construction and Building Materials
    2. 2012
    3. DOI: 10.1016/j.conbuildmat.2012.06.068
    4. EID: 2-s2.0-84864359512
    5. Source: Meysam Jalali via Scopus – Elsevier

Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Prof. Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Distinguished Professor of Biomaterials of Tecnologico de Monterrey, Mexico.

Prof. Gabriel Luna-Barcenas is a prominent figure in chemical engineering and materials science, currently affiliated with the Institute of Advanced Materials for Sustainable Manufacturing at Tecnologico de Monterrey, Mexico. His distinguished academic background includes a PhD from The University of Texas at Austin and postdoctoral work at Princeton University. Prof. Luna-Barcenas has garnered numerous accolades, including the Fulbright Scholar awards and the National Investigator SNI-III designation. His research, spanning over 280 publications and several patents, focuses on polymer science, nanotechnology, and green chemistry. He has led significant industrial projects and secured diverse funding sources. Known for his impactful work and high citation count, he has also been actively involved in teaching, supervising numerous theses, and organizing major conferences. His leadership roles include President of the Mexican Polymer Society and Delegate for the IUPAC Polymer Division, highlighting his substantial influence in the scientific community.

Profile
Education

Professor Gabriel Luna-Barcenas has a robust academic foundation in chemical engineering, marked by an illustrious educational journey. He earned his Bachelor of Science (BSc) degree in Chemical Engineering from Instituto TecnolĂłgico de Celaya, Mexico, in 1988. He continued his studies at the same institution, completing his Master of Science (MSc) in Chemical Engineering in 1991. His quest for advanced knowledge led him to The University of Texas at Austin, where he obtained his Ph.D. in 1997, specializing in chemical engineering. Following his doctoral studies, Prof. Luna-Barcenas expanded his expertise through a prestigious Postdoctoral Fellowship at Princeton University, where he conducted advanced research from 1997 to 1999. His education, spanning top institutions in Mexico and the United States, laid a strong foundation for his influential career in materials science and engineering, contributing significantly to his expertise in polymer science and sustainable manufacturing.

Professional Experience

Professor Gabriel Luna-Barcenas is a highly accomplished researcher and academic with extensive experience in chemical engineering and materials science. He currently serves as a Senior Researcher at the Industrial R&D Center (CID-DESC) and holds the position of Honorary Joint Professor in the Chemical Engineering Department at The University of Texas at Austin, a role he has held since 2000. Prof. Luna-Barcenas has made significant contributions to the field through his research at Cinvestav Unidad Querétaro, where he also served as Graduate Advisor from 2012 to 2015. His professional journey includes leading numerous industrial projects with prominent companies in Mexico and internationally, focusing on sustainable manufacturing, nanotechnology, and polymer science. Prof. Luna-Barcenas is recognized for his leadership in both academic and industrial settings, demonstrating a commitment to advancing science through collaborative research, innovation, and education. His work has had a profound impact on the development of new materials and processes.

Research Interest

Professor Gabriel Luna-Barcenas is a leading expert in the field of chemical engineering, with a research focus on the development and application of advanced materials for sustainable manufacturing. His work spans across polymer science, nanotechnology, and green chemistry, with a particular emphasis on the use of supercritical fluids and deep eutectic solvents for environmentally friendly polymer processing. Prof. Luna-Barcenas is also deeply involved in the study of biopolymers for biomedical applications, exploring their potential in tissue engineering and regenerative medicine. His research includes the synthesis and characterization of nanocomposites, with a focus on enhancing their antimicrobial, electrical, and mechanical properties for use in various industrial and medical applications. Through his innovative approach, Prof. Luna-Barcenas aims to develop sustainable materials and processes that contribute to a cleaner and more efficient manufacturing industry, while also advancing the understanding of complex polymer systems.

Research Skills

Prof. Gabriel Luna-Barcenas is a highly skilled researcher with expertise in polymer science, nanotechnology, and sustainable materials. His research focuses on the development of advanced materials through innovative processing techniques, such as supercritical fluid processing and deep eutectic solvents. Prof. Luna-Barcenas excels in the synthesis and characterization of polymers, nanocomposites, and biomaterials, with a strong emphasis on their environmental and biomedical applications. He is proficient in using advanced analytical techniques, including high-resolution turbidimetry, to investigate the structural and functional properties of materials. His work is characterized by a multidisciplinary approach, integrating principles of chemical engineering, materials science, and nanotechnology to address complex challenges in sustainable manufacturing. Prof. Luna-Barcenas is also skilled in mentoring and guiding graduate students, fostering a collaborative research environment that promotes innovation and excellence. His contributions to the field are reflected in his extensive publication record, patents, and impactful industrial collaborations.

Awards and Recognition

Professor Gabriel Luna-Barcenas has been widely recognized for his contributions to chemical engineering and materials science. His accolades include the prestigious Fulbright Scholar award in 2014 and 2020, highlighting his international research impact. As a leading figure in the scientific community, he served as President of the Mexican Polymer Society from 2005 to 2007 and has been an influential Delegate to the IUPAC Polymer Division for Mexico and Latin America since 2008. His designation as a National Investigator SNI-III, from 2015 to 2031, reflects his sustained excellence in research. Additionally, he has received the E.D. Farmer Scholarship from the University of Texas at Austin, and his leadership extends to his role as President of the CONACYT Nanoscience & Nanotechnology Network of Mexico since 2015. These awards and recognitions underscore Luna-Barcenas’s exceptional contributions to advancing science and technology on both national and international stages.

Conclusion

Gabriel Luna-Barcenas is highly suitable for the Best Researcher Award due to his outstanding contributions to polymer science, sustainable manufacturing, and nanotechnology. His extensive publication record, impactful patents, and leadership roles underscore his significant influence in the field. Addressing areas for improvement, such as enhancing public engagement and fostering diverse collaborations, could further elevate his already impressive career. Overall, Luna-Barcenas exemplifies the qualities of a leading researcher and innovator.

Publications Top Notes

  • Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples
    • Authors: A. GutiĂ©rrez, M.G. RamĂ­rez-Ledesma, G.A. Rivas, R.A. Escalona-Villalpando, J. Ledesma-GarcĂ­a
    • Year: 2024
  • Metathesis of butadiene rubber for the sustainable production of polyesters and polyols
    • Authors: M. Burelo, A.Y. Yau, S. GutiĂ©rrez, G. Luna-Barcenas, C.D. Treviño-Quintanilla
    • Year: 2024
    • Citations: 1
  • Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes
    • Authors: A. Hernandez-Rangel, P. Silva-Bermudez, A. Almaguer-Flores, G. Luna-Barcenas, C. Velasquillo
    • Year: 2024
  • Combined antibacterial and antifouling properties of polyethersulfone mixed matrix membranes with zwitterionic graphene oxide nanostructures
    • Authors: R. Castellanos Espinoza, M.J. Huhn Ibarra, A.J. Montes Luna, M. Guerra Balcázar, B.L. España Sánchez
    • Year: 2024
  • Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis
    • Authors: A. RodrĂ­guez-Buenrostro, A. MartĂ­nez-Lázaro, M.V. Contreras-MartĂ­nez, J. Ledesma-GarcĂ­a, L.G. Arriaga
    • Year: 2024
  • Surface engineering of carbon dots synthesized from green sources with antiviral properties
    • Authors: A. LĂłpez-Amador, B.I. JimĂ©nez-Muñóz, A. Gutierrez-Ortega, M. Estevez, B. Liliana España-Sánchez
    • Year: 2024
  • Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture
    • Authors: C. Ortega-Sánchez, Y. Melgarejo-RamĂ­rez, R. RodrĂ­guez-RodrĂ­guez, V. MartĂ­nez-LĂłpez, Z.Y. GarcĂ­a-Carvajal
    • Year: 2024
    • Citations: 3
  • Rheological, Physicochemical, Thermal, and Mechanical Properties of Biopolymeric Films Incorporated with Micro-Holocellulose from Coffee Residues
    • Authors: J.D. Hernández-Varela, J.J. Chanona-PĂ©rez, G.L. Bárcenas, D.I. Medina
    • Year: 2024
  • Physiological evaluation of PVP-coated AgNP in the rat small intestine: an ex vivo approach
    • Authors: J.A. Chávez-Hernández, B.L. España-Sánchez, P. Aguirre-Bañuelos, G. Luna-Bárcenas, C. Gonzalez
    • Year: 2024
  • Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells
    • Authors: A. Ochoa-Sanchez, P. Sahare, S. Pathak, G. Luna-Bárcenas, S. Paul
    • Year: 2024