Bardia Hejazi | Materials Science | Best Researcher Award

Dr. Bardia Hejazi | Materials Science | Best Researcher Award

Postdoc at Federal Institute for Materials Research and Testing, Germany

Bardia Hejazi is a dedicated physicist currently serving as a scientist at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. With a rich background in fluid dynamics, particle interactions, and X-ray imaging, he specializes in failure analysis of 3D printed materials, particularly titanium components. His research journey has taken him from his undergraduate studies in Iran to prestigious institutions, including a postdoctoral role at the Max Planck Institute for Dynamics and Self-Organization. Here, he focused on the intersection of fluid dynamics and biology, particularly the flight dynamics of honeybees in varying environmental conditions. Hejazi’s multidisciplinary approach not only contributes to advancements in materials science but also provides insights into complex biological systems. His contributions to both academia and outreach highlight his commitment to scientific communication and mentorship, fostering a diverse scientific community. His active participation in research, teaching, and organizational roles showcases his ability to bridge theoretical knowledge with practical applications, positioning him as a promising candidate for recognition as a leading researcher in his field.

Professional Profile

Education

Bardia Hejazi completed his Ph.D. in Physics at Wesleyan University in January 2021, where he conducted research on particle-turbulence interactions under the guidance of Professor Greg A. Voth. His doctoral thesis significantly advanced the understanding of how particles behave in turbulent flows, contributing to the broader field of fluid dynamics. Prior to his Ph.D., Hejazi earned a Bachelor of Science in Physics from the Sharif University of Technology in Tehran, Iran, in June 2015. This strong educational foundation equipped him with essential theoretical knowledge and practical skills in experimental and computational physics. His education also includes a visiting research experience at Harvard University’s Center for Nanoscale Systems, where he developed particle manufacturing techniques using advanced 3D printing technologies. Throughout his academic journey, Hejazi has demonstrated a commitment to interdisciplinary research, leveraging his expertise in physics to explore applications in material science, biology, and environmental studies. His solid educational background is complemented by numerous research experiences, allowing him to contribute meaningfully to diverse scientific inquiries.

Professional Experience

Bardia Hejazi has cultivated a diverse professional experience, beginning as an undergraduate researcher at Sharif University of Technology and continuing through various prestigious research positions. Currently, he serves as a scientist at BAM in Berlin, where he focuses on the failure analysis of 3D printed titanium components, utilizing advanced X-ray computed tomography imaging techniques. Before this role, Hejazi completed a postdoctoral fellowship at the Max Planck Institute for Dynamics and Self-Organization, engaging in innovative studies on honeybee flight dynamics and the effects of atmospheric turbulence. His prior experiences include conducting field measurements of cloud dynamics and investigating the effectiveness of face masks in mitigating disease transmission. Additionally, Hejazi’s research at Wesleyan University involved tracking flexible particles in fluid flows and studying their dynamics, further enhancing his expertise in fluid dynamics and experimental physics. He has also contributed to undergraduate education as an instructor and teaching assistant, where he applied his knowledge to nurture the next generation of physicists. This combination of research and teaching roles underscores his commitment to advancing scientific knowledge and education.

Research Interests

Bardia Hejazi’s research interests span a range of interdisciplinary topics within physics, particularly focusing on fluid dynamics, material science, and biological systems. His current research involves utilizing X-ray imaging techniques for failure analysis of 3D printed titanium components, exploring the intricate relationships between material properties and structural integrity. Hejazi’s postdoctoral research at the Max Planck Institute allowed him to investigate honeybee flight dynamics in windy environments, revealing critical insights into how turbulence affects biological behavior. He is also interested in aerosol dynamics and their implications for public health, particularly in understanding how airborne particles contribute to disease transmission in indoor environments. Throughout his academic career, Hejazi has engaged in computational studies, developing algorithms to track particle deformations in fluid flows, and exploring the interactions of flexible particles with turbulence. His diverse research interests not only reflect his expertise in physics but also emphasize his commitment to addressing complex scientific challenges that span multiple disciplines. By bridging the gap between theoretical concepts and practical applications, Hejazi aims to contribute to advancements in both fundamental science and real-world issues.

Research Skills

Bardia Hejazi possesses a robust skill set that encompasses a wide array of research methodologies and technical proficiencies. His expertise in fluid dynamics and particle physics is complemented by practical skills in X-ray computed tomography and image analysis, enabling him to perform detailed investigations into material properties and behaviors. Hejazi has developed advanced coding skills for image analysis, quantifying crack features in 3D printed components, and facilitating in-situ experiments. His research experience is supported by a solid foundation in computational physics, allowing him to simulate complex systems and analyze dynamic behaviors of particles in various environments. Additionally, Hejazi has hands-on experience with particle manufacturing techniques, particularly using nano-scale 3D printing, enhancing his ability to innovate within experimental setups. His strong analytical capabilities are evidenced by his numerous publications in high-impact journals, showcasing his ability to communicate complex findings effectively. Furthermore, Hejazi has demonstrated leadership and mentorship skills through his roles in teaching and outreach, reflecting his commitment to fostering collaboration and diversity within the scientific community. His interdisciplinary skills position him as a valuable contributor to research initiatives across various domains.

Awards and Honors

Bardia Hejazi has been recognized for his academic and research excellence through several prestigious awards and honors throughout his career. Notably, he received the 1st Prize at the national scientific competition of the Iranian Society of Acoustics and Vibrations in December 2013, showcasing his early commitment to scientific inquiry and innovation. Hejazi was also selected to represent Iran as a member of the national team in the 22nd International Young Physicists Tournament held in Tianjin, China, in July 2009, reflecting his strong foundation in physics during his formative years. His educational achievements, including a Ph.D. from Wesleyan University, further underscore his dedication to advancing knowledge in the field of physics. Additionally, Hejazi has successfully secured funding from the Max Planck Society for high-speed camera purchases to support his research on fluid dynamics, indicating recognition of the significance of his work. These accolades not only highlight Hejazi’s individual achievements but also demonstrate his ongoing commitment to contributing to the scientific community and fostering the advancement of research in physics and its applications.

Conclusion

Bardia Hejazi demonstrates an impressive profile for the Best Researcher Award, characterized by a combination of innovative research, technical expertise, and leadership in the scientific community. His contributions have significant implications for both academic and practical applications, particularly in materials science and public health. By addressing the identified areas for improvement, he can further enhance his impact and visibility within the research community. Overall, Bardia is a strong candidate for the award, reflecting both current achievements and future potential.

Publications Top Notes

  • An upper bound on one-to-one exposure to infectious human respiratory particles
    • Authors: G. Bagheri, B. Thiede, B. Hejazi, O. Schlenczek, E. Bodenschatz
    • Year: 2021
    • Citations: 151
  • Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran
    • Authors: M. Ghafari, B. Hejazi, A. Karshenas, S. Dascalu, A. Kadvidar, M.A. Khosravi, …
    • Year: 2021
    • Citations: 35
  • Using deformable particles for single-particle measurements of velocity gradient tensors
    • Authors: B. Hejazi, M. Krellenstein, G.A. Voth
    • Year: 2019
    • Citations: 17
  • Emergent scar lines in chaotic advection of passive directors
    • Authors: B. Hejazi, B. Mehlig, G.A. Voth
    • Year: 2017
    • Citations: 9
  • On the risk of infection by infectious aerosols in large indoor spaces
    • Authors: B. Hejazi, O. Schlenczek, B. Thiede, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 4
  • Honeybees modify flight trajectories in turbulent wind
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 3
  • Particle-turbulence interactions
    • Author: B. Hejazi
    • Year: 2021
    • Citations: 3
  • Crack characterization of fatigued additively manufactured Ti-6Al-4V using X-ray computed tomography and deep learning methods
    • Authors: B. Hejazi, A. Compart, T. Fritsch, R. Wagner, A. Weidner, H. Biermann, …
    • Year: 2024
  • Honeybee flight dynamics and pair separation in windy conditions near the hive entrance
    • Authors: B. Hejazi, H. Antigny, S. Huellstrunk, E. Bodenschatz
    • Year: 2023
  • Honeybee flight in windy conditions
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022

 

Kouider MADANI | Materials Science | Excellence in Research

Prof. Kouider MADANI | Materials Science | Excellence in Research

Teacher/Researcher at Djillali Liabès University of Sidi Bel Abbès, Algeria.

Kouider Madani is a distinguished Professor at Université de Sidi Bel Abbes, specializing in materials science and mechanical engineering. His academic journey includes a Doctorate in Material Sciences and significant roles in the university, including Head of the Mechanical Engineering Department and various curriculum responsibilities. Madani’s research focuses on the characterization, durability, and repair of composite materials, with notable contributions published in high-impact journals such as the Journal of Composite and Journal of Failure Analysis and Prevention. His work addresses critical areas like the effect of aging on composites and adhesive technologies. Madani has demonstrated strong leadership and organizational skills through his administrative roles, including overseeing curriculum development and departmental management. For enhanced recognition, expanding international collaborations and diversifying publication venues could further amplify his research impact. His achievements reflect a strong potential for the Research for Excellence in Research award.

Profile

Education

Kouider Madani’s educational background reflects a strong foundation in materials science and mechanical engineering. He earned his Habilitation à Diriger des Recherches from Université de Sidi Bel Abbes in December 2008, signifying his advanced qualifications for supervising doctoral research. Prior to this, he completed his Doctorate in Materials Science at the same institution in September 2007, graduating with high honors. His academic journey began with a Magister in Materials Science in November 1998 and an Engineering Degree in Mechanical Engineering in October 1994, both from Université Djillali Liabes de Sidi Bel Abbes. These degrees established his expertise in mechanical and materials engineering, providing a solid base for his subsequent research and academic career.

Professional Experience

Kouider Madani has a distinguished career in academia, currently serving as a Professor at Université de Sidi Bel Abbes. His professional journey began in October 1994 as an Assistant Technical Lecturer at Institut de Génie Mécanique, Université Djillali Liabes, progressing through roles such as Maître-Assistant and Maître de Conférences. Since December 2013, he has held the position of Professor in the Department of Mechanical Engineering. Madani’s expertise lies in material sciences, focusing on the characterization, durability, and repair of composite materials. He has led several administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. His leadership extends to managing the Science and Technology domain, reflecting his broad influence in academia. Throughout his career, Madani has been involved in significant research projects and has published extensively in reputable journals, demonstrating his commitment to advancing knowledge in his field.

Research Interest

Kouider Madani’s research interests primarily focus on the characterization and durability of adhesive and composite materials. His work explores the mechanics of bonded joints, including the repair of damaged structures using composite patch techniques. He is particularly interested in understanding the effects of aging on the mechanical and physical properties of composites and adhesives, as well as studying delamination and debonding phenomena in these materials. His research contributes to improving the reliability and performance of composite structures in various engineering applications. Noteworthy areas of his investigation include the impact of environmental conditions on adhesive strength and the development of advanced analytical methods to assess failure mechanisms. Through his studies, Madani aims to enhance the longevity and efficiency of composite materials, addressing critical challenges in materials science and engineering. His research has been published in leading journals and significantly impacts the field of mechanical engineering.

 Research Skills

Kouider Madani’s research skills are characterized by his deep expertise in materials science and mechanical engineering. His research primarily focuses on the characterization and durability of adhesive bonds and composite materials, including the repair of damaged structures using composite patching techniques. Madani has demonstrated proficiency in studying the effects of aging on the mechanical and physical properties of composites, as well as investigating delamination and adhesion failures. His technical skills are evidenced by his significant publications in reputable journals, where he applies advanced analytical methods such as isogeometric analysis and parametric cohesive zone modeling. Additionally, Madani’s extensive experience in experimental and numerical investigations, including impact behavior studies and energy release rate variations, highlights his ability to integrate theoretical knowledge with practical applications. His methodological rigor and innovative approaches underscore his capabilities in advancing the field of materials science and engineering.

Award and Recognition

Kouider Madani has garnered significant recognition throughout his distinguished career in mechanical engineering and materials science. As a Professor at Université de Sidi Bel Abbes, his research has notably advanced the fields of composite materials and adhesive technologies. His contributions are highlighted by impactful publications in renowned journals, including the Journal of Composite and the Journal of Failure Analysis and Prevention. His leadership extends beyond research; he has effectively managed various administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. These roles underscore his dedication to both academic excellence and institutional development. His consistent pursuit of innovative solutions in material characterization and durability, coupled with his administrative acumen, reflects his commitment to advancing scientific knowledge and education. Madani’s achievements affirm his position as a leading figure in his field, deserving of recognition for his exceptional contributions and leadership.

Conclusion

Kouider Madani is a strong candidate for the Research for Excellence in Research award due to his extensive experience, impactful research, and leadership in academic administration. His work in materials science, particularly in composites and adhesives, is both relevant and innovative. To further enhance his candidacy, he could focus on expanding international collaborations, diversifying his publication outlets, and seeking additional funding opportunities. Overall, his contributions to the field and leadership roles position him as a deserving candidate for this award.

Publications Top Notes
  1. Title: Predicting Damage in Notched Functionally Graded Materials Plates Through Extended Finite Element Method Based on Computational Simulations
    • Authors: Siguerdjidjene, H., Houari, A., Madani, K., Merah, A., Campilho, R.D.S.G.
    • Journal: Frattura ed Integrita Strutturale
    • Year: 2024
    • Volume: 18
    • Issue: 70
    • Pages: 1–23
  2. Title: Numerical Analysis of the Geometrical Modifications Effects on the Tensile Strength of Bonded Single-Lap Joints
    • Authors: Metehri, A., Madani, K., Campilho, R.D.S.G.
    • Journal: International Journal of Adhesion and Adhesives
    • Year: 2024
    • Volume: 134
    • Article ID: 103814
  3. Title: Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024-T3 Plates Using Hybrid Bonding/Riveting
    • Authors: Merah, A., Houari, A., Madani, K., Yahia, C.Z., Campilho, R.D.S.G.
    • Journal: Acta Mechanica et Automatica
    • Year: 2024
    • Volume: 18
    • Issue: 3
    • Pages: 514–525
  4. Title: Experimental and Numerical Investigation of Impact Behavior in Honeycomb Sandwich Composites
    • Authors: Djellab, A., Chellil, A., Lecheb, S., Kebir, H., Madani, K.
    • Journal: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
    • Year: 2024
    • Volume: 238
    • Issue: 7
    • Pages: 1342–1357
    • Citations: 2
  5. Title: Experimental and Numerical Analysis of the Fracture Behavior of an Epoxy-Based Marine Coating Under Static Tension and Accelerated Aging Effect in NaCl Solution
    • Authors: Madani, Y., Madani, K., Touzain, S., Cohendoz, S., Peraudeau, B.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 379
  6. Title: Analysis of the Performance of Carbon Fiber Patches on Improving the Failure Strength of a Damaged and Repaired Plate
    • Authors: Sebaibi, N.H., Mhamdia, R., Madani, K., Djabbar, S.C.H., Campilho, R.D.S.G.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 347
  7. Title: Experimental and Numerical Studies of Bonded Repair of Notched Laminates Composites
    • Authors: Belhouari, M., Benkheira, A., Madani, K., Campilho, R.D.S.G., Gong, X.L.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 195–220
  8. Title: Introduction to Fracture Mechanics
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 1–15
  9. Title: Analysis of the Performance of the Composite Repair Patch for the Mechanical Resistance in Fatigue and in Tension of a Damaged Plate
    • Authors: Madani, K., Djebbar, S.C., Amin, H., Feaugas, X., Campilho, R.D.S.G.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 155–194
  10. Title: Fracture Mechanics: Advances in Research and Applications
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Year: 2024
    • Pages: 1–409