Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Dr. Mohammed Ali Dheyab | Materials Science | Best Researcher Award

Senior Lecturer from University Sains Malaysia, Malaysia

Dr. Mohammed Ali Dheyab is a distinguished researcher and academic currently serving as a Lecturer in the Medical Physics Department, School of Physics at Universiti Sains Malaysia. With a strong academic foundation and over a decade of research and teaching experience, Dr. Dheyab has established himself as an expert in the interdisciplinary fields of nanotechnology, medical imaging, and materials science. He holds a PhD in Medical Physics from Universiti Sains Malaysia, an MSc in Nanomaterials Physics from Osmania University, and a BSc in Physics from Anbar University, Iraq. Dr. Dheyab has authored and co-authored more than 50 publications indexed in Google Scholar, Scopus, and Web of Science, with over 2,300 citations and an impressive h-index of 30. His work is recognized for its innovative approaches in the synthesis of nanoparticles for medical and diagnostic applications, including cancer treatment. He also actively contributes to academic life through teaching, supervising, and organizing academic and extracurricular events. His professional presence is evident across global platforms such as Google Scholar, LinkedIn, ResearchGate, and Publons. Dr. Dheyab’s ability to merge fundamental research with practical applications positions him as a leading scholar in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Mohammed Ali Dheyab’s educational trajectory reflects a strong interdisciplinary foundation that underpins his innovative research. He earned his PhD in Medical Physics from Universiti Sains Malaysia (2017–2021), where his doctoral work focused on the development of advanced nanomaterials for biomedical applications, particularly in diagnostics and cancer therapy. Prior to that, he completed a Master of Science in Nanomaterials Physics from Osmania University, India (2014–2016), where he was introduced to the synthesis and characterization of nanoscale materials and their electronic properties. His academic journey began with a Bachelor of Science in Physics from Anbar University, Iraq (2009–2013), laying the groundwork in classical and modern physics that would later support his specialization in medical imaging and nanotechnology. His strong educational background across physics, nanomaterials, and medical sciences provides him with a unique interdisciplinary skillset. It enables him to approach complex research challenges with both theoretical knowledge and practical competence. His studies in multiple countries have further enriched his academic exposure and collaborative mindset, equipping him with international perspectives essential for global scientific engagement. Dr. Dheyab’s educational qualifications have played a critical role in shaping his successful academic and research career.

Professional Experience

Dr. Mohammed Ali Dheyab has accumulated a broad and impactful professional experience across academic and research institutions. He is currently employed as a Lecturer at the Medical Physics Department, School of Physics, Universiti Sains Malaysia (USM), where he teaches various subjects including diagnostic radiology, medical lasers, and magnetic resonance imaging. Before assuming this role, he served as a Postdoctoral Fellow at the same institution from July 2021 to 2022, contributing to research in nanomedicine and imaging technologies. Between 2017 and 2020, Dr. Dheyab was affiliated as a Research Assistant with both the School of Physics and NanoBRI Lab at INFORMM, USM, where he worked on nanoparticle synthesis, cancer photothermal therapy, and multimodality imaging probes. In 2020, he also served briefly as a Research Assistant within the School of Physics, further strengthening his technical skills and collaborative research outputs. In addition to his academic roles, Dr. Dheyab has participated in student engagement initiatives as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at USM. His career trajectory showcases a balance between teaching, research, and institutional service, highlighting his adaptability and dedication to both scientific advancement and student development.

Research Interest

Dr. Mohammed Ali Dheyab’s research interests lie at the intersection of nanotechnology, materials science, and medical imaging, with a focus on real-world applications in cancer diagnosis and therapy. His core areas of investigation include the synthesis and characterization of inorganic nanoparticles, molecular and cellular nanoprobes, nanomedicine, and multimodality imaging probes. A key aspect of his work is the development of smart nanoparticles for targeted cancer treatment, utilizing properties like surface chemistry and catalytic behavior for precision medicine. He is also involved in designing photothermal therapy agents and nanozymes to enhance the eradication of cancer cells, especially breast cancer. His interest in multimodal imaging technologies bridges medical physics and materials engineering, enabling improved diagnostic tools using ultrasound, MRI, and optical techniques. Dr. Dheyab also explores the integration of nanomaterials in other domains such as food packaging and environmental sensing. His research is distinguished by a blend of innovation and applicability, aiming to solve complex biomedical problems through interdisciplinary approaches. The translation of fundamental nanoscale research into clinical and industrial settings is central to his scientific vision, positioning him at the forefront of modern medical physics and materials research.

Research Skills

Dr. Mohammed Ali Dheyab possesses an impressive portfolio of research skills that spans experimental, analytical, and computational domains. He is highly proficient in nanoparticle synthesis and surface modification techniques essential for developing functional materials for medical applications. His experience includes electron beam evaporation, sol-gel processing, and colloidal methods for producing nano-scale structures. In terms of characterization, Dr. Dheyab is skilled in a wide range of techniques including UV-Vis spectroscopy, X-ray diffraction, FTIR, SEM, and TEM, which are vital for assessing the structural, morphological, and optical properties of materials. He is also adept in medical imaging instrumentation, particularly in radiological physics, magnetic resonance imaging, and laser technology, which align with his teaching responsibilities and research in cancer diagnostics. His software skills include data analysis tools like OriginLab, Microsoft Excel, and reference management systems such as EndNote and Mendeley. Furthermore, he is familiar with DICOM imaging formats, enhancing his capabilities in clinical image processing. His strong analytical mindset, combined with excellent organizational and communication skills, allows him to manage complex experiments and collaborate across disciplines. Dr. Dheyab’s research skillset is well-suited for cutting-edge investigations in nanomedicine and medical physics.

Awards and Honors

Dr. Mohammed Ali Dheyab has garnered recognition through academic achievements and extracurricular engagement throughout his career. While formal national or international awards are not explicitly listed, his accomplishments in research productivity and scholarly impact speak volumes. With over 2,300 citations and an h-index of 30, he has effectively established his scientific reputation among peers. His selection as a Kawan Ambassador for the International Mobility and Collaboration Centre (IMCC) at Universiti Sains Malaysia highlights his commitment to student life and internationalization, serving as a cultural and sports representative. He has also received the Bronze Medallion from the Life Saving Society of Malaysia, reflecting his multifaceted capabilities beyond academia. Furthermore, his role as an organizer of the Ramadan Championship in 2021 and participation in university sports activities showcase his leadership and team-building skills. Though he has not yet been recognized with major scientific awards, his consistent publication in high-impact journals and editorial contributions position him well for future accolades. As his career advances, he is likely to receive greater formal recognition in both scientific and academic circles. His profile demonstrates a blend of academic excellence, community service, and leadership potential.

Conclusion

In conclusion, Dr. Mohammed Ali Dheyab exemplifies the qualities of an emerging academic leader and accomplished researcher. His contributions to nanomedicine, medical physics, and imaging technologies are grounded in rigorous research and supported by a solid educational foundation. With a publication record that includes over 2,300 citations and appearances in high-quality, indexed journals, he has demonstrated a significant impact in his field. Dr. Dheyab’s involvement in teaching, supervision, international collaboration, and university-level engagement illustrates his commitment to the broader academic community. While there is potential for further recognition through competitive research grants, patents, or high-profile scientific awards, his trajectory indicates continuous professional growth. He has already laid the groundwork for future leadership in both research and education. His ability to merge innovative nanotechnology with real-world biomedical applications marks him as a promising candidate for prestigious honors such as the Best Researcher Award. His interdisciplinary expertise, research productivity, and dedication to academic service make him not only a valuable asset to his institution but also a noteworthy contributor to global scientific advancement.

Publications Top Notes

  1. Simple rapid stabilization method through citric acid modification for magnetite nanoparticles
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, P.M. Khaniabadi, B. Mehrdel
    Journal: Scientific Reports, 10(1), 10793
    Year: 2020
    Citations: 206

  2. Recent advances in extraction, modification, and application of chitosan in packaging industry
    Authors: N. Oladzadabbasabadi, A.M. Nafchi, F. Ariffin, M.M.J.O. Wijekoon, et al.
    Journal: Carbohydrate Polymers, 277, 118876
    Year: 2022
    Citations: 168

  3. Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles
    Authors: M.S. Jameel, A.A. Aziz, M.A. Dheyab
    Journal: Green Processing and Synthesis, 9(1), 386–398
    Year: 2020
    Citations: 128

  4. Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue
    Authors: M.A. Rabeea, M.N. Owaid, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Journal of Environmental Chemical Engineering, 8(3), 103841
    Year: 2020
    Citations: 127

  5. Monodisperse gold nanoparticles: A review on synthesis and their application in modern medicine
    Authors: M.A. Dheyab, A.A. Aziz, P. Moradi Khaniabadi, M.S. Jameel, et al.
    Journal: International Journal of Molecular Sciences, 23(13), 7400
    Year: 2022
    Citations: 100

  6. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, O.A. Noqta, B. Mehrdel
    Journal: Chinese Journal of Physics, 64, 305–325
    Year: 2020
    Citations: 98

  7. Gold nanoparticles-based photothermal therapy for breast cancer
    Authors: M.A. Dheyab, A.A. Aziz, P.M. Khaniabadi, M.S. Jameel, N. Oladzadabbasabadi, et al.
    Journal: Photodiagnosis and Photodynamic Therapy, 42, 103312
    Year: 2023
    Citations: 96

  8. Mechanisms of effective gold shell on Fe₃O₄ core nanoparticles formation using sonochemistry method
    Authors: M.A. Dheyab, A.A. Aziz, M.S. Jameel, P.M. Khaniabadi, B. Mehrdel
    Journal: Ultrasonics Sonochemistry, 64, 104865
    Year: 2020
    Citations: 92

  9. Mushroom-assisted synthesis of triangle gold nanoparticles using the aqueous extract of fresh Lentinula edodes (shiitake), Omphalotaceae
    Authors: M.N. Owaid, M.A. Rabeea, A.A. Aziz, M.S. Jameel, M.A. Dheyab
    Journal: Environmental Nanotechnology, Monitoring & Management, 12, 100270
    Year: 2019
    Citations: 85

  10. Scenario analysis of COVID-19 transmission dynamics in Malaysia with the possibility of reinfection and limited medical resources scenarios
    Authors: A.M. Salman, I. Ahmed, M.H. Mohd, M.S. Jamiluddin, M.A. Dheyab
    Journal: Computers in Biology and Medicine, 133, 104372
    Year: 2021
    Citations: 73

Bardia Hejazi | Materials Science | Best Researcher Award

Dr. Bardia Hejazi | Materials Science | Best Researcher Award

Postdoc at Federal Institute for Materials Research and Testing, Germany

Bardia Hejazi is a dedicated physicist currently serving as a scientist at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. With a rich background in fluid dynamics, particle interactions, and X-ray imaging, he specializes in failure analysis of 3D printed materials, particularly titanium components. His research journey has taken him from his undergraduate studies in Iran to prestigious institutions, including a postdoctoral role at the Max Planck Institute for Dynamics and Self-Organization. Here, he focused on the intersection of fluid dynamics and biology, particularly the flight dynamics of honeybees in varying environmental conditions. Hejazi’s multidisciplinary approach not only contributes to advancements in materials science but also provides insights into complex biological systems. His contributions to both academia and outreach highlight his commitment to scientific communication and mentorship, fostering a diverse scientific community. His active participation in research, teaching, and organizational roles showcases his ability to bridge theoretical knowledge with practical applications, positioning him as a promising candidate for recognition as a leading researcher in his field.

Professional Profile

Education

Bardia Hejazi completed his Ph.D. in Physics at Wesleyan University in January 2021, where he conducted research on particle-turbulence interactions under the guidance of Professor Greg A. Voth. His doctoral thesis significantly advanced the understanding of how particles behave in turbulent flows, contributing to the broader field of fluid dynamics. Prior to his Ph.D., Hejazi earned a Bachelor of Science in Physics from the Sharif University of Technology in Tehran, Iran, in June 2015. This strong educational foundation equipped him with essential theoretical knowledge and practical skills in experimental and computational physics. His education also includes a visiting research experience at Harvard University’s Center for Nanoscale Systems, where he developed particle manufacturing techniques using advanced 3D printing technologies. Throughout his academic journey, Hejazi has demonstrated a commitment to interdisciplinary research, leveraging his expertise in physics to explore applications in material science, biology, and environmental studies. His solid educational background is complemented by numerous research experiences, allowing him to contribute meaningfully to diverse scientific inquiries.

Professional Experience

Bardia Hejazi has cultivated a diverse professional experience, beginning as an undergraduate researcher at Sharif University of Technology and continuing through various prestigious research positions. Currently, he serves as a scientist at BAM in Berlin, where he focuses on the failure analysis of 3D printed titanium components, utilizing advanced X-ray computed tomography imaging techniques. Before this role, Hejazi completed a postdoctoral fellowship at the Max Planck Institute for Dynamics and Self-Organization, engaging in innovative studies on honeybee flight dynamics and the effects of atmospheric turbulence. His prior experiences include conducting field measurements of cloud dynamics and investigating the effectiveness of face masks in mitigating disease transmission. Additionally, Hejazi’s research at Wesleyan University involved tracking flexible particles in fluid flows and studying their dynamics, further enhancing his expertise in fluid dynamics and experimental physics. He has also contributed to undergraduate education as an instructor and teaching assistant, where he applied his knowledge to nurture the next generation of physicists. This combination of research and teaching roles underscores his commitment to advancing scientific knowledge and education.

Research Interests

Bardia Hejazi’s research interests span a range of interdisciplinary topics within physics, particularly focusing on fluid dynamics, material science, and biological systems. His current research involves utilizing X-ray imaging techniques for failure analysis of 3D printed titanium components, exploring the intricate relationships between material properties and structural integrity. Hejazi’s postdoctoral research at the Max Planck Institute allowed him to investigate honeybee flight dynamics in windy environments, revealing critical insights into how turbulence affects biological behavior. He is also interested in aerosol dynamics and their implications for public health, particularly in understanding how airborne particles contribute to disease transmission in indoor environments. Throughout his academic career, Hejazi has engaged in computational studies, developing algorithms to track particle deformations in fluid flows, and exploring the interactions of flexible particles with turbulence. His diverse research interests not only reflect his expertise in physics but also emphasize his commitment to addressing complex scientific challenges that span multiple disciplines. By bridging the gap between theoretical concepts and practical applications, Hejazi aims to contribute to advancements in both fundamental science and real-world issues.

Research Skills

Bardia Hejazi possesses a robust skill set that encompasses a wide array of research methodologies and technical proficiencies. His expertise in fluid dynamics and particle physics is complemented by practical skills in X-ray computed tomography and image analysis, enabling him to perform detailed investigations into material properties and behaviors. Hejazi has developed advanced coding skills for image analysis, quantifying crack features in 3D printed components, and facilitating in-situ experiments. His research experience is supported by a solid foundation in computational physics, allowing him to simulate complex systems and analyze dynamic behaviors of particles in various environments. Additionally, Hejazi has hands-on experience with particle manufacturing techniques, particularly using nano-scale 3D printing, enhancing his ability to innovate within experimental setups. His strong analytical capabilities are evidenced by his numerous publications in high-impact journals, showcasing his ability to communicate complex findings effectively. Furthermore, Hejazi has demonstrated leadership and mentorship skills through his roles in teaching and outreach, reflecting his commitment to fostering collaboration and diversity within the scientific community. His interdisciplinary skills position him as a valuable contributor to research initiatives across various domains.

Awards and Honors

Bardia Hejazi has been recognized for his academic and research excellence through several prestigious awards and honors throughout his career. Notably, he received the 1st Prize at the national scientific competition of the Iranian Society of Acoustics and Vibrations in December 2013, showcasing his early commitment to scientific inquiry and innovation. Hejazi was also selected to represent Iran as a member of the national team in the 22nd International Young Physicists Tournament held in Tianjin, China, in July 2009, reflecting his strong foundation in physics during his formative years. His educational achievements, including a Ph.D. from Wesleyan University, further underscore his dedication to advancing knowledge in the field of physics. Additionally, Hejazi has successfully secured funding from the Max Planck Society for high-speed camera purchases to support his research on fluid dynamics, indicating recognition of the significance of his work. These accolades not only highlight Hejazi’s individual achievements but also demonstrate his ongoing commitment to contributing to the scientific community and fostering the advancement of research in physics and its applications.

Conclusion

Bardia Hejazi demonstrates an impressive profile for the Best Researcher Award, characterized by a combination of innovative research, technical expertise, and leadership in the scientific community. His contributions have significant implications for both academic and practical applications, particularly in materials science and public health. By addressing the identified areas for improvement, he can further enhance his impact and visibility within the research community. Overall, Bardia is a strong candidate for the award, reflecting both current achievements and future potential.

Publications Top Notes

  • An upper bound on one-to-one exposure to infectious human respiratory particles
    • Authors: G. Bagheri, B. Thiede, B. Hejazi, O. Schlenczek, E. Bodenschatz
    • Year: 2021
    • Citations: 151
  • Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran
    • Authors: M. Ghafari, B. Hejazi, A. Karshenas, S. Dascalu, A. Kadvidar, M.A. Khosravi, …
    • Year: 2021
    • Citations: 35
  • Using deformable particles for single-particle measurements of velocity gradient tensors
    • Authors: B. Hejazi, M. Krellenstein, G.A. Voth
    • Year: 2019
    • Citations: 17
  • Emergent scar lines in chaotic advection of passive directors
    • Authors: B. Hejazi, B. Mehlig, G.A. Voth
    • Year: 2017
    • Citations: 9
  • On the risk of infection by infectious aerosols in large indoor spaces
    • Authors: B. Hejazi, O. Schlenczek, B. Thiede, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 4
  • Honeybees modify flight trajectories in turbulent wind
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 3
  • Particle-turbulence interactions
    • Author: B. Hejazi
    • Year: 2021
    • Citations: 3
  • Crack characterization of fatigued additively manufactured Ti-6Al-4V using X-ray computed tomography and deep learning methods
    • Authors: B. Hejazi, A. Compart, T. Fritsch, R. Wagner, A. Weidner, H. Biermann, …
    • Year: 2024
  • Honeybee flight dynamics and pair separation in windy conditions near the hive entrance
    • Authors: B. Hejazi, H. Antigny, S. Huellstrunk, E. Bodenschatz
    • Year: 2023
  • Honeybee flight in windy conditions
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022