Jian-gang Guo | Materials Science | Best Researcher Award

Prof. Dr. Jian-gang Guo | Materials Science | Best Researcher Award

Professor at Institute of Physics Chinese Academy of Sciences: Chinese Academy of Sciences Institute of Physics, China

Jian-gang Guo is a renowned physicist specializing in condensed matter physics, particularly in superconductivity and magnetic materials. He is a Full Professor at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS). His research has significantly contributed to understanding strongly electron-correlated systems, with a focus on superconducting materials. One of his most notable achievements is the discovery of KxFe2Se2 high-temperature superconductors, which opened a new research field and gained worldwide recognition. He has published 118 papers in prestigious journals such as Nature, Nature Chemistry, Nature Communications, and Physical Review Letters. His work has had a profound impact on materials science and has inspired extensive global research. Additionally, he has successfully developed cubic silicon carbide (SiC) single crystals applicable for mass production. His contributions have earned him several prestigious awards, including the Second Prize of the State Natural Science Award of China. With international experience from institutions such as Rice University and the Tokyo Institute of Technology, he has established himself as a leader in superconductivity research. His innovative discoveries, extensive publication record, and international collaborations position him as a highly influential figure in modern condensed matter physics.

Professional Profile

Education

Jian-gang Guo has an extensive academic background in condensed matter and solid-state physics. He earned his Ph.D. in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences (IOP, CAS) in 2011. His doctoral research focused on the properties of electron-correlated materials, particularly superconductors. Prior to his Ph.D., he completed an M.S. in Condensed Matter Physics in 2008 at the State Key Laboratory of Superhard Materials, Jilin University, China. During his master’s studies, he gained expertise in high-pressure physics and material synthesis techniques. He obtained his B.S. in Solid-State Physics from the Department of Physics, Jilin University, in 2005. His undergraduate studies laid the foundation for his later work in electronic materials and crystallography. Throughout his academic journey, he has developed a strong theoretical and experimental background in superconductivity, transport properties, and magnetic interactions. His education at top institutions in China provided him with a solid platform to contribute significantly to the field of condensed matter physics. His ability to integrate fundamental physics with experimental discoveries has made him a key figure in the study of superconducting and magnetic materials.

Professional Experience

Jian-gang Guo has held several prominent academic and research positions in leading institutions worldwide. He is currently a Full Professor at the Institute of Physics, Chinese Academy of Sciences (IOP, CAS), a position he has held since September 2020. Before that, he was an Associate Professor at IOP, CAS, from 2016 to 2020, contributing to advancements in superconductivity and quantum materials. From 2014 to 2016, he was an ICAM Postdoctoral Fellow at the Department of Physics & Astronomy at Rice University, working in Prof. Pengcheng Dai’s group on neutron diffraction studies of magnetic materials. Between 2011 and 2014, he worked as a Postdoctoral Researcher at the Frontier Research Center, Tokyo Institute of Technology, under Prof. Hideo Hosono, where he expanded his expertise in novel superconducting materials. His career has been marked by international collaborations, interdisciplinary research, and groundbreaking discoveries in the field of condensed matter physics. His professional experience has allowed him to develop a strong research network and contribute significantly to both experimental and theoretical advancements in strongly correlated electronic systems.

Research Interests

Jian-gang Guo’s research primarily focuses on the physical properties of strongly electron-correlated systems, including superconductors and magnetic materials. His work involves techniques such as x-ray and neutron diffraction, low-temperature transport measurements, and theoretical modeling. He is particularly interested in exploring the relationship between crystallographic structures and electronic properties in new functional materials. One of his most significant contributions is the discovery of KxFe2Se2 high-temperature superconductors, which led to the development of a new class of alkali-metal intercalated FeSe superconductors. His research has also extended to the growth of bulk cubic silicon carbide (SiC) single crystals using high-temperature solution methods, making them suitable for industrial applications. His interests further include studying charge density waves, metal-insulator transitions, and novel quantum materials. By combining experimental and theoretical approaches, he aims to develop new materials with unique electronic and magnetic properties. His work continues to drive advancements in fundamental physics while also providing potential applications in energy storage, quantum computing, and semiconductor industries.

Research Skills

Jian-gang Guo possesses a diverse set of research skills that enable him to make significant contributions to condensed matter physics. His expertise includes x-ray and neutron diffraction techniques, which he utilizes to investigate the structural and electronic properties of superconductors and magnetic materials. He is skilled in low-temperature transport measurements, allowing him to analyze the electrical and thermal behavior of materials under extreme conditions. His experience in growing high-quality single crystals, including superconducting and semiconducting materials, has been instrumental in developing new materials for both fundamental and applied research. Additionally, he has a strong background in theoretical calculations, enabling him to model electronic structures and magnetic interactions in complex systems. His ability to integrate experimental and computational methods has allowed him to uncover new physical phenomena in strongly correlated materials. Furthermore, his experience with high-pressure synthesis techniques has contributed to the discovery of novel superconducting and magnetic materials. His research skills have been critical in advancing knowledge in condensed matter physics and developing materials with real-world applications.

Awards and Honors

Jian-gang Guo has received several prestigious awards in recognition of his outstanding contributions to condensed matter physics. In 2020, he was awarded the Second Prize of the State Natural Science Award of the People’s Republic of China, one of the highest honors for scientific research in the country. This award recognized his pioneering work on alkali-metal intercalated FeSe superconductors. In 2022, he received the Second Prize of the Beijing Municipal Natural Science Prize, highlighting his impact on superconductivity research. Additionally, he was honored with the CAS Science and Technology Promotion Development Award in 2021 for his contributions to material synthesis and characterization. His research has been widely acknowledged, with his work on high-temperature superconductors being selected as a Milestone Paper for the 50th Anniversary of Physical Review B. These accolades reflect his significant influence on the scientific community and his role in advancing the understanding of strongly correlated electron systems. His continued contributions to superconductivity and novel materials research further solidify his reputation as a leading figure in his field.

Conclusion

Jian-gang Guo is a distinguished researcher whose work has had a transformative impact on condensed matter physics. His discovery of KxFe2Se2 high-temperature superconductors has influenced global research, inspiring over 300 teams worldwide. With 118 publications in top-tier journals and numerous prestigious awards, he has established himself as a leader in superconductivity and materials science. His ability to integrate experimental and theoretical approaches has led to the discovery of novel quantum materials and superconducting compounds. His contributions extend beyond fundamental research, as demonstrated by his work on silicon carbide single crystals, which have industrial applications. His extensive international collaborations, research skills, and ability to mentor young scientists further strengthen his profile. While his work has already made significant contributions to physics, expanding interdisciplinary research into quantum computing, energy materials, and industrial partnerships could further enhance his influence. His achievements, dedication, and pioneering discoveries make him a strong candidate for the Best Researcher Award. His continued research is expected to shape the future of superconductivity, quantum materials, and electronic devices for years to come.

Publications Top Notes

  1. Modeling and Suppressing Interfacial Instability in Growth of SiC from High-Temperature Solutions

    • Authors: Sheng Da, Wang Guobin, Yang Yunfan, Wang Wenjun, Chen Xiaolong
    • Year: 2025
  2. Size-Effect Enriched Phase Diagram in p-Type Skutterudite Superconductor Ir₃.₈Sb₁₂

    • Authors: Wang Junjie, Liu Xu, Pei Cuiying, Guo Jianggang, Ying Tianping
    • Year: 2025
  3. Intermediately Coupled Type-II Superconductivity in a La-Based Kagome Metal La₃Al

    • Authors: Yu Yingpeng, Liu Zhaolong, Chen Zhaoxu, Guo Jianggang, Jin Shifeng
    • Year: 2025
    • Citations: 1
  4. Dynamic-to-Static Switch of Hydrogen Bonds Induces a Metal–Insulator Transition in an Organic–Inorganic Superlattice

    • Authors: Xie Zhenkai, Luo Rui, Ying Tianping, Guo Jianggang, Chen Xiaolong
    • Year: 2024
    • Citations: 6
  5. Antiferromagnetic Frustration Behavior with Face-Sharing CuAs₄ Tetrahedrons in Conducting ACu₆As₃ (A = Li and Na)

    • Authors: Yang Yuxin, Chen Zhaoxu, Liu Xu, Chen Xu, Guo Jianggang
    • Year: 2024
  6. Evidence of a Hydrated Mineral Enriched in Water and Ammonium Molecules in the Chang’e-5 Lunar Sample

    • Authors: Jin Shifeng, Hao Munan, Guo Zhongnan, Guo Jianggang, Chen Xiaolong
    • Year: 2024
    • Citations: 6
  7. Quantum-Confined Tunable Ferromagnetism on the Surface of a Van der Waals Antiferromagnet NaCrTe₂

    • Authors: Li Yidian, Du Xian, Wang Junjie, Chen Yulin, Yang Lexian
    • Year: 2024
  8. Superconductivity in Pressurized Trilayer La₄Ni₃O₁₀−δ Single Crystals

    • Authors: Zhu Yinghao, Peng Di, Zhang Enkang, Guo Jianggang, Zhao Jun
    • Year: 2024
    • Citations: 41
  9. Influence of Dimensionality on Superconductivity in Pressurized 3D SnPSe₃ Single Crystal

    • Authors: Wang Junjie, Liu Xu, Zhang Ling, Guo Jianggang, Ying Tianping
    • Year: 2024
  10. High-Quality and Wafer-Scale Cubic Silicon Carbide Single Crystals

  • Authors: Wang Guobin, Sheng Da, Yang Yunfan, Guo Jianggang, Chen Xiaolong
  • Year: 2024
  • Citations: 10

Nan Wang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Nan Wang | Materials Science | Best Researcher Award

Research Scholar from Institute of Oceanology Chinese Academy of Sciences, China

Nan Wang is an Associate Researcher at the State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences. With a strong background in marine sciences, chemistry, and material science, he has made significant contributions to the field of electrocatalytic materials, antibacterial applications, and antifouling technologies. His research primarily focuses on designing and preparing advanced nanomaterials and inorganic composites for sterilization and environmental protection. Nan Wang has an extensive publication record in high-impact journals, demonstrating his expertise in electrochemical catalysis, biomimetic enzyme catalysis, and marine environmental corrosion resistance. His international collaborations, including his experience as a joint PhD student at the University of California, Irvine, further highlight his global research impact.

Professional Profile

Education

Nan Wang holds a Ph.D. in Marine Sciences from the University of Chinese Academy of Sciences, awarded in 2020. Prior to this, he completed a Master of Science in Chemistry from Shandong Agricultural University in 2016 and a Bachelor of Science in Chemistry from the same institution in 2013. His educational background has provided him with a strong foundation in chemical sciences, electrochemistry, and material engineering, enabling him to explore interdisciplinary research in marine materials, nanotechnology, and electrocatalysis. His academic journey reflects a progression from fundamental chemistry to applied marine sciences, where he has developed expertise in creating advanced antibacterial and antifouling materials for marine applications.

Professional Experience

Nan Wang has held multiple research positions, contributing to advancements in marine materials and electrochemical technologies. Since January 2025, he has been serving as an Associate Researcher at the State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences. From October 2020 to December 2024, he was a Postdoctoral Fellow at the Key Laboratory of Marine Environmental Corrosion and Bio-fouling at the same institute. His international experience includes a tenure as a Joint PhD student at the Department of Physics and Astronomy, University of California, Irvine, from November 2019 to September 2020. These roles have allowed him to specialize in electrocatalytic materials, nanomaterials, and marine antifouling applications, contributing to the development of cutting-edge technologies in marine environmental science.

Research Interests

Nan Wang’s research interests focus on the design and preparation of electrocatalytic materials, particularly nanomaterials and inorganic composites for bacterial sterilization. He explores electrocatalytic redox reactions for generating reactive oxygen species to combat biofouling and microbial contamination. His work also includes biomimetic enzyme catalysis, aiming to develop sustainable antifouling mechanisms for marine applications. Additionally, he is interested in the theoretical and fundamental aspects of photo/electrochemistry, specifically photo/electrocatalytic reactions for sterilization in marine environments. His interdisciplinary approach integrates chemistry, nanotechnology, and marine science to address critical challenges in biofouling, corrosion resistance, and environmental sustainability.

Research Skills

Nan Wang possesses a diverse set of research skills that support his work in marine material sciences and electrocatalysis. His expertise includes the synthesis and characterization of nanomaterials, electrochemical analysis, and catalysis for environmental applications. He is proficient in advanced spectroscopic and microscopic techniques, including electron microscopy, X-ray diffraction, and infrared spectroscopy. His skills also extend to photo/electrochemical experiments, biofouling prevention strategies, and corrosion-resistant material development. Additionally, his background in computational modeling and theoretical electrochemistry enables him to analyze reaction mechanisms at the molecular level. His ability to conduct interdisciplinary research across chemistry, materials science, and marine environmental science enhances his contributions to the field.

Awards and Honors

Nan Wang has been recognized for his significant contributions to electrocatalysis and marine materials. He has received research grants and fellowships supporting his work in antibacterial and antifouling technologies. His publications in top-tier journals have earned citations and academic recognition, further solidifying his reputation in the field. His international research collaboration at the University of California, Irvine, highlights his ability to work in diverse research environments. While specific awards and honors are not listed in his curriculum vitae, his achievements in high-impact research publications and contributions to material science innovation demonstrate his standing as a leading researcher in marine environmental protection and electrocatalytic materials.

Conclusion

Nan Wang is a highly skilled researcher specializing in electrocatalytic materials, nanotechnology, and marine environmental science. His work focuses on developing advanced antibacterial and antifouling materials, addressing key challenges in marine biofouling and corrosion resistance. With a strong academic background, extensive research experience, and a prolific publication record, he has made substantial contributions to the field. His expertise in electrochemistry, catalysis, and nanomaterial synthesis positions him as a valuable asset in marine materials research. While his research achievements are impressive, further recognition in the form of major research awards would enhance his profile. Overall, Nan Wang is a strong candidate for the Best Researcher Award, given his innovative contributions, international collaboration experience, and impact in the field of electrocatalysis and marine science.

Publication Top Notes

  1. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cells

    • Authors: Zhiming Shen, Yang Gao, Xuedong Sun, Min Chen, Changhuo Cen, Mengyue Wang, Nan Wang, Bowen Liu, Jiayi Li, Xiuhong Cui, Jian Hou, Yuhua Shi, Fei Gao
    • Publication Year: 2024
  2. Construction of CeO₂-MOF nanorods with oxygen vacancies for nanozyme catalytic antibacterial application

    • Authors: Meinan Yang, Nan Wang, Xu Wang, Baorong Hou, Wolfgang Sand
    • Publication Year: 2025
  3. The −KTS isoform of Wt1 induces the transformation of Leydig cells into granulosa-like cells

    • Authors: Changhuo Cen, Bowen Liu, Limei Lin, Kai Meng, Fei Gao
    • Publication Year: 2024
  4. Evaluating top-down and bottom-up drivers of temporal mesozooplankton community variability in a temperate semi-enclosed bay, China

    • Authors: Weicheng Wang, Nan Wang, Yantao Wang, Amy E. Maas, Song Sun
    • Publication Year: 2024

 

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology

 

 

Gregorio Gonzalez | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Gregorio Gonzalez | Materials Science | Best Researcher Award

Associate Professor at ITSM, Mexico

Dr. Gregorio Gonzalez Zamarripa is an accomplished researcher and Associate Professor at Tecnológico Nacional de México, Instituto Tecnológico Superior de Monclova. With a PhD in Materials Science from Saltillo Institute of Technology (2011), he specializes in hydrometallurgy, waste recovery, and advanced material processing. His career spans over 46 years in basic sciences and engineering, focusing on metal recovery from industrial by-products and developing innovative environmental solutions. Dr. Zamarripa is a member of the National System of Researchers (SNI) since 2013 and serves as a consultant for Recicladora Limon de Monclova, applying his expertise in metallurgy. He has published 18 research papers in JCR and Scopus journals and holds two patents related to metal extraction and industrial waste recycling. His work extends to mentoring graduate students and contributing to the scientific community through editorial roles and thesis evaluations. With a strong commitment to sustainable practices and technological innovation, Dr. Zamarripa’s research significantly impacts both academic and industrial fields. His dedication to advancing materials science and his continuous contributions to industrial innovation make him a distinguished candidate for the Best Scholar Award in Research.

Professional Profile

Education

Dr. Gregorio Gonzalez Zamarripa holds a PhD in Materials Science from Saltillo Institute of Technology, which he earned in 2011. His doctoral research focused on hydrometallurgical processes for the recovery of precious metals, earning him the Best Doctoral Thesis Award from the General Direction in Higher Technological Education (DGEST), Mexico. In addition to his PhD, he pursued advanced graduate coursework in Metallic Materials and Materials Science Engineering at Instituto Tecnológico Superior de Monclova (ITSM) between 2018 and 2024. Dr. Zamarripa’s academic journey is marked by a deep focus on applied material sciences, with expertise in developing sustainable methods for metal extraction and wastewater treatment. His educational background combines both theoretical knowledge and practical applications, bridging the gap between scientific research and industrial needs. Over his career, he has expanded his knowledge in areas such as pyrolysis, nanocomposites, and metallurgical waste recycling, reflecting his continuous pursuit of scientific excellence and technological innovation. His education forms the foundation for his multidisciplinary research and his significant contributions to the fields of materials engineering and environmental sustainability.

Professional Experience

Dr. Gregorio Gonzalez Zamarripa currently serves as an Associate Professor at Tecnológico Nacional de México, Instituto Tecnológico Superior de Monclova, where he has been contributing since 2011. His professional journey encompasses 46 years of experience in basic sciences and engineering, with a specific focus on materials recovery from industrial by-products. As a researcher in hydrometallurgy, he leads projects on metal extraction, waste management, and the development of nanomaterials. Beyond academia, he actively collaborates with Recicladora Limon de Monclova as a consultant, offering expertise in metallurgical processes and waste valorization. Dr. Zamarripa also mentors graduate students in mechanical engineering and renewable energy, contributing to the development of the next generation of researchers. His editorial roles include serving as a JCR reviewer for the Hydrometallurgy journal and acting as a CONACYT evaluator. He also participates as an external thesis reviewer for doctoral candidates at Saltillo Institute of Technology. His combined academic and industrial experiences position him as a leading expert in the fields of metal recovery, sustainable technology, and advanced materials science, making him a valuable asset to both the scientific community and industrial partners.

Research Interests

Dr. Gregorio Gonzalez Zamarripa’s research interests center on hydrometallurgy, wastewater treatment, and advanced material recovery. His work emphasizes developing sustainable techniques for metal extraction from industrial residues, particularly focusing on gold, silver, and other precious metals. He is also interested in pyrolysis, exploring innovative methods to convert plastic waste into hydrocarbons, addressing both environmental and industrial challenges. Another key area of interest is the development of graphene-based nanocomposites for antibacterial applications, which has potential implications for healthcare and environmental safety. His recent projects include the removal of heavy metals from wastewater and the creation of magnetic precursor powders from strontium-contaminated water. Dr. Zamarripa is also engaged in waste valorization, focusing on transforming industrial by-products into valuable materials. His multidisciplinary research reflects a commitment to technological innovation, sustainability, and practical solutions to industrial challenges. Through ongoing collaborations with academic and industrial partners, he continues to explore new frontiers in materials science, with a focus on delivering real-world applications that bridge scientific research and industrial implementation.

Research Skills

Dr. Gregorio Gonzalez Zamarripa possesses a diverse set of research skills across multiple domains in materials science and environmental engineering. He is highly proficient in hydrometallurgical processes, including the extraction and recovery of precious metals such as gold and silver from industrial waste. His expertise extends to pyrolysis techniques, where he has developed processes to convert plastic waste into hydrocarbons for energy recovery. Additionally, Dr. Zamarripa is skilled in the synthesis of nanomaterials, including graphene-based nanocomposites, for antibacterial and industrial applications. He has hands-on experience in wastewater treatment, specializing in the removal of heavy metals and contaminants from industrial effluents. His technical capabilities also include patent development, with two patents related to metal recovery and industrial waste recycling. As a research mentor, he guides graduate students in advanced materials characterization, analytical techniques, and industrial process optimization. His comprehensive research skills, combined with industry-focused applications, make him a versatile researcher who addresses critical challenges in sustainable technology and environmental innovation.

Awards and Honors

Dr. Gregorio Gonzalez Zamarripa’s distinguished career has been recognized through numerous awards and honors. In 2011, he received the Best Doctoral Thesis Award from General Direction in Higher Technological Education (DGEST), Mexico, for his groundbreaking research in hydrometallurgy. Since 2013, he has been a member of the National System of Researchers (SNI), acknowledging his sustained contributions to scientific research in materials science. His work has also earned him two patents, including a process for strontium removal and an intensive melting furnace for recovering metals from slags, underscoring his innovative approach to industrial challenges. Dr. Zamarripa has further distinguished himself as a CONACYT evaluator and external thesis reviewer at Saltillo Institute of Technology, reflecting his academic leadership and expertise. His 18 publications in JCR and Scopus journals highlight his research excellence and global impact. These accolades reflect his commitment to advancing materials science, sustainable solutions, and technological innovation on both national and international levels.

Conclusion

Dr. Gregorio Gonzalez Zamarripa is an exceptional candidate for the Best Scholar Award in Research, demonstrating outstanding expertise in materials science, hydrometallurgy, and waste recovery. With 46 years of academic and professional experience, 18 publications, and two patents, he has made significant contributions to both scientific knowledge and industrial practice. His work addresses real-world challenges, such as metal recovery, waste valorization, and sustainable processes, making a lasting impact in both academia and industry. His dedication to mentorship, collaboration, and technological innovation makes him an ideal candidate for this prestigious recognition.

Publications Top Notes

  1. Title: “Recovery of fine particles of activated carbon with gold by the electrocoagulation process using a Taguchi experimental design”
  • Authors: Rodrigo Martínez-Peñuñuri, José R. Parga-Torres, Jesús L. Valenzuela-García, Alejandro M. García-Alegría, Gregorio González-Zamarripa
  • Year: 2023

 

XIYA YANG | Materials Science | Women Researcher Award

Prof. XIYA YANG | Materials Science | Women Researcher Award

Associate Professor at Jinan University, China

Dr. Xiya Yang is an Associate Professor at the Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University. With a solid academic foundation and over a decade of experience in cutting-edge research, she has made significant strides in energy harvesting and self-powered sensing systems. Her work focuses on integrating triboelectric, photovoltaic, and other hybrid effects to address critical challenges in sustainable energy and Internet of Things (IoT) technologies. Dr. Yang has been recognized with numerous prestigious awards and has a robust publication record in high-impact journals, reflecting her dedication and innovation. She is also a passionate educator, mentoring students to achieve excellence in research and competitions. Dr. Yang is committed to advancing interdisciplinary research, fostering innovation, and contributing to the global energy sustainability agenda.

Professional Profile

Education

Dr. Xiya Yang holds a Ph.D. in Materials Science and Engineering from the City University of Hong Kong, which she completed in 2017. Prior to that, she earned a Master’s degree with Distinction in Energy and Environmental Engineering from the same institution in 2013. Her undergraduate studies were completed at Shandong University of Science and Technology, where she graduated as an Outstanding Graduate in Automation Engineering in 2012. This rigorous academic background has provided her with a strong foundation in energy systems and advanced materials, setting the stage for her impactful research career.

Professional Experience

Dr. Yang currently serves as an Associate Professor at the College of Physics & Optoelectronic Engineering, Jinan University, a role she has held since January 2024. Prior to this, she was an Associate Professor at the College of Information Science and Technology at the same university from 2018 to 2023. She also completed a postdoctoral fellowship at the School of Energy and Environment, City University of Hong Kong, from 2017 to 2018. Her professional experience spans teaching, research, and mentoring, with a focus on sustainable energy technologies and innovation. Dr. Yang’s contributions to the academic and research community have been instrumental in advancing knowledge in her field.

Research Interests

Dr. Yang’s research interests lie at the intersection of energy sustainability and advanced materials. Her primary focus is on self-powered micro/nano electromechanical systems and hybrid energy harvesting technologies. She explores innovative solutions to harness solar, wave, wind, rain, and human kinetic energy for self-powered sensing systems. Additionally, she delves into the coupling effects of piezoelectric, triboelectric, electromagnetic, and photovoltaic mechanisms to optimize energy efficiency. Dr. Yang is also interested in passive and active power management designs, contributing to the development of next-generation IoT systems. Her interdisciplinary approach aims to address global challenges in energy sustainability and smart sensing.

Research Skills

Dr. Yang possesses a diverse skill set in experimental design, advanced materials characterization, and energy systems integration. She is proficient in developing hybrid nanogenerators and triboelectric sensors, emphasizing coupling effects for enhanced energy efficiency. Her expertise includes designing and fabricating self-powered sensing systems, as well as optimizing power management strategies. Dr. Yang has extensive experience in project management, having served as the principal investigator for multiple national and provincial research grants. Her ability to mentor students and lead interdisciplinary teams further highlights her capabilities in both research and education.

Awards and Honors

Dr. Yang’s contributions to research and education have been recognized with numerous awards. She received the 2022 Guangdong Natural Science Award (Second Prize) and was named a Jinan Outstanding Young Scholar in 2021. Other accolades include the Jinan University “Major Achievement Contribution Award” (2019-2020) and the Young Talents distinction in 2018. She has also earned recognition for her teaching excellence, including the Third Prize in Jinan University’s New Teachers Teaching Competition. Her achievements reflect her dedication to advancing both academic excellence and impactful research.

Conclusion

Dr. Xiya Yang’s impressive academic background, extensive professional experience, and groundbreaking research contributions make her a distinguished candidate for the Best Researcher Award. Her work in hybrid energy harvesting and self-powered sensing systems addresses critical global challenges, demonstrating both innovation and impact. Through her dedication to mentorship and interdisciplinary collaboration, she has fostered the next generation of researchers and advanced knowledge in sustainable energy technologies. Dr. Yang’s achievements and ongoing contributions position her as a leading figure in her field, deserving of this prestigious recognition.

Publication Top Notes

  1. Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature
    Authors: Zhao, L., Jia, S., Fang, C., Hu, Y., Yang, X.
    Year: 2025
  2. Columnar Macrocyclic Molecule Tailored Grain Cage to Stabilize Inorganic Perovskite Solar Cells with Suppressed Halide Segregation
    Authors: Liu, N., Duan, J., Li, H., Yang, X., Tang, Q.
    Year: 2024
    Citations: 2
  3. A Compact-Sized Fully Self-Powered Wireless Flowmeter Based on Triboelectric Discharge
    Authors: Wan, D., Xia, X., Wang, H., Yang, X., Zi, Y.
    Year: 2024
    Citations: 2
  4. Suppressing charge recombination by synergistic effect of ferromagnetic dual-tribolayer for high output triboelectric nanogenerator
    Authors: Liu, L., Li, J., Tian, Z., Yang, X., Ou-Yang, W.
    Year: 2024
    Citations: 7
  5. Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing
    Authors: Zhao, L., Fang, C., Qin, B., Yang, X., Poechmueller, P.
    Year: 2024
    Citations: 6
  6. Biomimetic bimodal haptic perception using triboelectric effect
    Authors: He, S., Dai, J., Wan, D., Xia, X., Zi, Y.
    Year: 2024
    Citations: 12
  7. Reinforced SnO2 tensile-strength and “buffer-spring” interfaces for efficient inorganic perovskite solar cells
    Authors: Zhao, Y., Gao, L., Wang, Q., Duan, J., Tang, Q.
    Year: 2024
    Citations: 8
  8. Triboelectric gait sensing analysis system for self-powered IoT-based human motion monitoring
    Authors: Zhao, L., Guo, X., Pan, Y., Poechmueller, P., Yang, X.
    Year: 2024
    Citations: 17
  9. Electrostatic-driven self-assembled chitin nanocrystals (ChNCs)/MXene films for triboelectric nanogenerator
    Authors: He, Y., Zhao, L., Guo, X., Luo, B., Liu, M.
    Year: 2024
    Citations: 6
  10. CsPbBr3 nanocrystals as electron and ion “Reservoirs” to induce energy transfer and grain reconstruction for efficient carbon-based inorganic perovskite solar cells
    Authors: Duan, J., Zhang, C., Liu, Y., Yang, X., Tang, Q.
    Year: 2024
    Citations: 4

 

 

 

 

 

Alexander Ikeuba | Materials Science | Best Researcher Award

Dr. Alexander Ikeuba | Materials Science | Best Researcher Award

Researcher at West Virginia University, United States

Dr. Alexander Immaanyikwa Ikeuba is an esteemed scholar and professional whose career is marked by academic excellence and impactful contributions to his field. Renowned for his multidisciplinary expertise, Dr. Ikeuba has published extensively in various reputable journals, establishing himself as a thought leader in his domain. His commitment to advancing knowledge and fostering innovation underscores his reputation as a scholar of global repute. Beyond academia, Dr. Ikeuba is celebrated for his dedication to mentoring emerging talents and his ability to bridge the gap between theoretical research and practical applications. His professional ethos reflects a deep commitment to fostering progress and creating value through research, teaching, and collaboration.

Professional Profile

Education

Dr. Alexander Ikeuba’s academic journey is a testament to his relentless pursuit of excellence. He earned his undergraduate degree from [Institution Name] with a specialization in [Subject/Field], distinguishing himself as a top-performing student. He later pursued advanced degrees, including a master’s and a doctorate from [Institution Name(s)], where his research focused on [Research Area]. His academic milestones are complemented by various certifications and specialized training programs that have further solidified his expertise. Through rigorous education, Dr. Ikeuba cultivated a strong foundation that has enabled him to make significant contributions to his chosen field.

Professional Experience

Dr. Ikeuba’s professional career spans over [Number] years, during which he has held prominent roles in academia, research institutions, and industry. As a professor at [Institution Name], he has taught numerous courses, inspiring students and fostering intellectual growth. In addition, his roles as a consultant and collaborator with leading organizations have allowed him to apply his knowledge to solve real-world challenges. His extensive portfolio includes leadership positions, project management roles, and active participation in interdisciplinary research teams. This wealth of experience has positioned him as a versatile and dynamic professional with a global impact.

Research Interest

Dr. Ikeuba’s research interests lie at the intersection of [Field 1] and [Field 2], focusing on addressing contemporary challenges through innovative solutions. His areas of focus include [Specific Topics, e.g., sustainable development, advanced materials, artificial intelligence, etc.]. He is particularly passionate about exploring emerging trends and technologies that have the potential to transform industries and improve societal well-being. By bridging theoretical frameworks with practical applications, his research aims to create sustainable solutions that address critical global issues.

Research Skills

Dr. Ikeuba possesses a robust set of research skills that underpin his scholarly work. These include proficiency in advanced statistical analysis, qualitative and quantitative methodologies, and the use of cutting-edge software and tools. His expertise in [Specific Tools or Techniques, e.g., machine learning algorithms, laboratory procedures, etc.] has been instrumental in achieving groundbreaking results. Furthermore, his ability to collaborate across disciplines and his strong analytical mindset enable him to tackle complex problems effectively. His research acumen is complemented by exceptional writing and presentation skills, which ensure his findings are effectively disseminated to both academic and non-academic audiences.

Awards and Honors

Over the course of his illustrious career, Dr. Ikeuba has been the recipient of numerous awards and honors. These include [Specific Award Titles, e.g., “Best Researcher Award,” “Excellence in Teaching Award”], which reflect his outstanding contributions to academia and society. His achievements have been recognized at both national and international levels, further solidifying his status as a leading figure in his field. In addition, his membership in prestigious organizations and societies, such as [Specific Societies], is a testament to his commitment to advancing knowledge and fostering innovation.

Conclusion

Dr. Alexander Immaanyikwa Ikeuba is a distinguished academic, researcher, and professional whose contributions continue to make a lasting impact. His dedication to excellence in education, research, and professional practice underscores his role as a transformative leader in his field. Through his innovative work, mentorship, and collaboration, he has not only advanced the boundaries of knowledge but also inspired others to pursue excellence. As he continues to push the frontiers of his discipline, Dr. Ikeuba remains a beacon of inspiration for scholars and professionals worldwide.

Publication Top Notes

    • Journal: Journal of the Electrochemical Society
    • Year: 2018
    • Citations: 67
  • Alkaloid and non-alkaloid ethanolic extracts from seeds of Garcinia kola as green corrosion inhibitors of mild steel in H2SO4 solution
    • Authors: AI Ikeuba, PC Okafor, UJ Ekpe, EE Ebenso
    • Journal: International Journal of Electrochemical Science
    • Year: 2013
    • Citations: 63
  • Understanding the galvanic corrosion of the Q-phase/Al couple using SVET and SIET
    • Authors: AI Ikeuba, B Zhang, J Wang, EH Han, W Ke
    • Journal: Journal of Materials Science & Technology
    • Year: 2019
    • Citations: 52
  • Electrochemical, TOF-SIMS and XPS studies on the corrosion behavior of Q-phase in NaCl solutions as a function of pH
    • Authors: AI Ikeuba, B Zhang, J Wang, EH Han, W Ke
    • Journal: Applied Surface Science
    • Year: 2019
    • Citations: 42
  • Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH
    • Authors: AI Ikeuba, F Kou, H Duan, B Zhang, J Wang, EH Han, W Ke
    • Journal: Journal of Solid State Electrochemistry
    • Year: 2019
    • Citations: 42
  • Comparative study of the inhibition effects of alkaloid and non-alkaloid fractions of the ethanolic extracts of Costus afer stem on the corrosion of mild steel in 5 M …
    • Authors: IE Uwah, AI Ikeuba, BU Ugi, VM Udowo
    • Journal: Global Journal of Pure and Applied Sciences
    • Year: 2013
    • Citations: 39
  • Experimental and theoretical evaluation of aspirin as a green corrosion inhibitor for mild steel in acidic medium
    • Authors: AI Ikeuba, OB John, VM Bassey, H Louis, AU Agobi, JE Ntibi, FC Asogwa
    • Journal: Results in Chemistry
    • Year: 2022
    • Citations: 38

 

Guanjun Chang | Materials Science | Best Researcher Award

Prof. Dr. Guanjun Chang | Materials Science | Best Researcher Award

Professor/Associate Dean at Southwest University of Science and Technology, China

Dr. Guanjun Chang, a distinguished expert in polymer materials, is currently a Professor and Associate Dean at the School of Materials and Chemistry, Southwest University of Science and Technology. Born on February 20, 1981, he has established himself as a leading figure in the field through groundbreaking research, innovative contributions, and academic leadership. With over a decade of experience in academia and research, Dr. Chang specializes in the design, synthesis, and characterization of high-performance polymers. His work has earned him numerous prestigious awards, including recognition for his contributions to dynamic bond-driven recyclable polymers. Dr. Chang has also held significant leadership roles, including Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials. He is widely respected for his contributions to sustainable polymer development, and his research has had a significant impact on both academic and industrial applications.

Professional Profile

Education

Dr. Chang’s academic journey began at Qingdao University of Science and Technology, where he earned his Bachelor’s degree in Polymer Physics and Chemistry in 2006. He pursued a Master’s degree in Material Processing Engineering at the same institution, graduating in 2009. Dr. Chang completed his doctoral studies at the China Academy of Engineering Physics in 2012. His Ph.D. research focused on “The Design, Synthesis, and Properties of Novel Polyaryliminos,” showcasing his expertise in advanced polymer design and characterization. This strong educational foundation provided him with the technical and theoretical knowledge to excel in polymer science, which he has further developed through subsequent research and professional experiences.

Professional Experience

Dr. Chang has held several key academic and research positions. Currently, he serves as a Professor and Associate Dean at Southwest University of Science and Technology, overseeing teaching management and leading research initiatives. He previously served as Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials from 2018 to 2022. Dr. Chang also gained international experience as a Visiting Assistant Professor at the University of Pennsylvania, where he focused on high-strength and tough polymers. Earlier in his career, he served as an Associate Researcher and Lecturer at Southwest University of Science and Technology. These roles reflect his progressive growth in academic leadership and research excellence, marked by significant contributions to polymer science.

Research Interests

Dr. Chang’s primary research interests lie in the field of polymer materials, with a particular focus on high-performance and recyclable polymers. He is deeply engaged in designing dynamic bond-driven polymer networks that exhibit enhanced mechanical properties, recyclability, and functionality. His innovative work integrates advanced molecular design with practical applications, contributing to the development of sustainable materials. Dr. Chang’s research also explores cation-π interactions and dynamic covalent chemistry to design toughened thermosets. These interests align with global efforts toward sustainable material development, making his contributions highly relevant to both academic and industrial communities.

Research Skills

Dr. Chang possesses a wide array of research skills, particularly in the synthesis, characterization, and processing of polymer materials. His expertise includes designing recyclable polymers, employing dynamic chemical bonds, and exploring innovative molecular mechanisms for high-performance materials. He is skilled in advanced analytical techniques such as spectroscopy, microscopy, and thermal analysis, which are essential for characterizing polymer structures and properties. Dr. Chang’s research is also marked by his ability to integrate theoretical principles with experimental applications, enabling him to solve complex challenges in polymer science. His collaborative skills and leadership in managing research teams further enhance his effectiveness as a researcher and innovator.

Awards and Honors

Dr. Chang has received numerous prestigious awards for his contributions to polymer science. Among his accolades are the Sichuan Province “Tianfu Science and Technology Elite” Award and the Outstanding Young Scientific and Technological Talent of Sichuan Province. He has been recognized at provincial and national levels for his work on dynamic bond-driven recyclable polymers, earning first and second prizes in several categories, including the Innovation Award of Invention and the Science and Technology Award of the Chinese Materials Research Society. These honors underscore his exceptional contributions to the advancement of polymer science and his impact on sustainable material development.

Conclusion

Dr. Guanjun Chang is a highly suitable candidate for the Best Researcher Award due to his exceptional contributions to polymer science, leadership roles, and innovative research achievements. His focus on recyclable high-performance polymers aligns well with global sustainability goals, making his work highly relevant. With minor improvements in international visibility and diversified research applications, he could establish himself as an even stronger contender.

Publication Top Notes

  1. A turn-on AIE dual-channel fluorescent probe for sensing Cr3+/ClO− and application in cell imaging
    • Authors: Wang, H., Tang, Y., Gou, K., Xie, Z., Chang, G.
    • Year: 2025
  2. A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution
    • Authors: Yang, C., Mo, S., Chen, X., Chang, G., Xu, Y.
    • Year: 2024
  3. Preparation of Indole-Based Porous Magnetic Composite via Cation-π Interaction-Driven and Induced Strategy and its Efficient Adsorption of TNT
    • Authors: Mao, Y., Zhu, H., Zhang, B., Chang, G., Xu, Y.
    • Year: 2024
  4. Facile construction of recyclable heat-resistant polymers via alkaline-induced cation-π cross-linking
    • Authors: Yuan, R., Huang, Y., Ma, T., Liang, Q., Chang, G.
    • Year: 2024
  5. Dynamic Covalent Polymer-Nanoparticle Networks as High-Performance Green Lubricants: Synergetic Effect in Load-Bearing Capacity
    • Authors: Xue, H., Wang, C., Liang, F., Zhou, F., Bu, W.
    • Year: 2024
    • Citations: 2
  6. Do the liquid-free poly(ionic liquids) have good environmental reliability?
    • Authors: Liu, J., Yang, D., Yue, Q., Chang, G., Wei, Y.
    • Year: 2024
  7. Multiple non-covalent interactions for mechanically robust and electrically detachable liquid-free poly(ionic liquids) ionoadhesives
    • Authors: Liu, J., Gan, S., Yang, D., Chang, G., Wei, Y.
    • Year: 2024
    • Citations: 2
  8. Hydro-Thermal Degradation: A New and Rapid Method for Evaluating the Bio-degradation Performance of Poly(lactic acid)
    • Authors: Qiang Peng, Li, R., Yin, S., Chang, G., Kang, M.
    • Year: 2024
  9. Adsorption of 2,4,6-trinitrotoluene by indole-based porous organic polymer with suitable three-dimensional space size via physisorption and chemisorption
    • Authors: Xu, Y., Zhu, H., Mo, S., Zhou, M., Chang, G.
    • Year: 2024
    • Citations: 4
  10. Demonstration of π-π Stacking at Interfaces: Synthesis of an Indole-Modified Monodisperse Silica Microsphere SiO2@IN
    • Authors: Tang, Q., Zhu, F., Li, Y., Kang, M., Chang, G.
    • Year: 2024

Yi Chang | Functional Materials | Best Researcher Award

Mr. Yi Chang | Functional Materials | Best Researcher Award

Associate Professor at Henan Normal University, China

Yi Chang is an accomplished Associate Professor at the School of Chemistry and Chemical Engineering, Henan Normal University, China. With a robust academic background and professional experience in chemistry, he has significantly contributed to research in materials science, nanotechnology, and catalysis. Yi Chang has authored numerous high-impact publications in prestigious journals, showcasing his expertise in developing advanced materials for applications such as drug delivery, cancer therapy, and photocatalysis. His collaborative research endeavors and innovative contributions have earned him recognition in the scientific community.

Professional Profile

Education

Yi Chang holds a Ph.D. in Chemistry (2007–2013) from the State Key Laboratory of Coordination Chemistry, Nanjing University, where he conducted groundbreaking research under the guidance of Prof. Zhen Shen. Following his doctoral studies, he pursued a postdoctoral fellowship (2013–2014) at the Institut de Chimie Moléculaire, Université de Bourgogne, under the supervision of Prof. Gros Claude. His educational journey has equipped him with extensive knowledge and hands-on experience in coordination chemistry, nanomaterials, and advanced functional materials.

Professional Experience

Yi Chang has been affiliated with Henan Normal University since 2014. He served as an Assistant Professor (2014–2021) and was promoted to Associate Professor in 2022. His academic and professional trajectory reflects his dedication to advancing chemistry research and education. Additionally, he gained valuable international research experience during his postdoctoral fellowship in France, where he collaborated on cutting-edge projects involving molecular chemistry and materials science.

Research Interests

Yi Chang’s research focuses on the development of advanced materials and nanostructures for applications in catalysis, energy, and biomedical engineering. His areas of interest include bioinspired heterostructures for hydrogen production, multifunctional nanoplatforms for tumor therapy, and novel thermoelectric materials. He is also interested in drug delivery systems, photocatalysis, and the development of green and sustainable chemical processes. His interdisciplinary approach bridges fundamental chemistry with practical applications.

Research Skills

Yi Chang is highly skilled in a range of advanced research techniques and methodologies. His expertise includes the synthesis and characterization of nanomaterials, development of functional heterostructures, and applications of green chemistry principles. He is proficient in using analytical instruments such as UV/Vis spectrophotometry, electron microscopy, and X-ray diffraction. Additionally, he has extensive experience in designing innovative strategies for catalysis, drug delivery, and material modification, showcasing his ability to address complex scientific challenges.

Awards and Honors

Yi Chang has earned recognition for his significant contributions to chemistry and materials science. His achievements include being published in renowned journals such as Green Chemistry, Advanced Functional Materials, and ACS Sustainable Chemistry & Engineering. He has also received acclaim for his interdisciplinary research and has been invited to present his work at prestigious conferences. These accomplishments underline his standing as a prominent researcher in his field.

Conclusion

Yi Chang is a highly accomplished researcher with a strong record of publications, impactful research in materials science and green chemistry, and a clear trajectory of academic growth. His work addresses critical issues in energy, health, and sustainability, making him a competitive candidate for the Best Researcher Award. However, emphasizing recognition through awards, securing major research funding, and highlighting patents or industry collaborations could further elevate his application.

Publication Top Notes

  1. Yi Chang, Bowen Pang, Weiyi Cheng, Penghui Song, Ruijuan Qi, Xiaobing Wang, Zhengyu Bai*, Yuming Guo, Nana Ma*, Xiaoming Ma*
    Title: Bioinspired notched volvox-like nested Z-scheme heterostructure improves solar-energy utilization for high visible-light-driven hydrogen production
    Journal: Green Chem., 2024, 26, 794–803.
  2. Weihua Gao, Jie Zhang, Yi Chang*, Fangli Gao, Guanglei Ma, Zhiyong Gao, Xiaobing Wang, Xinhe Liu, Xiaoming Ma*, Yuming Guo*
    Title: NIR-Triggered Cu₂O/Cu₂₋xS heterostructure as an ‘All-In-One’ functional nanoplatform for efficient synergistic tumor therapy
    Journal: Adv. Funct. Mater., 2024, 2408125.
  3. Chengcheng Xin, Ruijuan Qi*, Yi Chang*, Xiaoming Ma, Yan Lei, Shuangquan Zang*, Zhi Zheng*
    Title: In-situ elemental reaction-regulated Ag₂S films enable the best thermoelectric performances
    Journal: Aggregate, 2024, e561.
  4. Xinhe Liu, Yi Chang*, Guanglei Ma, Tingting Liu, Penghui Song, Heng Yu, Xueqing Ren, Yuming Guo*, Xiaoming Ma*
    Title: Yeast-controlled double-shelled CaCO₃/CaF₂ hollow nanospheres with hierarchically porous for sustained pH-sensitive drug release
    Journal: Chin. J. Chem., 2024, 42, 1731–1720.
  5. Peng Liu‡, Yi Chang‡, Xueqing Ren, Tingting Liu, Hongmin Meng, Xiangli Ru, Zhengyu Bai*, Lin Yang*, Xiaoming Ma*
    Title: Endowing cells with unnatural photocatalytic ability for sustainable chemicals production by bionic minerals-triggering
    Journal: Green Chem., 2023, 25, 431–438.
  6. Pengfei Yang#, Yi Chang#, Jie Zhang, Fangli Gao, Xinhe Liu, Qingcong Wei, Xiaoming Ma*, Yuming Guo*
    Title: The combination of in situ photodynamic promotion and ion-interference to improve the efficacy of cancer therapy
    Journal: J. Colloid Interf. Sci., 2023, 629, 522–533.
  7. Yi Chang, Tingting Liu, Ruijuan Qi, Shuting Chen, Yuming Guo, Lin Yang, Xiaoming Ma
    Title: Cell-regulated hollow sulfur nanospheres with porous shell: A dual-responsive carrier for sustained drug release
    Journal: ACS Sustainable Chem. Eng., 2022, 10, 5138–5147.
  8. Peng Liu, Xiangli Ru, Yi Chang, Nana Ma, Ge Li, Huifeng Chen, Xueqing Ren, Zhengyu Bai, Xiaoming Ma, Lin Yang
    Title: Selective catalysis in a cellular microenvironment—a living cell catalytic system with intracellular nanopalladium for olefin hydrogenation
    Journal: Green Chem., 2022, 24, 2527–2534.
  9. Yi Chang, Zipeng Wei, Xiang Chang, Guanglei Ma, Lili Meng, Tingting Liu, Lin Yang, Yuming Guo, Xiaoming Ma
    Title: Hollow hierarchically porous La₂O₃ with controllable multi-shells: A high-performance adsorbent for phosphate removal
    Journal: Chem. Eng. J., 2021, 421, 127816.
  10. Yi Chang, Shuting Chen, Tingting Liu, Peng Liu, Yuming Guo, Lin Yang, Xiaoming Ma
    Title: Yeast cell route: A green and facile strategy for biosynthesis of carbonate nanoparticles
    Journal: CrystEngComm, 2021, 23, 4674–4679.

 

Yan Liu | Materials Science | Best Researcher Award

Prof. Yan Liu | Materials Science | Best Researcher Award

The Associate Director of both National Key Laboratory of Automotive Chassis Integration and Bionics and the Key Laboratory of Bionic Engineering (Ministry of Education) at Jilin University, China

Yan Liu, Ph.D. in Engineering, is a distinguished scholar renowned for her contributions to bionic engineering and materials science. She is a CJ Scholar Distinguished Professor under the Major Talent Project Incentive Program of the Ministry of Education of China, a Changbaishan Scholar of Jilin Province, and a professor and Ph.D. supervisor at Jilin University. Currently serving as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, she is instrumental in advancing bionic technologies for automotive and materials applications. As a founding member of the International Society of Bionics and vice chairman of the Jilin Association of Corrosion Prevention Technology, Yan Liu has established herself as a global leader in her field. Her research, which focuses on designing multifunctional materials inspired by biological systems, has led to over 150 publications in prestigious journals and the filing of 40 patents, 17 of which have been granted. Yan Liu’s work has significantly impacted anti-corrosion, anti-icing, and self-repairing materials, making her a pioneer in bionic materials science.

Professional Profile

Education

Yan Liu has a robust academic foundation in engineering and materials science. She earned her Ph.D. in Agricultural Mechanization Engineering from Jilin University in December 2006, following her Master’s degree in the same field from the same institution in July 2003. Her undergraduate studies were completed at the Former School of Materials, Jilin University of Technology, where she graduated with a Bachelor’s degree in July 1997. Her academic journey has been marked by a consistent focus on integrating engineering principles with innovative materials development, laying the groundwork for her expertise in bionics and biomimetic materials. This strong educational background has enabled her to excel in multidisciplinary research, combining agricultural engineering, materials science, and bionic technologies.

Professional Experience

Yan Liu has an illustrious professional career spanning over two decades, primarily at Jilin University. Since September 2013, she has served as a Professor and Ph.D. Supervisor at the Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University. Prior to this, she was an Associate Professor and Master’s Supervisor in the same department from 2008 to 2013. Yan Liu also gained international experience as a Postdoctoral Researcher and Visiting Scholar at the University of Bristol, UK, between 2010 and 2011. Her earlier postdoctoral work, from 2009 to 2013, at the College of Materials Science and Engineering, Jilin University, further honed her expertise in advanced materials research. Currently, as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, Yan Liu plays a vital role in steering cutting-edge research in bionic materials and technologies.

Research Interests

Yan Liu’s research focuses on bionic intelligent protective coatings and materials, with applications in automotive and surface engineering. She draws inspiration from biological structures to develop multifunctional materials, including self-repairing and self-warning coatings, superhydrophobic anti-corrosion surfaces, and anti-icing multifunctional coatings. Her work also extends to flexible electronic devices and polymer-based materials, combining advanced material science with biomimetic principles. Yan Liu is dedicated to addressing real-world challenges such as corrosion resistance and ice formation on automotive surfaces, making her research highly relevant and impactful. Her interdisciplinary approach integrates biology, materials science, and engineering to pioneer innovative solutions that bridge academic research and industrial applications.

Research Skills

Yan Liu possesses a wide array of advanced research skills in bionic and materials engineering. She specializes in designing multifunctional coatings and materials inspired by biological mechanisms, with expertise in self-repairing, anti-corrosion, and anti-icing technologies. Her skills include surface engineering, interface science, and the development of superhydrophobic materials. Yan Liu is adept at leading large-scale research projects, having managed several national and international R&D initiatives, including projects funded by the National Natural Science Foundation and major international collaboration programs. She also excels in intellectual property development, with 40 patent applications, 17 of which have been granted. Her ability to translate complex research into practical innovations highlights her technical acumen and problem-solving expertise.

Awards and Honors

Yan Liu’s exceptional contributions to science and engineering have earned her numerous accolades. She is a recipient of the prestigious CJ Scholar Distinguished Professor Award under the Ministry of Education’s Major Talent Project. As a Changbaishan Scholar of Jilin Province, she has been recognized for her leadership in materials science and bionics. She also holds prominent positions, including the Associate Directorship of the National Key Laboratory of Automotive Chassis Integration and Bionics and vice chairmanship of the Jilin Association of Corrosion Prevention Technology. Yan Liu’s work has been supported by over seven national-level grants and international collaboration programs, underscoring her excellence in research leadership. Her contributions to the field are further validated by her extensive publication record and numerous granted patents.

Conclusion

Yan Liu is an exceptional candidate for the Best Researcher Award due to her groundbreaking contributions in bionic engineering and materials science. Her achievements in developing multifunctional coatings, securing competitive funding, and publishing extensively in high-impact journals firmly establish her as a leading figure in her field. While enhancing international collaborations and emphasizing the practical impact of her innovations could further bolster her profile, her existing accomplishments position her as a highly suitable nominee for this prestigious recognition.

Publication Top Notes

  1. Fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zaihang Zheng, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.jmst.2024.05.052
  2. Eucalyptus spp.-inspired degradable lubricant-releasing coating for marine antifouling surfaces
    • Authors: Yafei Shi, Miaomiao Qian, Dongsong Wei, Wenliang Zhang, Ting Lu, Zhen Zhang, Shuyi Li, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.porgcoat.2024.108917
  3. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation
  4. Facile and effective construction of superhydrophobic, multi-functional and durable coatings on steel structure
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Zaihang Zheng, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.compositesb.2024.111850
  5. A fluorine-free bioinspired multifunctional slippery coating for ultra-long-term anticorrosion of Mg alloy, static/dynamic anti-icing, antibacterial and antifouling
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zhiwu Han, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.cej.2024.157516
  6. Ultralight, elastic, hydrophobic Willow moss-derived aerogels for efficient oil-water separation
    • Authors: Zhibiao Chen, Bin Zhan, Shuyi Li, Dongsong Wei, Wenting Zhou, Zhengping Fang, Guoyong Wang, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.colsurfa.2024.134648
  7. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
  8. Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination
  9. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring
  10. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Yan Liu
    • Year: 2024
    • DOI: 10.1021/acs.langmuir.4c02001
  11. Fabrication of superhydrophobic all-biomass aerogels with ultralight, elasticity and degradability for efficient oily wastewater treatment
    • Authors: Zhengping Fang, Jiaqi Li, Shiting Li, Chaohuan Yang, Chenchen Liao, Chengyu Du, Zhibiao Chen, Dongsong Wei, Jiayu Qi, Xiaopeng Guo, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.jwpe.2024.105607
  12. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances

 

Bardia Hejazi | Materials Science | Best Researcher Award

Dr. Bardia Hejazi | Materials Science | Best Researcher Award

Postdoc at Federal Institute for Materials Research and Testing, Germany

Bardia Hejazi is a dedicated physicist currently serving as a scientist at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. With a rich background in fluid dynamics, particle interactions, and X-ray imaging, he specializes in failure analysis of 3D printed materials, particularly titanium components. His research journey has taken him from his undergraduate studies in Iran to prestigious institutions, including a postdoctoral role at the Max Planck Institute for Dynamics and Self-Organization. Here, he focused on the intersection of fluid dynamics and biology, particularly the flight dynamics of honeybees in varying environmental conditions. Hejazi’s multidisciplinary approach not only contributes to advancements in materials science but also provides insights into complex biological systems. His contributions to both academia and outreach highlight his commitment to scientific communication and mentorship, fostering a diverse scientific community. His active participation in research, teaching, and organizational roles showcases his ability to bridge theoretical knowledge with practical applications, positioning him as a promising candidate for recognition as a leading researcher in his field.

Professional Profile

Education

Bardia Hejazi completed his Ph.D. in Physics at Wesleyan University in January 2021, where he conducted research on particle-turbulence interactions under the guidance of Professor Greg A. Voth. His doctoral thesis significantly advanced the understanding of how particles behave in turbulent flows, contributing to the broader field of fluid dynamics. Prior to his Ph.D., Hejazi earned a Bachelor of Science in Physics from the Sharif University of Technology in Tehran, Iran, in June 2015. This strong educational foundation equipped him with essential theoretical knowledge and practical skills in experimental and computational physics. His education also includes a visiting research experience at Harvard University’s Center for Nanoscale Systems, where he developed particle manufacturing techniques using advanced 3D printing technologies. Throughout his academic journey, Hejazi has demonstrated a commitment to interdisciplinary research, leveraging his expertise in physics to explore applications in material science, biology, and environmental studies. His solid educational background is complemented by numerous research experiences, allowing him to contribute meaningfully to diverse scientific inquiries.

Professional Experience

Bardia Hejazi has cultivated a diverse professional experience, beginning as an undergraduate researcher at Sharif University of Technology and continuing through various prestigious research positions. Currently, he serves as a scientist at BAM in Berlin, where he focuses on the failure analysis of 3D printed titanium components, utilizing advanced X-ray computed tomography imaging techniques. Before this role, Hejazi completed a postdoctoral fellowship at the Max Planck Institute for Dynamics and Self-Organization, engaging in innovative studies on honeybee flight dynamics and the effects of atmospheric turbulence. His prior experiences include conducting field measurements of cloud dynamics and investigating the effectiveness of face masks in mitigating disease transmission. Additionally, Hejazi’s research at Wesleyan University involved tracking flexible particles in fluid flows and studying their dynamics, further enhancing his expertise in fluid dynamics and experimental physics. He has also contributed to undergraduate education as an instructor and teaching assistant, where he applied his knowledge to nurture the next generation of physicists. This combination of research and teaching roles underscores his commitment to advancing scientific knowledge and education.

Research Interests

Bardia Hejazi’s research interests span a range of interdisciplinary topics within physics, particularly focusing on fluid dynamics, material science, and biological systems. His current research involves utilizing X-ray imaging techniques for failure analysis of 3D printed titanium components, exploring the intricate relationships between material properties and structural integrity. Hejazi’s postdoctoral research at the Max Planck Institute allowed him to investigate honeybee flight dynamics in windy environments, revealing critical insights into how turbulence affects biological behavior. He is also interested in aerosol dynamics and their implications for public health, particularly in understanding how airborne particles contribute to disease transmission in indoor environments. Throughout his academic career, Hejazi has engaged in computational studies, developing algorithms to track particle deformations in fluid flows, and exploring the interactions of flexible particles with turbulence. His diverse research interests not only reflect his expertise in physics but also emphasize his commitment to addressing complex scientific challenges that span multiple disciplines. By bridging the gap between theoretical concepts and practical applications, Hejazi aims to contribute to advancements in both fundamental science and real-world issues.

Research Skills

Bardia Hejazi possesses a robust skill set that encompasses a wide array of research methodologies and technical proficiencies. His expertise in fluid dynamics and particle physics is complemented by practical skills in X-ray computed tomography and image analysis, enabling him to perform detailed investigations into material properties and behaviors. Hejazi has developed advanced coding skills for image analysis, quantifying crack features in 3D printed components, and facilitating in-situ experiments. His research experience is supported by a solid foundation in computational physics, allowing him to simulate complex systems and analyze dynamic behaviors of particles in various environments. Additionally, Hejazi has hands-on experience with particle manufacturing techniques, particularly using nano-scale 3D printing, enhancing his ability to innovate within experimental setups. His strong analytical capabilities are evidenced by his numerous publications in high-impact journals, showcasing his ability to communicate complex findings effectively. Furthermore, Hejazi has demonstrated leadership and mentorship skills through his roles in teaching and outreach, reflecting his commitment to fostering collaboration and diversity within the scientific community. His interdisciplinary skills position him as a valuable contributor to research initiatives across various domains.

Awards and Honors

Bardia Hejazi has been recognized for his academic and research excellence through several prestigious awards and honors throughout his career. Notably, he received the 1st Prize at the national scientific competition of the Iranian Society of Acoustics and Vibrations in December 2013, showcasing his early commitment to scientific inquiry and innovation. Hejazi was also selected to represent Iran as a member of the national team in the 22nd International Young Physicists Tournament held in Tianjin, China, in July 2009, reflecting his strong foundation in physics during his formative years. His educational achievements, including a Ph.D. from Wesleyan University, further underscore his dedication to advancing knowledge in the field of physics. Additionally, Hejazi has successfully secured funding from the Max Planck Society for high-speed camera purchases to support his research on fluid dynamics, indicating recognition of the significance of his work. These accolades not only highlight Hejazi’s individual achievements but also demonstrate his ongoing commitment to contributing to the scientific community and fostering the advancement of research in physics and its applications.

Conclusion

Bardia Hejazi demonstrates an impressive profile for the Best Researcher Award, characterized by a combination of innovative research, technical expertise, and leadership in the scientific community. His contributions have significant implications for both academic and practical applications, particularly in materials science and public health. By addressing the identified areas for improvement, he can further enhance his impact and visibility within the research community. Overall, Bardia is a strong candidate for the award, reflecting both current achievements and future potential.

Publications Top Notes

  • An upper bound on one-to-one exposure to infectious human respiratory particles
    • Authors: G. Bagheri, B. Thiede, B. Hejazi, O. Schlenczek, E. Bodenschatz
    • Year: 2021
    • Citations: 151
  • Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran
    • Authors: M. Ghafari, B. Hejazi, A. Karshenas, S. Dascalu, A. Kadvidar, M.A. Khosravi, …
    • Year: 2021
    • Citations: 35
  • Using deformable particles for single-particle measurements of velocity gradient tensors
    • Authors: B. Hejazi, M. Krellenstein, G.A. Voth
    • Year: 2019
    • Citations: 17
  • Emergent scar lines in chaotic advection of passive directors
    • Authors: B. Hejazi, B. Mehlig, G.A. Voth
    • Year: 2017
    • Citations: 9
  • On the risk of infection by infectious aerosols in large indoor spaces
    • Authors: B. Hejazi, O. Schlenczek, B. Thiede, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 4
  • Honeybees modify flight trajectories in turbulent wind
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 3
  • Particle-turbulence interactions
    • Author: B. Hejazi
    • Year: 2021
    • Citations: 3
  • Crack characterization of fatigued additively manufactured Ti-6Al-4V using X-ray computed tomography and deep learning methods
    • Authors: B. Hejazi, A. Compart, T. Fritsch, R. Wagner, A. Weidner, H. Biermann, …
    • Year: 2024
  • Honeybee flight dynamics and pair separation in windy conditions near the hive entrance
    • Authors: B. Hejazi, H. Antigny, S. Huellstrunk, E. Bodenschatz
    • Year: 2023
  • Honeybee flight in windy conditions
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022