Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Hua-Yong Liao | Materials Science | Best Researcher Award

Dr. Hua-Yong Liao | Materials Science | Best Researcher Award

Teacher at Changzhou University, China

Dr. Hua-yong Liao, a distinguished scholar in materials science and polymer rheology, serves as a faculty member at Changzhou University, China. With over 15 years of experience in academia and research, he has made significant contributions to understanding polymer processing and rheology. He has published extensively in high-impact journals, with research spanning topics such as dynamic rheological behavior of polymer blends and advanced composite materials. Dr. Liao has also secured over 40 patents, showcasing his innovative approach to experimental methodologies. His expertise includes the design and application of advanced rheometric instruments, which bridge the gap between academic research and industrial applications. Additionally, his international experience at the National University of Singapore reflects his global recognition and collaborative endeavors.

Professional Profile

Education

Dr. Hua-yong Liao earned his Ph.D. in Mechanical Engineering from Zhejiang University, China, in 2007, specializing in polymer rheology under the mentorship of Professor Yu-Run Fan. He completed his Master’s degree in Mechanical Engineering at Beijing University of Chemical Engineering in 2003, following his Bachelor of Engineering in the same field from Zhengzhou University in 1999. His academic training provided a strong foundation in polymer science, preparing him for groundbreaking research in materials engineering.

Professional Experience

Since 2007, Dr. Liao has been a dedicated faculty member at Changzhou University, focusing on materials science and engineering. His work involves teaching, mentoring students, and conducting innovative research in polymer rheology and processing. In 2013-2014, he was a research fellow at the National University of Singapore, where he worked with renowned expert Nhan Phan-Thien. Prior to his academic career, Dr. Liao gained industrial experience as a technician at Wuhan Aerospace Corrugated Pipe Company from 1999 to 2000. This diverse background has equipped him with both academic insights and practical skills for advancing polymer science.

Research Interests

Dr. Liao’s research interests lie at the intersection of polymer processing and rheology. He specializes in exploring the dynamic rheological behavior of polymer blends, such as low-density polyethylene and polypropylene composites. His work also investigates compatibilization techniques for advanced polymer composites and foaming abilities of modified polyethylene terephthalate. With a focus on bridging theoretical and experimental approaches, his research aims to optimize polymer performance for industrial applications, making significant contributions to materials science and engineering.

Research Skills

Dr. Liao possesses advanced expertise in using rotational and capillary rheometers to study the flow and deformation of polymer melts. He is skilled in designing innovative rheometric instruments, as evidenced by his patented bidirectional extrusion capillary rheometers. His proficiency extends to experimental polymer processing techniques, data analysis, and mathematical modeling of polymer behavior. Additionally, he has strong skills in academic writing, securing intellectual property, and developing methodologies that integrate experimental and industrial requirements.

Awards and Honors

Dr. Liao has been recognized for his groundbreaking contributions to polymer science through numerous accolades. He holds over 40 patents, including innovations in rheometric equipment that have advanced the study of polymer rheology. His publications in esteemed journals highlight his prominence in the field, earning him respect as a leading researcher. Furthermore, his international fellowship at the National University of Singapore underscores his global recognition and commitment to collaborative research in materials science.

Conclusion

Hua-yong Liao is a strong candidate for the Best Researcher Award due to his extensive work in polymer rheology, notable patent portfolio, and commitment to advancing materials science. While his technical expertise and contributions are exceptional, enhancing his research impact through collaborations, leadership in large projects, and broader engagement with the scientific community would further solidify his position as a leading researcher.

Publication Top Notes

  • Rheological investigation on polyethylene terephthalate (PET) filled with hollow glass beads
    • Authors: Liao, H.-Y., Chen, H.-L., Tao, G.-L., Liu, C.-L.
    • Year: 2024
  • Investigation on Foaming Ability of Modified Polyethylene Terephthalate (PET) Composites Prepared Using Compression Molding
    • Authors: Liao, H.-Y., Gao, J., Tao, G.-L., Liu, C.-L.
    • Year: 2024
  • Rheology of a polypropylene/low-density polyethylene blending melt: Fitting dynamic rheological data by Palierne model and Lee and Park model
    • Authors: Liao, H.-Y., Liao, R.-R., Li, S.-Q., Liu, C.-L., Tao, G.-L.
    • Year: 2022
    • Citations: 2
  • A polypropylene/high-density polyethylene blend compatibilized with an ethylene-propylene-diene monomer block copolymer: Fitting dynamic rheological data by emulsion models with a physical scheme
    • Authors: Liao, H.-Y., Tao, G.-L., Liu, C.-L., Gong, F.-H.
    • Year: 2016
    • Citations: 7
  • Dynamic rheological behavior of reactively compatibilized polypropylene/polyamide 6 blending melts
    • Authors: Liao, H.-Y., Zheng, L.-Y., Hu, Y.-B., Tao, G.-L., Liu, C.-L.
    • Year: 2015
    • Citations: 9
  • Dynamic rheological behavior of two LDPE/HDPE binary blending melts
    • Authors: Liao, H.-Y., Qi, L.-Y., Tao, G.-L., Liu, C.-L.
    • Year: 2015
    • Citations: 4
  • Rheological behavior of a LDPE/PS/SBS blending melt
    • Authors: Liao, H.-Y., Lu, H.-B.
    • Year: 2014
    • Citations: 3
  • Dynamic rheological behavior of PP/HDPE/EPDM ternary blends
    • Authors: Liao, H., Shi, X., Tao, G.
    • Year: 2014
  • Impact strength and melt flow rate of high-density polyethylene melts
    • Authors: Liao, H., Tao, G.
    • Year: 2013
    • Citations: 4
  • Mould foaming of HDPE/LDPE blends
    • Authors: Liao, H., Tao, G.
    • Year: 2013
    • Citations: 2