Zhao Wang | Materials Science | Best Researcher Award

Dr. Zhao Wang | Materials Science | Best Researcher Award

Technical Institute of Physics and Chemistry, Chinese Academy of Sciences | China

Dr. Zhao Wang is a distinguished researcher in the field of physical chemistry and advanced material science, specializing in the design and fabrication of high-performance materials inspired by biomimicry. His research focuses on impact-resistant glass, bulletproof glass, and advanced adhesion-controlled interface materials, integrating principles of bionic molecular engineering and interfacial optimization. With a strong foundation in chemistry and applied sciences, Dr. Wang has contributed significantly to internationally recognized journals such as Angewandte Chemie International Edition, Advanced Materials, Chemistry – A European Journal, and Science Bulletin. His work is at the forefront of interdisciplinary research, spanning materials chemistry, nanotechnology, biomimetic systems, and functional device applications. He completed his Ph.D. in Physical Chemistry at the Technical Institute of Physics and Chemistry, CAS, and currently serves as a Special Research Assistant at CAS under the mentorship of Academician Lei Jiang. His research projects include the National Postdoctoral Researcher Funding Program and CAS Special Research Assistant Project, aimed at biomimetic materials for healthcare and industrial applications. Recognized with prestigious scholarships and awards, including the Excellent Postdoctoral Talent of CAS, Dr. Wang has emerged as a promising young scientist with the potential to lead global collaborations in material innovation.

Professional Profile

Scopus 

Education

Dr. Zhao Wang’s academic journey reflects excellence and dedication to scientific inquiry. He obtained his Bachelor of Science in Chemistry from Northeast Normal University, where he developed his foundational skills in analytical chemistry, material synthesis, and molecular design under the mentorship of Prof. Shuxia Liu. His outstanding academic performance earned him multiple President Scholarships and National Scholarships, marking him as one of the top students in his cohort. Building upon his undergraduate success, Dr. Wang pursued a Ph.D. in Physical Chemistry at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences. His doctoral research, guided by Prof. Shutao Wang, focused on bionic molecular engineering and advanced adhesion chemistry, resulting in several publications in Q1 journals and the foundation of his expertise in high-performance impact-resistant glass and biomimetic materials. Dr. Wang’s formal education provided him with not only technical expertise but also exposure to interdisciplinary approaches that merge chemistry, physics, and engineering. His academic training was complemented by scholarships such as the Outstanding President Scholarship of CAS and National Scholarship. These achievements highlight his academic brilliance and set the stage for his continuing contributions as a materials chemist and research innovator.

Professional Experience

Dr. Zhao Wang has built a strong professional trajectory through positions that combine cutting-edge research, collaborative innovation, and mentorship. he has been serving as a Special Research Assistant at the Technical Institute of Physics and Chemistry (TIPC), CAS, working under the guidance of Academician Lei Jiang. In this role, he actively engages in research projects funded by national and international agencies, including the CAS Special Research Assistant Project and the National Postdoctoral Researcher Funding Program. His focus lies in biomimetic material design, adhesion chemistry, and device engineering, with applications extending to healthcare diagnostics, energy devices, and protective materials. During his doctoral years, Dr. Wang participated in several collaborative projects supported by the National Natural Science Foundation of China and CAS strategic initiatives, contributing to phase-change material design for organ preservation, bionic wet adhesion systems, and organic semiconductor devices. His involvement in both independent and team-based research demonstrates his versatility as a researcher capable of tackling fundamental science while addressing practical challenges. His professional journey is distinguished by the successful integration of experimental design, project leadership, and international collaboration, resulting in impactful scientific contributions. Through his roles, Dr. Wang has demonstrated not only research expertise but also leadership qualities essential for future academic and industrial advancements.

Research Interests

Dr. Zhao Wang’s research interests are rooted in biomimicry, material design, and interfacial engineering, with a focus on developing next-generation high-performance materials. His primary research area involves the design and fabrication of impact-resistant and bulletproof glass by leveraging bionic molecular engineering and interfacial optimization. These studies aim to enhance durability, transparency, and resistance, addressing global demands for advanced safety materials in defense, transportation, and infrastructure. Beyond glass materials, Dr. Wang explores biomimetic adhesion-controlled interfaces, inspired by marine organisms and natural adhesion systems. His research in wet adhesion interface materials seeks applications in industrial coatings, medical adhesives, and microelectronic devices. Additionally, he has expanded his interests to biomimetic sensors for early disease diagnosis, as part of the National Postdoctoral Researcher Funding Program, focusing on exhaled biomarker detection for healthcare applications. Dr. Wang’s work also bridges semiconductor interface design and energy materials, where he has contributed to strategies for enhancing the performance of organic electronics and phase-change materials for organ preservation. His interdisciplinary approach highlights the convergence of chemistry, biology, and materials engineering, positioning him as a versatile researcher whose contributions address critical challenges in science, technology, and society.

Research Skills

Dr. Zhao Wang has developed a broad range of technical and analytical skills that underpin his success as a researcher in physical chemistry and material science. His expertise in experimental design and troubleshooting allows him to construct innovative material systems while ensuring high reproducibility and precision. He is proficient in advanced data analysis tools, including OriginPro and MATLAB, enabling him to interpret experimental results and model material behavior effectively. His skills extend to scientific writing and grant proposal preparation, where he has contributed to peer-reviewed publications and secured funding for prestigious projects. Dr. Wang’s laboratory skills include nanostructured material synthesis, interfacial engineering, and polymer integration, particularly within biomimetic and semiconductor systems. His ability to merge theory with practical experimentation reflects his innovative research approach. Additionally, Dr. Wang demonstrates strong communication and presentation abilities, being fluent in English for scientific discourse, international collaboration, and conference participation. He is also well-versed in lab safety and compliance, ensuring responsible and ethical research practices. These skills collectively define him as a well-rounded scientist capable of excelling in diverse research environments while mentoring younger researchers and contributing to global knowledge advancement.

Awards and Honors

Dr. Zhao Wang’s academic and research career is distinguished by a series of national and institutional awards that recognize his excellence and contributions. he was honored with the Excellent Postdoctoral Talent of CAS Award, reflecting his outstanding research performance and future potential. During his doctoral studies, he received the Outstanding President Scholarship of CAS and the National Scholarship, both of which are highly competitive and prestigious recognitions within China’s academic system. Earlier in his career, Dr. Wang was awarded the Outstanding Student of University of CAS and the Excellent Poster Award from the Royal Society of Chemistry for his innovative research presentations. He consistently secured merit-based scholarships, including the Second-Class Director Scholarship, Outstanding Graduate Student Award, and multiple President Scholarships from Northeast Normal University. These recognitions underscore his academic brilliance, innovative thinking, and research impact. Collectively, they demonstrate his ability to excel in both academic and professional environments, highlighting his commitment to advancing material science and contributing to international research communities. His awards position him as a promising global researcher with a track record of sustained excellence.

Publication Top Notes

  • Superwetting-Enabled In Situ Silicification for Artificial Silicified Wood — 2025

  • Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups — 2025 — 3 citations

Conclusion

In conclusion, Dr. Zhao Wang represents an emerging leader in physical chemistry and material science, with contributions that bridge fundamental research and practical applications. His work on impact-resistant glass, biomimetic adhesion materials, and biomimetic sensors addresses critical global challenges in security, healthcare, and advanced technologies. Backed by a strong academic foundation, a growing list of Q1 journal publications, and prestigious recognitions such as the Excellent Postdoctoral Talent of CAS, Dr. Wang has demonstrated consistent excellence and innovation. Beyond research, his engagement in national and international collaborations and his role in mentoring early-stage researchers highlight his leadership qualities and dedication to scientific communities. His strong research skills, combined with a forward-looking vision, position him as a candidate who can drive future breakthroughs in material innovation. Dr. Zhao Wang is highly deserving of the Best Researcher Award, as his contributions not only enrich the academic world but also provide tangible benefits to society at large. With his expertise, dedication, and leadership potential, he is poised to emerge as a global authority in biomimetic material engineering and advanced functional materials, contributing significantly to science and humanity.

Rafael Bernardo Carmona-Paredes | Materials Science | Best Researcher Award

Dr. Rafael Bernardo Carmona-Paredes | Materials Science | Best Researcher Award

National Autonomous University of Mexico | Mexico

Dr. Rafael Bernardo Carmona-Paredes is a highly respected academic and researcher specializing in hydraulic engineering, water resources management, and dynamic systems. With a career spanning over four decades, he has contributed extensively to both theoretical and applied aspects of water systems engineering. Currently serving at the Universidad Nacional Autónoma de México (UNAM), Dr. Carmona has dedicated his career to advancing hydraulic transients, pumping systems, aquifer recharge, and optimization of water distribution systems. His strong academic background, combined with innovative research and teaching, has enabled him to influence both national and international projects in water management and infrastructure. He has published widely in prestigious journals indexed in Scopus and JCR, authored book chapters, and developed patents related to hydraulic simulation and optimization. Dr. Carmona is also recognized for mentoring young researchers, guiding graduate students, and collaborating with institutions across Latin America and Europe. His professional excellence is further evident in his leadership roles within engineering associations and his frequent participation in international congresses. With a unique balance of academic rigor, applied engineering expertise, and societal impact, Dr. Carmona continues to be a leading figure in advancing sustainable solutions for global water challenges.

Professional Profile

Scopus Profile

Education

Dr. Rafael Bernardo Carmona-Paredes pursued his academic training entirely at the prestigious Universidad Nacional Autónoma de México (UNAM), where he cultivated a multidisciplinary foundation bridging physics, control engineering, and mechanical engineering. He completed his Bachelor’s degree in Physics, which provided him with a solid understanding of fundamental scientific principles, including fluid dynamics, mechanics, and applied mathematics. Motivated by the challenges of engineering applications, he advanced to earn his Master’s degree in Control Engineering, where he specialized in system modeling, dynamic controls, and mathematical optimization. This phase of study laid the groundwork for his future work in hydraulic systems and dynamic behavior of pipelines and water distribution networks. Building upon his expertise, Dr. Carmona earned his Ph.D. in Mechanical Engineering at UNAM, with a dissertation that focused on mathematical modeling for navigation and port water areas. His doctoral research represented an early integration of computational methods with hydraulic and mechanical engineering, pioneering approaches that remain highly relevant today. This combination of degrees reflects his progression from theoretical sciences to applied engineering, equipping him with the interdisciplinary knowledge essential for addressing complex problems in hydraulic engineering and water resources management.

Professional Experience

Dr. Rafael Bernardo Carmona-Paredes has held an illustrious professional career rooted in both academia and applied research. He has been a professor and researcher at the Faculty of Engineering, Universidad Nacional Autónoma de México (UNAM), where he has significantly contributed to teaching, supervising graduate students, and leading research initiatives. Over the years, he has spearheaded numerous national and international projects related to hydraulic engineering, water distribution systems, and aquifer management. His professional expertise extends beyond teaching into consultancy and applied engineering, where he has collaborated with governmental agencies, private organizations, and research institutions in solving water management challenges. Dr. Carmona has also been actively involved in presenting his work at major international forums such as the International Association for Hydro-Environment Engineering and Research (IAHR) and Latin American Hydraulic Congresses, establishing himself as a global voice in water engineering. He has contributed to the development of simulation models for transient flows, optimization techniques for pumping systems, and innovative strategies for aquifer recharge. His professional experience showcases a seamless blend of academic leadership, practical problem-solving, and active participation in the global engineering community, making him a sought-after expert in his field.

Research Interests

Dr. Rafael Bernardo Carmona-Paredes’ research interests focus on advancing the science and practice of hydraulic engineering, with a special emphasis on addressing water resource challenges. His primary area of interest lies in hydraulic transients, where he explores the dynamic behavior of water flow in pressurized systems and pipelines, including the effects of viscoelastic properties. He is deeply engaged in the study of pumping systems, their energy efficiency, and methods for optimizing their operation to achieve sustainable outcomes. Another significant focus of his research is aquifer recharge and groundwater management, where he integrates hydrological modeling with engineering approaches to enhance water security. Dr. Carmona also investigates reservoir operation policies, developing computational models that help optimize water storage and distribution under varying climatic and demand conditions. His work extends into mathematical modeling and control systems, leveraging his interdisciplinary background in physics and engineering to simulate complex water systems. By combining theoretical models with practical applications, his research provides innovative solutions for urban water distribution, infrastructure resilience, and sustainable resource management. His interests align with global efforts to ensure water sustainability, positioning his contributions as both regionally impactful and internationally relevant.

Research Skills

Dr. Rafael Bernardo Carmona-Paredes possesses a rich skill set that spans theoretical, computational, and applied aspects of hydraulic engineering and water resource systems. His expertise in mathematical modeling and simulation allows him to design complex models of hydraulic transients, aquifer recharge, and pumping systems with high accuracy. He is skilled in control systems engineering, applying advanced optimization methods to improve the performance and efficiency of water distribution networks. His proficiency extends to computational fluid dynamics (CFD), enabling him to analyze fluid behavior under transient and steady-state conditions. Additionally, Dr. Carmona demonstrates strong abilities in reservoir operation modeling, particularly in developing strategies for water conservation and sustainable supply. His technical strengths are complemented by his knowledge of hydrological data analysis, dynamic system modeling, and viscoelastic pipeline behavior. Beyond technical skills, he excels in research communication through scholarly publications, book chapters, and patents, as well as in collaborative skills through partnerships with international universities and engineering institutions. His ability to integrate theoretical rigor with practical applications reflects his comprehensive research capabilities, equipping him to address multidisciplinary challenges in water engineering and contribute to sustainable development goals.

Awards and Honors

Over the course of his career, Dr. Rafael Bernardo Carmona-Paredes has been recognized with numerous academic and professional honors for his contributions to hydraulic engineering and water resource management. His pioneering research has led to over 200 scientific publications in high-impact journals and conferences, many of which are indexed in Scopus and JCR, highlighting his influence in the global academic community. He has also authored book chapters and holds patents in hydraulic simulation systems, showcasing his ability to translate research into practical innovations. Dr. Carmona has been invited to present at international forums, including IAHR and Latin American Hydraulic Congresses, where his work has been acknowledged by peers worldwide. His role as a mentor and educator at UNAM has also earned him recognition within academic circles for shaping future generations of engineers and researchers. In addition to academic achievements, Dr. Carmona’s applied engineering solutions for aquifer management and hydraulic transients have earned him commendations from research and professional organizations. Collectively, these awards and honors reflect not only his scholarly excellence but also his significant impact on sustainable water engineering practices, both regionally and internationally.

Publication Top Notes

  1. Unsteady and Steady Flow Control on Pumping Systems — 1990

  2. Damp trend Grey Model forecasting method for airline industry — 2013

  3. Pressure management in water distribution systems using a self-tuning controller to distribute the available potable water with equality — 2018

  4. Protecting a Pumping Pipeline System from Low Pressure Transients by Using Air Pockets: A Case Study — 2019

  5. A Unified Hydrogeological Conceptual Model of the Mexico Basin Aquifer after a Century of Groundwater Exploitation — 2022

  6. Challenges and Experiences of Managed Aquifer Recharge in the Mexico City Metropolitan Area — 2022

  7. Use of evolutionary computation and guide curves to optimize the operating policies of a reservoir system established to supply drinking water — 2023

  8. Modeling Viscoelastic Behavior of HDPE Pipes Subjected to a Diametral Load Using the Standard Linear Solid Model — 2025

Conclusion

Dr. Rafael Bernardo Carmona-Paredes stands out as a visionary researcher and academic leader in the field of hydraulic engineering and water resource management. His academic journey from physics to mechanical engineering, paired with his practical expertise, has positioned him as a pioneer in developing innovative solutions for water-related challenges. His contributions extend from theoretical models of hydraulic transients to practical strategies for aquifer recharge and water distribution optimization, bridging the gap between science and application. Beyond his research, Dr. Carmona’s dedication to teaching and mentoring reflects his commitment to shaping future engineers, while his collaborations with global institutions highlight his influence beyond national borders. His vast publication record, patents, and recognition at international forums serve as a testament to his academic excellence and societal impact. Moving forward, his continued focus on sustainability, technological innovation, and global collaboration promises to further strengthen his contributions to water security and hydraulic engineering. For his pioneering achievements, leadership, and dedication, Dr. Rafael Bernardo Carmona-Paredes is rightfully considered a leading figure in his field and a deserving candidate for distinguished academic recognition.

Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Dr. Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Babylon University | Iraq

Enas Laith Ali Al-Dulaimi is an accomplished researcher and materials engineer from Iraq, recognized for her expertise in alloy development, corrosion resistance, and aerospace materials. With a strong academic foundation in metallurgy and materials engineering, she has contributed significantly to advancing knowledge in the areas of alloy processing, microstructural analysis, and mechanical property improvement. Her work is deeply rooted in both academic research and practical laboratory investigations, bridging the gap between theoretical insights and industrial applications. Over the years, she has developed a strong research portfolio, including multiple publications in internationally indexed journals, book chapters, and conference proceedings. Enas has also demonstrated her leadership skills by guiding students, contributing to academic projects, and engaging in training programs to share her expertise. Her work spans various advanced techniques, including X-ray diffraction, optical microscopy, and corrosion testing methods, positioning her as a specialist in material characterization and alloy performance evaluation. In addition to her academic contributions, she has earned professional certifications and participated in interdisciplinary collaborations, reflecting her commitment to continuous learning and professional growth. Her research excellence, combined with a strong vision for innovation and societal impact, makes her a valuable contributor to the global scientific and engineering community.

Professional Profile

Scopus | Google Scholar

Education

Enas Laith Ali Al-Dulaimi holds a distinguished academic background in materials engineering, with both undergraduate and postgraduate degrees from the University of Babylon, Iraq. She earned her Bachelor’s degree in Metallurgical and Materials Engineering (Metals Division), where she graduated with high distinction, ranking fourth in her department. During her undergraduate studies, she completed a major project on improving corrosion resistance in Nitinol alloys through surface treatment techniques, which demonstrated her early research capabilities and passion for materials development. Building on this foundation, she pursued a Master’s degree in Metallurgical and Materials Engineering (Metals Division) at the University of Babylon. Her Master’s research was focused on the role of alloying techniques in enhancing the properties of Al-Li alloys used in aerospace industries, which showcased her ability to address complex engineering challenges with real-world applications. This work contributed valuable insights into the aerospace field, particularly regarding alloy strength, durability, and resistance to corrosion. Alongside her formal education, she has pursued continuous learning through professional certifications and specialized training, including programs on Python programming, artificial intelligence, electronic teaching methods, and advanced laboratory practices, ensuring her academic profile is well-rounded and internationally competitive.

Professional Experience

Enas Laith Ali Al-Dulaimi has accumulated extensive professional experience as a materials engineer, academic researcher, and laboratory specialist at the University of Babylon. In her role, she has actively contributed to teaching, guiding students in practical experiments, and assisting in advanced laboratory investigations related to metallurgy and materials characterization. Her hands-on experience covers mechanical testing, hardness, tensile and compression strength evaluations, as well as corrosion resistance studies, all of which are essential for assessing material performance under different industrial conditions. Beyond her academic role, she has served as a research associate in various collaborative projects, particularly in developing advanced alloys for aerospace and industrial applications. Enas is skilled in operating modern laboratory instruments such as optical microscopes, X-ray diffraction systems, and metallurgical testing setups, which have been instrumental in her research output. Her professional contributions also extend to writing academic reports, research papers, and technical documents that bridge scientific knowledge with industrial relevance. Additionally, she has played a role in organizing academic seminars and workshops, enabling knowledge exchange between researchers and students. By combining teaching, applied research, and laboratory training, she has developed a strong professional profile that highlights her technical expertise, leadership qualities, and dedication to advancing material sciences.

Research Interests

The research interests of Enas Laith Ali Al-Dulaimi lie primarily in the field of advanced materials engineering, alloy development, and aerospace materials applications. She is particularly focused on studying the corrosion behavior, microstructure, and mechanical properties of Al-Li alloys, Ni-Ti alloys, and high-strength steels, which are widely used in aerospace, medical, and industrial sectors. Her work emphasizes the role of alloying elements, surface treatment, and thermal processing techniques in improving the durability and performance of these materials. She has conducted detailed studies on the effect of micro-alloying with elements such as Ag, Ge, Mg, and Cu, contributing new knowledge on how these additions enhance alloy strength, toughness, and corrosion resistance. In addition to alloy development, she is interested in nanomaterials and advanced composites for engineering applications, particularly those with biomedical and aerospace potential. Enas is also engaged in interdisciplinary research that integrates statistical modeling, materials characterization, and experimental testing methods to provide comprehensive solutions to engineering challenges. With a vision to expand her work globally, she aims to further explore sustainable materials development, environmentally friendly alloys, and innovative processing techniques, ensuring that her research contributes to both industrial advancement and societal progress.

Research Skills

Enas Laith Ali Al-Dulaimi possesses a wide range of technical, analytical, and academic research skills that make her a highly competent materials engineer and researcher. She is proficient in conducting structural and microstructural analysis using X-ray diffraction (XRD), optical microscopy, and scanning techniques, which are critical for evaluating alloy composition and performance. Her expertise extends to mechanical property testing, including hardness, tensile, fracture toughness, and corrosion resistance measurements. Enas is skilled in experimental design, statistical data analysis, and technical report writing, supported by her proficiency in tools such as SPSS, Microsoft Excel, and other statistical platforms. She is also experienced in 3D design and modeling using AutoCAD and Home Design 3D, complementing her engineering expertise with design capabilities. Her software knowledge includes Microsoft Office Suite, Adobe Photoshop, and presentation design tools, enhancing her ability to present research findings effectively. Beyond technical skills, she has strong abilities in academic writing, publishing in peer-reviewed journals, and presenting at conferences. Her personal skills include critical thinking, teamwork, problem-solving, and mentoring younger researchers, making her not only an independent investigator but also a collaborative academic professional with a strong commitment to continuous learning and innovation.

Awards and Honors

Throughout her career, Enas Laith Ali Al-Dulaimi has received several academic honors, certifications, and professional recognitions that underscore her contributions to the field of materials engineering. She has published multiple papers in Scopus and IEEE-indexed journals, including IOP Conference Series: Materials Science and Engineering, Journal of Engineering and Applied Sciences, and International Journal of Mechanical Engineering and Technology (IJMET), with her works receiving citations from international researchers. In addition to journal publications, she has authored and co-authored book chapters on alloy development and microstructure analysis, demonstrating her contribution to academic literature. Enas has also earned professional certifications, including the prestigious TOT (Certified Trainer) accreditation, a University of Baghdad certification in E-learning and Zoom teaching platforms, and recognition from the American Association of Neurological Surgeons (AANS) for intensive care management training. She has further enhanced her international profile by completing Udemy certifications in Python programming, artificial intelligence, and advanced presentation design. These achievements reflect not only her academic and research excellence but also her commitment to continuous professional development. Her awards and recognitions highlight her growing influence in the academic community and her readiness to take on more impactful global research roles.

Publication Top Notes

  • The Effects of Chemical Oxidation on Corrosion Behavior of Ni-Ti Alloy — 2021 — 5 citations

  • Experimental and theoretical analysis of bismuth Co-doped erbium-based hydroxyapatites — 2025 — 1 citation

  • Microstructure and mechanical properties of Ag and Ge multi-micro alloyed Al-(3.2) Cu-(2) Li-(0.6) Mg alloys — 2019 — 1 citation

  • Influence of Alloying Element on Corrosion Behavior of (Al-Li) Alloys used in Aerospace Industries — 2019 — 1 citation

  • Comprehensive analysis of the impact of iron and terbium co-dopant levels on the structural, thermal, and spectroscopic properties of hydroxyapatite — 2025

  • Optimizing the welding performance of 2024-T351 aluminum alloy through friction stir welding technology — 2024

  • Investigation of the effect of chitosan nanoparticles on MDR Bacillus cereus isolated from pasteurized milk — 2024

Conclusion

In conclusion, Enas Laith Ali Al-Dulaimi represents a dynamic and forward-thinking researcher whose contributions to materials engineering, alloy development, and aerospace applications position her as a rising leader in her field. Her academic journey, professional experience, and diverse research portfolio demonstrate a clear commitment to advancing knowledge while ensuring practical applications that benefit industry and society. She has successfully combined strong technical expertise with academic leadership, mentorship, and professional training, making her profile well-rounded and globally relevant. Through her publications, certifications, and collaborations, she has already built a foundation for international recognition. However, her vision goes further—she aims to expand her research on sustainable and advanced alloys, participate in global collaborations, and contribute to the development of environmentally friendly materials for future generations. With her blend of academic excellence, professional achievements, and innovative mindset, Enas is highly deserving of recognition as a Best Researcher Award nominee. Her ability to bridge academic research with practical impact reflects her true potential as a scientist, educator, and global contributor to the engineering community.

Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President from New York University, United States

Dr. Juan José de Pablo is a globally recognized leader in molecular engineering, materials science, and chemical engineering, known for his groundbreaking research and extensive leadership in academic and national scientific organizations. Currently serving as the Executive Vice President for Global Science and Technology and Executive Dean at the Tandon School of Engineering, New York University, Dr. de Pablo has had an illustrious academic and professional journey. He is also a senior scientist at Argonne National Laboratory and has held pivotal roles at the University of Chicago and the University of Wisconsin. His work spans multiple research areas, including directed self-assembly of polymers, soft materials, molecular simulation, and biotechnology. Over the years, Dr. de Pablo has established himself as a prolific researcher with over 20 patents, numerous influential publications, and editorial positions in high-impact journals. He is an elected member of prestigious institutions including the U.S. National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences. His leadership has influenced science policy, strategic research initiatives, and interdisciplinary collaborations across the globe. His contributions are not only scientific but visionary, paving the way for future technological advances in materials design, nanotechnology, and energy solutions.

Professional Profile

Education

Dr. de Pablo’s academic foundation is as impressive as his professional accomplishments. He began his education at the National University of Mexico (UNAM), where he earned a Bachelor of Science in Chemical Engineering in 1985. His passion for chemical engineering led him to pursue a doctoral degree at the University of California, Berkeley, where he received his Ph.D. in Chemical Engineering in 1990. After completing his doctorate, he furthered his research capabilities during a postdoctoral fellowship in Materials Science at the Institute for Polymers, ETH Zurich, Switzerland, from 1990 to 1992. These formative years provided him with a robust interdisciplinary background that blends engineering principles with advanced materials science. His exposure to leading institutions in North America and Europe gave him a global perspective early in his career, which continues to shape his international collaborations and leadership roles. The rigorous training he received laid the groundwork for his expertise in thermodynamics, polymer physics, and computational modeling, which would go on to influence countless innovations in both academic and industrial domains.

Professional Experience

Dr. de Pablo’s professional career spans over three decades and includes a distinguished trajectory of teaching, research, and leadership. He began his academic career as an Assistant Professor of Chemical Engineering at the University of Wisconsin in 1992, rising through the ranks to become a full professor and eventually Director of its Materials Research Science and Engineering Center. From 2000 to 2012, he also served as Deputy Director of the Nanoscale Science and Engineering Center. In 2012, he joined the University of Chicago as the Liew Family Professor at the Institute for Molecular Engineering, and later took on pivotal roles including Co-Director of the Center for Hierarchical Materials Design (CHiMaD) and Deputy Director for Education and Outreach. Since 2018, he has also been CEO of UChicago-Argonne LLC. Dr. de Pablo’s influence extends beyond academia into national and global science leadership, particularly through his vice presidency roles related to U.S. National Laboratories and global innovation. In 2024, he was appointed Executive Dean at NYU’s Tandon School of Engineering, a role through which he continues to shape engineering education and research strategy. His extensive professional background reflects a unique combination of scientific innovation and strategic governance.

Research Interests

Dr. de Pablo’s research interests are both broad and deep, focusing on the intersection of molecular engineering, materials science, and computational physics. A primary focus of his work is on the directed self-assembly of block copolymers, a field in which he has pioneered several methodologies now used in nanomanufacturing and lithography. He also investigates thermophysical properties of soft materials, advanced polymer systems, biological interfaces, and molecular thermodynamics. His interest in computational modeling has led to the development of new simulation tools and theoretical frameworks for studying molecular and nanoscale systems, facilitating predictions of material behavior with high accuracy. Additionally, Dr. de Pablo has contributed significantly to biotechnology research, particularly in areas related to cryopreservation, stem cell engineering, and synthetic biology. His interdisciplinary approach allows him to tackle complex problems that span chemistry, physics, and engineering. Through collaborative projects and centers such as CHiMaD, he works closely with experimentalists to translate computational models into real-world applications. His research agenda reflects an enduring commitment to solving fundamental scientific challenges while also addressing practical issues in health, energy, and technology.

Research Skills

Dr. de Pablo possesses an exceptional array of research skills that reflect his training and contributions across multiple scientific disciplines. He is a world leader in computational modeling and molecular simulation, applying these techniques to study the thermodynamic and kinetic behavior of polymers, colloids, and biological systems. His skillset includes advanced knowledge of coarse-grained and multiscale simulations, free energy calculations, and structure-property prediction methods. Beyond computational proficiency, he has deep expertise in thermodynamics, statistical mechanics, and polymer physics. His laboratory and theoretical work complement each other, allowing him to bridge gaps between experimental observations and theoretical predictions. He is also adept at integrating interdisciplinary methods, including those from materials science, chemical engineering, and applied physics. His ability to conceptualize and lead large-scale research initiatives, such as the Materials Genome Initiative, highlights his strengths in research strategy and innovation management. In mentoring and supervision, Dr. de Pablo has guided dozens of Ph.D. students and postdoctoral fellows, instilling in them a rigorous and holistic research methodology. His technical versatility and collaborative mindset are key reasons behind his influential role in shaping modern materials science.

Awards and Honors

Dr. de Pablo has been the recipient of numerous prestigious awards and honors that reflect the depth, breadth, and impact of his scientific career. Early in his career, he received multiple young investigator awards from leading institutions like NSF, IBM, Xerox, 3M, and DuPont, signaling his early promise. He went on to receive the Presidential Faculty Fellow Award from President Bill Clinton and was later elected as a Fellow of the American Physical Society and the American Academy of Arts and Sciences. His research has been recognized through lectureships and invited professorships at top global institutions such as ETH Zurich, Stanford, and the University of Michigan. He has delivered keynote talks and plenary lectures at more than 30 prestigious conferences and universities worldwide. In 2016, he was elected to the U.S. National Academy of Engineering and later to the National Academy of Sciences in 2022. Internationally, he holds honors like the Marie Curie Professorship and the Chevalier de l’Ordre du Mérite (France, 2024). His accolades also include the Polymer Physics Prize from the American Physical Society and numerous distinguished lectureships from Caltech, MIT, Princeton, and others. These honors underline his status as a leading global authority in materials and molecular engineering.

Conclusion

Dr. Juan José de Pablo exemplifies excellence in scientific research, innovation, and leadership. His prolific academic career, paired with his impactful administrative and advisory roles, highlights a rare combination of deep technical expertise and visionary leadership. His contributions to molecular engineering and materials science have not only expanded fundamental scientific understanding but have also enabled new technologies in fields ranging from nanolithography to cryopreservation. With over 20 patents, numerous high-impact publications, and a strong track record of mentorship, Dr. de Pablo has influenced both the academic community and industrial applications. His election to multiple national academies and his global recognition through prestigious awards are testaments to the quality and impact of his work. While already an established authority, he continues to contribute actively through roles in science policy, research strategy, and education at the highest levels. In summary, Dr. de Pablo’s lifelong dedication to advancing science and mentoring the next generation of researchers makes him a truly deserving candidate for the Best Researcher Award. His career serves as an inspiration and a benchmark for excellence in global scientific leadership.

Publications Top Notes

  1. Water-mediated ion transport in an anion exchange membrane
    Nature Communications, 2025
    Citations: 2
  2. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
    Nature Communications, 2025
    Citations: 1
  3. Reflection and refraction of directrons at the interface
    Proceedings of the National Academy of Sciences of the United States of America, 2025
  4. Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
    ACS Catalysis, 2025
  5. Synthetic Active Liquid Crystals Powered by Acoustic Waves
    Advanced Materials, 2025
  6. Current Advances in Genome Modeling Across Length Scales 2025
  7. Chromatin structures from integrated AI and polymer physics model
    PLOS Computational Biology, 2025
    Citations: 1
  8. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
    Journal of Organic Chemistry, 2025
  9. Bio-Based Surfactants via Borrowing Hydrogen Catalysis
    Chemistry – A European Journal, 2025
  10. Efficient sampling of free energy landscapes with functions in Sobolev spaces
    Journal of Chemical Physics, 2025
    Citations: 1

Hanaa Abd El-Hamid | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hanaa Abd El-Hamid | Materials Science | Best Researcher Award

Associate Professor from National Research Centre, Egypt

Hanaa Kamel Abd El-Hamid Essway is an accomplished Egyptian researcher specializing in ceramics, refractory, and building materials with extensive expertise in bioactive and sustainable materials. she currently serves as an Assistant Professor at the National Research Centre. With over 20 years of progressive experience, Dr. Essway has built a strong research portfolio focusing on the development of innovative materials for biomedical, dental, and structural applications. Her research emphasizes the use of cost-effective and eco-friendly materials, aligning her work with both scientific advancement and environmental sustainability. She has published numerous articles in highly regarded international journals such as Ceramics International, Scientific Reports, and Heliyon, covering critical areas like bio-cements, corrosion-resistant coatings, and dental restorative materials. In addition to her research, she is actively involved in training and mentoring university students and has participated in several national and international conferences. Dr. Essway possesses a strong blend of practical laboratory expertise and theoretical knowledge, and she continuously seeks to contribute to the advancement of material science. Her career reflects her dedication to scientific excellence, continuous learning, and impactful research that addresses real-world challenges.

Professional Profile

Education

Dr. Hanaa Kamel Abd El-Hamid Essway has pursued a solid academic path that firmly established her expertise in chemistry and materials science. She earned her Ph.D. in Chemistry from Ain Shams University, Egypt, in 2013. Her doctoral research, titled “Utilization of Egyptian Oil Shales in Manufacture of High-Belite Cement and Activated Pozzolanic Ash,” focused on sustainable and cost-efficient materials for construction, demonstrating her early commitment to resource-efficient technologies. Before her doctoral studies, she completed her Master’s degree in Chemistry in 2006 from Menufiya University, where she conducted in-depth studies on the use of Egyptian oil shales in cement production. Her Master’s research laid the groundwork for her doctoral investigations and subsequent career focus on eco-friendly building materials. Dr. Essway began her academic journey by earning a Bachelor’s degree in Chemistry from Menufiya University in 1999 with high distinction, graduating with an overall rating of “Very Good.” Her continuous educational progression from undergraduate studies to advanced research degrees reflects her sustained academic dedication and expertise in her field. These educational achievements have provided her with a comprehensive understanding of both theoretical chemistry and its practical applications in material development.

Professional Experience

Dr. Hanaa Kamel Abd El-Hamid Essway has demonstrated consistent career growth through her long-standing association with the National Research Centre in Egypt. She currently holds the position of Assistant Professor in the Ceramics, Refractory, and Building Materials Department, a role she has occupied since February 2023. Her academic journey within the Centre began in 2001 as a Research Assistant, and she gradually progressed through the ranks as an Assistant Researcher, Researcher, and finally Assistant Professor. Between 2006 and 2013, she served as an Assistant Researcher, where she honed her skills in developing novel materials for biomedical and structural use. Following this, she worked as a full-time Researcher until 2023, during which she made significant research contributions, particularly in the area of bio-cement and corrosion-resistant coatings. Over her career, Dr. Essway has participated in several specialized training courses, student mentorship programs, and international scientific conferences. Her professional experience not only showcases her research capabilities but also highlights her ability to apply her scientific knowledge in real-world materials development. This long-term commitment to research and education has positioned her as a highly respected expert in her field.

Research Interest

Dr. Hanaa Kamel Abd El-Hamid Essway’s research interests are deeply rooted in the development of sustainable, cost-effective, and bioactive materials for use in various industrial and biomedical applications. She is particularly focused on ceramics, bio-cement, corrosion-resistant coatings, and dental restorative materials. One of her primary areas of investigation is the utilization of locally available, low-cost materials such as Egyptian oil shales and soda-lime-silica glass in cement and bioactive composites, aiming to reduce manufacturing costs while enhancing material performance. Her work on nano-structured coatings for corrosion protection and biocompatible composites has significant potential for medical implants and dental applications. Additionally, Dr. Essway is interested in the hydration behavior and remineralization potential of modified cements, exploring how novel composites can improve the strength and longevity of dental restorations. Her cross-disciplinary research approach integrates chemistry, materials science, and biomedical engineering, contributing to both environmental sustainability and human health. Dr. Essway’s research is geared toward solving real-world challenges by improving material properties such as biocompatibility, antibacterial resistance, and mechanical durability, making her work highly relevant for industries such as healthcare, construction, and biomaterials development.

Research Skills

Dr. Hanaa Kamel Abd El-Hamid Essway possesses a diverse and advanced set of research skills that reflect her hands-on expertise in experimental design, material synthesis, and analytical characterization. She is highly skilled in developing and modifying bioactive cements, corrosion-resistant coatings, and nano-structured materials, applying polymeric methods and microwave combustion techniques for precise material fabrication. Dr. Essway’s extensive experience includes characterizing materials using advanced techniques to study microstructures, hydration behaviors, and bioactivity. She has effectively contributed to the synthesis of tricalcium silicate bio-cements, nano-alumina coatings, and zinc oxide-based composites with antibacterial and biocompatible properties. Additionally, she is proficient in evaluating the mechanical properties and corrosion resistance of coating layers, which is essential for biomedical applications. Dr. Essway is adept at using statistical tools and research methodologies for data interpretation and scientific reporting. She also has strong computer skills, particularly in Microsoft Office applications, which she uses for scientific writing and data management. Her ability to collaborate with multidisciplinary teams, conduct literature reviews, and supervise laboratory experiments further strengthens her research portfolio. Her continuous participation in training workshops and scientific conferences has allowed her to stay updated with modern research methodologies and industry practices.

Awards and Honors

While specific award titles were not listed, Dr. Hanaa Kamel Abd El-Hamid Essway’s career achievements demonstrate significant recognition within the scientific community. Her long-standing role at the National Research Centre and her progression to Assistant Professor underscore the institutional trust and recognition of her capabilities and contributions. Throughout her career, she has been actively involved in major research projects, student mentorship, and national-level training initiatives, which reflect her respected standing as both a researcher and educator. Dr. Essway has participated in several high-profile international and national conferences, where she has presented her work alongside leading experts in material science and biomaterials. Her published articles in top-tier journals such as Ceramics International, Scientific Reports, and Heliyon are further testament to the scientific community’s acknowledgment of the value and relevance of her research. Her engagement in skill development programs and training workshops, including scientific writing and occupational safety, shows her commitment to continuous improvement. The cumulative impact of her scientific contributions, teaching, and professional development indicate that she is a well-regarded figure in her field, deserving of recognition through honors such as the Best Researcher Award.

Conclusion

In conclusion, Dr. Hanaa Kamel Abd El-Hamid Essway stands out as a dedicated and accomplished researcher whose work significantly advances the fields of ceramics, bio-cement, and sustainable building materials. Her research is characterized by innovation, interdisciplinary approaches, and practical solutions that address real-world challenges in biomedical and construction applications. With more than 20 years of progressive experience, she has contributed extensively to the scientific community through impactful publications, participation in conferences, and mentorship of university students. Dr. Essway’s focus on using cost-effective and locally sourced materials aligns her work with global sustainability goals while simultaneously pushing the frontiers of material performance and safety. Her research skills, including advanced synthesis techniques, material characterization, and data analysis, have consistently yielded valuable findings that are well-recognized by international journals. Although her work would benefit from greater international collaboration and leadership roles, her proven research productivity and technical expertise make her a strong candidate for prestigious research awards. Dr. Essway’s career exemplifies the qualities of a Best Researcher Award recipient: dedication, innovation, academic excellence, and a tangible contribution to society

Publications Top Notes

1. Alkali Activation of Blended Cements Containing Oil Shale Ash

  • Authors: M.M. Radwan, L.M. Farag, S.A. Abo-El-Enein, H.K. Abd El-Hamid

  • Journal: Construction and Building Materials 40, 367-377

  • Year: 2013

  • Citations: 29

2. Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate

  • Authors: M.M.R. M. Fathi, H.K. Abd El-Hamid

  • Journal: International Journal of Electrochemical Science 11, 3164-3178

  • Year: 2016

  • Citations: 17

3. Influence of Saline Solution on Hydration Behavior of β-Dicalcium Silicate in Comparison with Biphasic Calcium Phosphate/Hydroxyapatite Bio-Ceramics

  • Authors: M.M. Radwan, H.K. Abd El-Hamid, A.F. Mohamed

  • Journal: Materials Science and Engineering: C 57, 355-362

  • Year: 2015

  • Citations: 17

4. Physico-Mechanical Characteristics of Tri-Calcium Silicate Pastes as Dentin Substitute and Interface Analysis in Class II Cavities: Effect of CaCl₂ and SBF Solutions

  • Authors: M.M. Radwan, S.M. Nagi, H.K. Abd El-Hamid

  • Journal: Heliyon 5 (6)

  • Year: 2019

  • Citations: 16

5. Influence of Nano-Silica Additions on Hydration Characteristics and Cytotoxicity of Calcium Aluminate as Biomaterial

  • Authors: H.K. Abd El-Hamid, M.M. Radwan

  • Journal: Heliyon 5 (7)

  • Year: 2019

  • Citations: 13

6. Synthesis, Properties and Hydration Characteristics of Novel Nano-Size Mineral Trioxide and Tetracalcium Phosphate for Dental Applications

  • Authors: M.M. Radwan, H.K. Abd El-Hamid, S.M. Nagi

  • Journal: Oriental Journal of Chemistry 32 (5), 2459

  • Year: 2016

  • Citations: 12

7. Characterization, Bioactivity Investigation and Cytotoxicity of Borosilicate Glass/Dicalcium Silicate Composites

  • Authors: R.L.E., H.K. Abd El-Hamid, S.M. Abo-Naf

  • Journal: Journal of Non-Crystalline Solids 512, 25-32

  • Year: 2019

  • Citations: 11

8. Evaluation of Bioactivity, Biocompatibility, and Antibacterial Properties of Tricalcium Silicate Bone Cement Modified with Wollastonite/Fluorapatite Glass and Glass-Ceramic

  • Authors: H.K. Abd El-Hamid, A.M. Fayad, R.L. Elwan

  • Journal: Ceramics International 50 (14), 25322-25332

  • Year: 2024

  • Citations: 10

9. Incorporation of Strontium Borosilicate Bioactive Glass in Calcium Aluminate Biocement: Physicomechanical, Bioactivity and Antimicrobial Properties

  • Authors: H.K. Abd El-Hamid, A.A. El-Kheshen, A.M. Abdou, R.L. Elwan

  • Journal: Journal of the Mechanical Behavior of Biomedical Materials 144, 105976

  • Year: 2023

  • Citations: 8

10. Synthesis, Characterization and Antimicrobial Activity of Nano-Crystalline Tricalcium Silicate Bio-Cement

  • Authors: H.K. Abd El-Hamid, H.H. Abo-Almaged, M.M. Radwan

  • Journal: Journal of Applied Pharmaceutical Science 7 (10), 001-008

  • Year: 2017

  • Citations: 8

 

 

Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Prof. Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Professor from College of Engineering, University of Tehran, Iran

Professor Saeed Reza Allahkaram is a highly accomplished academic and researcher specializing in corrosion science and engineering. Currently serving as a Professor at the School of Metallurgy and Materials Engineering, University of Tehran, he has over 25 years of expertise in corrosion protection, materials characterization, and surface engineering. He leads several key research groups and laboratories, including the Metallurgical Chemistry Group and the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels. His research is not only scientifically significant but also holds direct industrial applications, particularly in Iran’s oil, gas, petrochemical, and automotive sectors. He is an influential figure in corrosion management and surface coating development, having authored numerous books and impactful journal articles. Professor Allahkaram has earned several prestigious national and international awards, including recognition as a Highly Cited Researcher among the Top 2% of Scientists Worldwide in 2024. His leadership extends to academic administration and professional societies, further evidenced by his role as Editor-in-Chief of the journal “Corrosion Science and Engineering.” His research blends fundamental scientific inquiry with practical, solution-driven applications that have benefited both academia and industry. Professor Allahkaram’s extensive career reflects a commitment to advancing corrosion science through teaching, research, and industry collaboration.

Professional Profile

Education

Professor Saeed Reza Allahkaram has pursued an extensive and prestigious academic path primarily in the United Kingdom. He earned his Ph.D. in Materials Science, specializing in Corrosion and Protection of Materials, from Imperial College of Medicine, Science, and Engineering, London, in 1994. His doctoral thesis focused on electrochemical potential mapping and corrosion studies of rapidly solidified processed light alloys. Additionally, he was awarded the D.I.C. Honoree Degree from Imperial College in the same year, highlighting his outstanding academic performance. Prior to his doctoral studies, Professor Allahkaram completed his M.Sc. in Corrosion Science and Engineering from London Guild Hall University in 1987, where his research concentrated on corrosion inhibition studies in controlled environments. He holds a B.Sc. in Applied Physics from the same university, earned in 1985, with a project focused on fiber optic transmission efficiency. His educational journey began with an O.N.D. in Technology from Bromley College of Technology, Kent, in 1981. Throughout his education, he combined theoretical learning with hands-on projects, establishing a solid foundation for his subsequent career in corrosion science. His diverse academic background provided him with both interdisciplinary knowledge and practical skills that have supported his research and teaching excellence for decades.

Professional Experience

Professor Saeed Reza Allahkaram has developed an impressive professional career, marked by leadership roles in both academic and industrial sectors. He has served as a Professor of Corrosion Science and Engineering at the University of Tehran since 1998, where he also leads the Metallurgical Chemistry Group and the Mechanically Assisted Laboratory. Since 2017, he has headed the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels, contributing significantly to Iran’s critical infrastructure industries. He has been an active member of the Centre of Excellence for Surface Engineering and Corrosion of Materials since 2015. His professional influence extends beyond academia, having worked as an executive consultant for the Kerman Copper Production Complex between 1999 and 2011. Professor Allahkaram has played a significant organizational role in national scientific communities, including serving as the Executive Secretary of the Eighth National Corrosion Conference in Iran in 2003. He is also the current Editor-in-Chief of the scientific journal “Corrosion Science and Engineering.” His professional experience bridges the gap between fundamental research and industrial application, demonstrating his ability to lead large-scale projects and foster collaborations that impact national industries and infrastructure resilience.

Research Interests

Professor Saeed Reza Allahkaram’s research interests are wide-ranging within the field of corrosion science and engineering. His primary focus is on cathodic and anodic protection techniques, essential for preserving the integrity of pipelines, vessels, and critical structures. He has made significant advances in the development of composite, nano, and self-healing coatings using innovative methods such as plasma electrolytic oxidation (PEO), electroless deposition, electroplating, and electrophoretic deposition. Professor Allahkaram’s work also addresses the mitigation of corrosion caused by DC/AC interference on cathodically protected underground pipelines, a key challenge in modern infrastructure maintenance. He investigates the use of inhibitors and cathodic protection to control corrosion in reinforced concrete structures, extending the life and safety of buildings and industrial plants. His studies further cover stress corrosion cracking (SCC), corrosion fatigue, cavitation corrosion, fretting corrosion, and the erosion resistance of advanced coatings. Additionally, Professor Allahkaram is deeply involved in corrosion cost assessment and the implementation of comprehensive corrosion management systems for industrial equipment. His research seamlessly integrates scientific exploration with practical problem-solving, offering impactful solutions for industries such as oil, gas, petrochemicals, and automotive manufacturing.

Research Skills

Professor Saeed Reza Allahkaram has cultivated advanced research skills throughout his distinguished career in corrosion science. He possesses expert knowledge in electrochemical testing methods, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise analysis. His technical expertise extends to developing and deploying on-line corrosion monitoring systems, particularly for oil and gas pipeline networks. Professor Allahkaram is proficient in failure analysis techniques, regularly diagnosing complex material degradation in high-risk environments. He has mastered various surface engineering processes such as electroless and electroplating coatings, plasma electrolytic oxidation, and nano-structured coating applications. His hands-on skills also include using wavelet transforms for electrochemical signal processing and employing advanced material characterization tools to evaluate corrosion behavior. Professor Allahkaram demonstrates a unique ability to translate laboratory research into practical industrial solutions, a skill that has led to his successful collaborations with major companies in Iran’s energy sector. He is also an accomplished technical author and educator, having written comprehensive books and developed course materials for undergraduate and postgraduate corrosion engineering programs. His multifaceted research skills position him as a leader in developing both preventive and remedial strategies against corrosion in challenging operational settings.

Awards and Honors

Professor Saeed Reza Allahkaram has received numerous prestigious awards and honors in recognition of his contributions to corrosion science and engineering. Notably, in 2024, he was listed among the Top 2% of Scientists Worldwide as a Highly Cited Researcher, underscoring his significant influence on the global research community. In 2023, the Iranian Corrosion Association honored him as a Veteran in Corrosion Science and Engineering at the 21st National Corrosion Congress of Iran. He was selected as the Outstanding Researcher at the University of Tehran’s 27th Festival of Research in 2018 and similarly recognized in 2013 and 2011. His work on applied industrial research projects, particularly those related to online corrosion monitoring systems in gas refinery plants and transmission pipelines, earned him additional distinctions. Professor Allahkaram has also been celebrated for his research contributions in the automotive industry, particularly with Iran Khodro. His remarkable ability to bridge academic research with industrial applications has been consistently acknowledged at national research festivals and by leading industrial stakeholders. His awards reflect not only the quality and originality of his research but also its tangible impact on infrastructure safety and technological advancement in Iran and beyond.

Conclusion

Professor Saeed Reza Allahkaram is a distinguished figure in the field of corrosion science, whose career has seamlessly integrated academic excellence with impactful industrial contributions. His leadership roles, prolific research output, innovative teaching, and dedication to solving practical engineering problems have made him a highly respected researcher nationally and internationally. His extensive body of work demonstrates a rare ability to translate scientific concepts into real-world applications, particularly in the oil, gas, petrochemical, and automotive sectors. Professor Allahkaram’s recognition among the Top 2% of scientists worldwide and his numerous national awards attest to his sustained influence and the global relevance of his research. His technical skills, leadership in research centers, and role as Editor-in-Chief further emphasize his multifaceted contributions to the scientific community. While future expansion into more international collaborations could further elevate his profile, his current achievements position him as an exemplary researcher and leader in his discipline. Professor Allahkaram’s career embodies the qualities of a Best Researcher Award recipient, blending scientific rigor, practical problem-solving, and academic mentorship to create lasting value in corrosion science and engineering.

Publications Top Notes

  1. Optimization of Ti/TiO2 Nanotube/Nano PbO2 Anodes for Enhanced Electrocatalytic Degradation of Methylene Blue: Pulse vs Direct Current Approaches

    • Authors: H. Eslami, S.R. Allahkaram

    • Year: 2025

  2. Electrophoretic Deposition of Chitosan/Gelatin/Hydroxyapatite Nanocomposite Coatings on 316L Stainless Steel for Biomedical Applications

    • Authors: A. Mohammadsadegh, S.R. Allahkaram, M. Gharagozlou

    • Year: 2025

  3. Enhanced Erosion-Corrosion Resistance of Monolithic ENP Coating on Ductile Cast Iron by Using Electrochemical Pretreatment and Heat Treatment

    • Authors: H. Kheirabadi, S.R. Allahkaram, A. Zarebidaki

    • Year: 2024

  4. Electrochemical Analysis on Localized Corrosion of PEO/Magnesium Oxide Coating

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 4

  5. Evaluation of Biodegradability of ZX504 Alloy/PEO Coating Using Mott-Schottky, Electrochemical Tests, and Microstructural Analysis

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 5

  6. Modeling of PEO Coatings by Coupling an Artificial Neural Network and Taguchi Design of Experiment

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

  7. Surface Roughness Increasing of 2205 Duplex Stainless Steel Using Ultrasonic Cavitation Process

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

    • Citations: 2

  8. Characterization and Corrosion Behavior of Nano-ceramic Coatings Produced by MAO Method: The Role of Process Time

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 2

  9. Passivation Effects on Corrosion and Cavitation Erosion Resistance of UNS S32205 Duplex Alloy in 3.5% NaCl

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

  10. Synthesis and Characterization of Electrodeposited Ni-Co Self-Healing Coating with Hybrid Shell Microcapsules

  • Authors: H. Sadabadi, S.R. Allahkaram, A. Kordijazi, P.K. Rohatgi

  • Year: 2024

  • Citations: 1

Omar Anis HARZALLAH | Materials Science | Best Researcher Award

Dr. Omar Anis HARZALLAH | Materials Science | Best Researcher Award

Associate Professor from University of Haute-Alsace, France

Omar Anis Harzallah is an accomplished Associate Professor at the University of Haute-Alsace, affiliated with the École Nationale Supérieure d’Ingénieurs Sud Alsace (ENSISA) and the Laboratoire de Physique et Mécanique Textiles (LPMT – EA 4365). He has developed a distinguished career in textile engineering, focusing on sustainable materials and innovative fiber technologies. His work spans the morphological, physico-chemical, and mechanical characterization of natural fibers, with special attention to exotic plant fibers and their applications in textile and bio-based composites. Dr. Harzallah has also made significant advancements in functional polymeric fibers and nanostructured textile materials, emphasizing eco-design principles. Beyond research, he has been a committed educator and mentor for over two decades, contributing to student development, international pedagogy, and the promotion of textile engineering education. His dedication extends to scientific leadership, coordination of laboratories, and international academic collaborations. With more than 50 peer-reviewed publications, 9 book chapters, and 2 patents, his academic footprint is well-established globally. Dr. Harzallah’s contributions have earned him prestigious awards and recognition in the textile industry. His multidisciplinary approach, commitment to sustainability, and consistent research excellence make him a valuable asset to the scientific and educational community.

Professional Profile

Education

Dr. Omar Anis Harzallah holds a Ph.D. in Engineering Sciences from the University of Haute-Alsace, which he completed in 1999. His doctoral studies laid the foundation for his extensive work in textile characterization and sustainable fiber research. Prior to his Ph.D., he earned an Engineering degree in Textile Science from the Institut Supérieur Industriel de Verviers in Belgium. His academic training provided him with a solid background in both theoretical and practical aspects of textile engineering, fiber mechanics, and materials science. Throughout his educational journey, he developed a keen interest in the eco-friendly utilization of natural fibers and the advancement of bio-based composites, which would later become central to his research focus. His academic credentials reflect a strong commitment to both scientific excellence and practical industrial applications. In addition to his formal degrees, Dr. Harzallah has continuously expanded his knowledge through international collaborations and participation in professional development initiatives. His education has equipped him with multidisciplinary expertise, blending textile engineering with sustainable design principles. This combination of high-level education and continuous skill enhancement has positioned him as a leading figure in textile innovation and eco-conscious material development in the global academic landscape.

Professional Experience

Dr. Omar Anis Harzallah has built an impressive professional career as an Associate Professor at the University of Haute-Alsace, where he is affiliated with ENSISA and LPMT – EA 4365. With over 20 years of experience, he has played a central role in textile engineering research and education. His career includes scientific leadership within the Laboratoire de Physique et Mécanique Textiles, where he has coordinated textile metrology laboratories and led several major research initiatives. He has served as an elected member of both the Research Commission and the Academic Council at the University of Haute-Alsace, contributing to institutional development and research policy. Dr. Harzallah has also been actively involved in promoting international academic partnerships and double-degree programs, especially with universities in Tunisia. In addition to his research and teaching responsibilities, he has participated in international pedagogical projects in Algeria and Mongolia, demonstrating his commitment to global knowledge exchange. His professional journey includes close collaborations with both academic and industrial partners in countries like Cameroon, Iran, the United States, and Australia. This international exposure has significantly enriched his expertise and allowed him to contribute to cutting-edge developments in sustainable textile materials and fiber engineering.

Research Interest

Dr. Omar Anis Harzallah’s primary research interests center on the morphological, physico-chemical, and mechanical characterization of natural fibers, with a particular emphasis on exotic plant fibers. His work focuses on the valorization of these fibers for applications in textiles and bio-based composite materials, aligning strongly with sustainability goals. He has also explored the development of functional polymeric fibers and innovative nanostructured textile materials. A core theme in his research is eco-design, where he seeks to create environmentally friendly and high-performance materials. Dr. Harzallah’s interdisciplinary research bridges materials science, textile engineering, and mechanical analysis, contributing to the evolution of next-generation fibers and composites. His collaborations with international research teams and industries aim to translate laboratory findings into real-world applications, particularly in sustainable product design. In addition, he has shown interest in textile metrology, advancing methodologies for precise measurement and quality control in fiber-based products. Dr. Harzallah’s research is not only theoretical but also application-driven, with significant relevance to eco-conscious manufacturing, green composites, and functional textiles. His diverse research portfolio continues to contribute to the advancement of sustainable engineering practices and offers valuable insights into the circular economy within the textile and materials industries.

Research Skills

Dr. Omar Anis Harzallah possesses a wide range of research skills essential for advanced textile and fiber engineering. He is highly proficient in the morphological, physico-chemical, and mechanical characterization of natural and synthetic fibers. His expertise includes advanced testing and analytical methods for evaluating fiber properties, durability, and performance in composite applications. Dr. Harzallah is skilled in eco-design methodologies, enabling him to develop sustainable and high-functionality textile products. He has hands-on experience in creating functional polymeric fibers and nanostructured textile materials, integrating novel processing techniques to achieve targeted material characteristics. His research skill set also encompasses textile metrology, where he contributes to the development of precise measurement techniques and laboratory standards for textile analysis. Additionally, he is adept at managing multidisciplinary research teams and coordinating complex laboratory infrastructures. Dr. Harzallah’s international collaborations have equipped him with cross-cultural research management skills and the ability to lead joint research projects. He regularly serves as a reviewer for national and international funding bodies, providing critical evaluations of research proposals. His comprehensive research abilities allow him to translate scientific concepts into practical applications, driving innovation in sustainable textiles and bio-based composites across academic and industrial domains.

Awards and Honors

Throughout his career, Dr. Omar Anis Harzallah has received several prestigious awards and honors that recognize his scientific and academic contributions. In 2012, he was awarded the Théophile Legrand International Prize for Textile Innovation, which is a significant accolade in the textile industry, celebrating groundbreaking advancements in textile materials and processes. This award highlights his role in developing innovative, eco-friendly fiber technologies. In 2021, he was honored with the “Avenir” Award by the Association of Textile Industry Chemists, further recognizing his forward-thinking approach and leadership in textile engineering. In addition to these awards, Dr. Harzallah’s influence is acknowledged through his position as an expert reviewer for funding agencies such as the French National Research Agency (ANR) and Canada’s Natural Sciences and Engineering Research Council (NSERC). His standing in the academic community is reinforced by his contributions to international conferences, numerous collaborative projects, and his supervision of doctoral candidates. These recognitions not only validate his research excellence but also underscore his role as a thought leader in sustainable textiles and fiber science. Dr. Harzallah’s award-winning innovations and sustained academic impact have significantly advanced the field of eco-conscious textile engineering.

Conclusion

Dr. Omar Anis Harzallah stands out as a highly qualified and deserving candidate for the Best Researcher Award. His contributions to textile science, particularly in the characterization and valorization of natural fibers, reflect a deep commitment to sustainability and innovation. Through his extensive research, academic leadership, and international collaborations, he has consistently driven forward the development of eco-friendly materials and functional textiles. His impressive record of publications, patents, and successful student supervision highlights his dedication to advancing knowledge and mentoring the next generation of researchers. Dr. Harzallah’s work not only advances scientific understanding but also addresses critical global challenges such as sustainable material production and circular economy practices. His ability to bridge academic theory with industrial application makes his research highly impactful and widely respected. His awards and recognitions further validate his pioneering role in textile innovation. Dr. Harzallah’s career demonstrates a balanced integration of research excellence, educational commitment, and international outreach. With his strong multidisciplinary background, proven research capabilities, and dedication to eco-design, he continues to be a valuable contributor to the advancement of textile engineering and sustainable material sciences.

Publications Top Notes

  1. Aurélie Decker, Jean-Yves Drean, Vivien Sarazin, Omar Harzallah – 2024
    Influence of Different Retting on Hemp Stem and Fiber Characteristics Under the East of France Climate Conditions

  2. Thomas Jeannin, Gilles Arnold, Alain Bourmaud, Stéphane Corn, Emmanuel De Luycker, Pierre J.J. Dumont, Manuela Ferreira, Camille François, Marie Grégoire, Omar Harzallah et al. – 2024
    A round-robin study on the tensile characterization of single fibres: A multifactorial analysis and recommendations for more reliable results

  3. Wafa Mahjoub, Sarangoo Ukhnaa, Jean-Yves Drean, Omar Harzallah – 2024
    Influence of Genetic and Non-Genetic Factors on the Physical and Mechanical Properties of Mongolian Cashmere Fiber Properties

  4. Narcisse Defo, Omar Harzallah, Rodrigue Nicodème Tagne Sikame, Ebenezer Njeugna, Sophie Bistac – 2024
    Effect of alkaline treatment on hard vegetable shells on the properties of biobased abrasive wheels

  5. Solange Mélanie Anafack, Omar Harzallah, Didymus Efeze Nkemaja, Paul William Mejouyo Huisken, Aurélie Decker, Rodrigue Nicodème Sikame Tagne, Jean-Yves Drean, K. Murugesh Babu, Ebenezer Njeugna – 2023
    Effects of extraction techniques on textile properties of William banana peduncle fibers

  6. Syrille Brice Tchinwoussi Youbi, Omar Harzallah, Nicodème Rodrigue Sikame Tagne, Paul William Mejouyo Huisken, Tido Tiwa Stanislas, Jean-Yves Drean, Sophie Bistac, Ebenezer Njeugna, Chenggao Li – 2023
    Effect of Raphia vinifera Fibre Size and Reinforcement Ratio on the Physical and Mechanical Properties of an Epoxy Matrix Composite: Micromechanical Modelling and Weibull Analysis

  7. Adel Elamri, Khmais Zdiri, Mohamed Hamdaoui, Omar Harzallah – 2023
    Chitosan: A biopolymer for textile processes and products

  8. Imen Landolsi, Narjes Rjiba, Mohamed Hamdaoui, Omar Harzallah, Anis, Chedly Boudokhane – 2022
    Homogeneous microwave-assisted carboxymethylation from totally chlorine free bleached olive tree pruning residues pulp

  9. Khmais Zdiri, Omar Harzallah, Adel Elamri, Nabyl Khenoussi, Jocelyne Brendlé, Hamdaoui Mohamed – 2018
    Rheological and thermal behavior of Tunisian clay reinforced recycled polypropylene composites

Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Lin Zhu | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Lin Zhu | Materials Science | Best Researcher Award

Teacher from Huazhong University of Science and Technology, China

Dr. Lin Zhu is an Associate Professor at the School of Physics, Huazhong University of Science and Technology (HUST) in Wuhan, China. Specializing in condensed matter physics, his research focuses on spintronics, molecular magnets, and low-dimensional materials. Dr. Zhu has made significant contributions to the design and understanding of multifunctional spintronic devices, exploring their electronic structures, magnetic properties, and transport phenomena. His work has been published in reputable journals, reflecting his commitment to advancing the field. With a strong academic background and a history of successful research projects, Dr. Zhu is recognized for his dedication to both scientific inquiry and education.

Professional Profile

Education

Dr. Lin Zhu’s academic journey began with a Bachelor’s degree in Applied Physics from Zhengzhou University in 1997. He then pursued a Master’s degree in Physics at Huazhong University of Science and Technology, completing it in 2001. Continuing at HUST, he earned his Ph.D. from the College of Optoelectronic Science and Engineering in 2005. This solid educational foundation laid the groundwork for his future research endeavors in condensed matter physics, particularly in the areas of spintronics and low-dimensional materials.

Professional Experience

Dr. Zhu commenced his professional career as a Lecturer at the School of Physics, HUST, serving from 2005 to 2013. During this period, he was involved in both teaching and research, contributing to the academic community. From 2011 to 2013, he expanded his research experience internationally as a Postdoctoral Associate at the Department of Physics, Virginia Commonwealth University in the United States. In 2013, he returned to HUST as an Associate Professor, a position he holds to date, where he continues to engage in advanced research and mentor students in the field of condensed matter physics.

Research Interests

Dr. Zhu’s research interests are centered around the design and mechanism study of multifunctional spintronic devices, the electronic structure and magnetic properties of molecular magnets, and the electrical, magnetic, and thermoelectric properties of low-dimensional materials. His work aims to understand and manipulate the spin-dependent transport properties in novel materials, contributing to the development of next-generation electronic devices. By exploring the fundamental aspects of these materials, Dr. Zhu seeks to uncover new physical phenomena and potential applications in the realm of condensed matter physics.

Research Skills

Dr. Zhu possesses a robust set of research skills, including proficiency in first-principles calculations, density functional theory, and various computational modeling techniques. His expertise extends to the synthesis and characterization of low-dimensional materials, as well as the analysis of their electronic and magnetic properties. Dr. Zhu’s ability to integrate theoretical and experimental approaches enables him to investigate complex physical systems effectively. His skills are instrumental in advancing the understanding of spintronic devices and molecular magnets, contributing valuable insights to the field.

Awards and Honors

Throughout his academic career, Dr. Zhu has received several accolades recognizing his research excellence. In December 2012, he was awarded the Outstanding Doctoral Dissertation Award in China, following a similar honor at the provincial level in Hubei in December 2011. His doctoral thesis was also recognized as an Excellent Degree Thesis by HUST in December 2009. In June 2007, he was named one of the Ten Research Elites among Ph.D. and Master’s students at HUST. Additionally, he received the Excellent Graduate Scholarship twice between 2005 and 2006, highlighting his consistent academic achievements.

Conclusion

Dr. Lin Zhu’s extensive research in condensed matter physics, particularly in spintronics and low-dimensional materials, underscores his suitability for recognition as a leading researcher. His academic background, international research experience, and numerous publications in high-impact journals reflect a career dedicated to scientific advancement. The honors he has received further attest to his contributions to the field. Dr. Zhu’s work not only enhances the understanding of complex physical systems but also paves the way for innovative applications in electronic devices, marking him as a distinguished figure in his area of expertise.

Publications Top Notes

  1. Title: High-Performance and Low-Power Sub-5 nm Field-Effect Transistors Based on the Isolated-Band Semiconductor
    Authors: Qu, Xinxin; Ai, Yu; Guo, Xiaohui; Zhu, Lin; Yang, Zhi
    Journal: ACS Applied Nano Materials
    Year: 2025

  2. Title: Corrigendum to “Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping”
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science (Erratum)
    Year: 2025

  3. Title: Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science
    Year: 2025
    Citations: 2

  4. Title: Fully Electrically Controlled Low Resistance-Area Product and Enhanced Tunneling Magnetoresistance in the Van Der Waals Multiferroic Tunnel Junction
    Authors: Guo, Xiaohui; Zhang, Jia; Yao, Kailun; Zhu, Lin
    Journal: Advanced Functional Materials
    Year: 2025

  5. Title: Low-Power Transistors with Ideal p-type Ohmic Contacts Based on VS₂/WSe₂ van der Waals Heterostructures
    Authors: Cao, Zenglin; Zhu, Lin; Yao, Kailun
    Journal: ACS Applied Materials and Interfaces
    Year: 2024
    Citations: 3

  6. Title: NbS₂ Monolayers as Bipolar Magnetic Semiconductors for Multifunctional Spin Diodes and 3 nm Cold-Source Spin Field-Effect Transistors
    Authors: Qu, Xinxin; Guo, Xiaohui; Yao, Kailun; Zhu, Lin
    Journal: ACS Applied Nano Materials
    Year: 2024
    Citations: 3

 

Tieming Guo | Materials Science | Best Researcher Award

Prof. Tieming Guo | Materials Science | Best Researcher Award

Professor from School of Materials Science and Engineering, Lanzhou University of Technology, China

Professor Tieming Guo is a distinguished faculty member at the Department of Metallic Materials Engineering, College of Materials Science and Engineering, Lanzhou University of Science and Technology, China. With a career dedicated to the in-depth study of corrosion behavior, microstructure, and metal matrix composite materials, he has made notable contributions to both fundamental science and industrial applications. His research on stainless steel corrosion, focusing on the effects of trace elements such as boron and cobalt, has provided steel manufacturers with theoretical foundations for material improvement. In recent years, his focus has expanded to high-strength, highly conductive copper matrix composites, further broadening his research scope. A standout example of his recent work involves laser cladding of Fe–0.3C–15Cr–1Ni alloy on martensitic stainless steel, optimizing wear and corrosion resistance by adjusting laser power parameters. Professor Guo’s research outcomes are characterized by rigorous experimentation, detailed microstructural characterization, and clear application-driven goals. His work is not only advancing scientific understanding but also offering practical solutions for the metallurgical industry. With a career that blends deep technical knowledge and applied research impact, Professor Guo stands out as a leader in his field and a strong candidate for recognition through research awards.

Professional Profile

Education

Professor Tieming Guo completed his higher education in materials science and engineering, specializing in metallic materials. He holds a Bachelor’s degree in Materials Science and Engineering, which laid the foundation for his early interest in the microstructure and corrosion behavior of metals. He then pursued a Master’s degree in Metallic Materials Engineering, where he focused on the effects of alloying elements on stainless steel performance. During his master’s studies, he began exploring the mechanisms behind stainless steel corrosion, particularly the role of microalloying with trace elements like boron and cobalt. Professor Guo completed his doctoral studies in Materials Science, focusing on metal matrix composites and advanced characterization techniques to study wear and corrosion properties. Throughout his academic training, he gained expertise in both theoretical modeling and practical experimentation, equipping him with a balanced perspective that integrates fundamental science with real-world applications. His academic background has positioned him well for a career that addresses both the challenges and opportunities in metallic materials research, particularly in areas directly relevant to industrial needs and technological development.

Professional Experience

Professor Tieming Guo has built a distinguished academic career as a faculty member at Lanzhou University of Science and Technology, where he serves as a professor and master’s tutor in the Department of Metallic Materials Engineering. Over the years, he has developed extensive experience in managing research projects related to stainless steel corrosion, microalloying, and metal matrix composites. He has been actively involved in supervising graduate students, guiding them through complex experimental work and analysis. His professional experience also includes collaborating with steel manufacturers, providing them with theoretical guidance and practical recommendations to improve material performance. Professor Guo has authored and co-authored numerous research papers, demonstrating his commitment to scientific dissemination and contribution to the broader materials science community. Additionally, he regularly participates in academic conferences and workshops, both as a speaker and attendee, ensuring that he remains at the forefront of emerging trends and technologies. His career trajectory showcases a strong combination of academic leadership, technical expertise, and industrial relevance, making him a well-rounded and impactful figure in the field of metallic materials engineering.

Research Interests

Professor Tieming Guo’s research interests center on the corrosion behavior of metallic materials, microstructure-property relationships, and the development of advanced metal matrix composites. He has a particular focus on stainless steel, studying how microalloying with trace elements like boron and cobalt influences corrosion resistance, wear performance, and mechanical properties. His work extends into exploring the effects of processing parameters, such as laser cladding techniques, on microstructure evolution and material performance. More recently, his research has branched into the study of high-strength, highly conductive copper matrix composites, reflecting his interest in combining mechanical robustness with superior electrical properties. Professor Guo is also deeply interested in the interplay between alloy composition, microstructural features (such as dendrite morphology and carbide distribution), and functional performance in aggressive environments. His commitment to advancing both theoretical understanding and practical applications ensures that his research remains highly relevant to both academic inquiry and industrial development, with an emphasis on improving material longevity, efficiency, and sustainability.

Research Skills

Professor Tieming Guo possesses a robust set of research skills that reflect his deep expertise in metallic materials engineering. He is highly skilled in experimental design, particularly in corrosion testing, wear resistance evaluation, and mechanical property characterization. His technical proficiency extends to advanced microstructural analysis techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and metallographic microscopy, allowing him to link microstructural features with macroscopic performance. Professor Guo is adept at working with laser cladding processes, optimizing operational parameters to achieve desired microstructural outcomes. He is also proficient in data analysis and interpretation, ensuring that experimental results are rigorously examined and connected to underlying material mechanisms. In addition to laboratory skills, Professor Guo has strong capabilities in research project management, student supervision, and academic writing, as demonstrated by his extensive publication record. His ability to integrate experimental work with theoretical insights enables him to address both fundamental scientific questions and practical engineering challenges, making his research outputs highly valuable to both academia and industry.

Awards and Honors

Throughout his career, Professor Tieming Guo has received recognition for his contributions to the field of materials science and engineering. He has been honored by academic institutions, professional societies, and industry partners for his impactful research on stainless steel corrosion and metal matrix composites. His awards reflect both the quality and relevance of his work, highlighting his ability to address critical challenges in metallic materials and translate research findings into practical recommendations. Professor Guo’s role as a master’s tutor and mentor has also earned him recognition for excellence in student supervision and academic leadership. He has been invited to present at national and international conferences, further underscoring his reputation as a respected expert in his field. While his achievements are already commendable, continuing to broaden his recognition through international awards, interdisciplinary collaborations, and participation in global research initiatives would further solidify his standing as a top-tier researcher.

Conclusion

Professor Tieming Guo stands out as a dedicated and impactful researcher whose work significantly advances the understanding of corrosion behavior, microalloying, and metal matrix composite development. His long-term commitment to both fundamental research and industrial application makes his contributions particularly valuable to the metallurgical field. With a strong academic background, extensive professional experience, and highly specialized research skills, Professor Guo has built a career marked by scientific rigor, practical relevance, and mentorship. His numerous awards and honors reflect the recognition he has earned within his field, although there is room to further elevate his profile through expanded international collaborations and broader dissemination of his work. Overall, Professor Guo is a highly deserving candidate for the Best Researcher Award, and his continued efforts promise to bring further advancements to materials science and engineering, benefiting both the academic community and industrial stakeholders.

Publications Top Notes

  1. Title: Characterization of stiff porous TiC fabricated by in-situ reaction of Ti with carbon derived from phenolic resin containing template
    Authors: Liu, Diqiang; Zhang, Hongqiang; Zhao, Weiqi; Jia, Jiangang; Guo, Tieming
    Journal: Journal of the European Ceramic Society
    Year: 2025

  2. Title: Effect of siliconizing temperature on microstructure and performance of alloy silicide layer on 347H stainless steel surface by melting salt non-electrolysis method
    Authors: Liu, Zehong; Guo, Tieming; Jia, Jiangang; Zhang, Ruihua; Yi, Xiangbin
    Journal: Surface and Coatings Technology
    Year: 2025

  3. Title: Fabrication and characterization of GCF/PyC composites by TG-CVI densified porous glassy carbon preform
    Authors: Jia, Jiangang; You, Xinya; Pan, Zikang; Liu, Diqiang; Guo, Tieming
    Journal: Ceramics International
    Year: 2025

  4. Title: Passivation characteristics and corrosion behavior of S32202 duplex stainless steel in different temperatures polluted phosphoric acid
    Authors: Yang, Haizhen; Guo, Tieming; Ouyang, Minghui; Zhao, Shuaijie; Liu, Zehong
    Journal: Surface and Coatings Technology
    Year: 2024
    Citations: 2

  5. Title: Comparative study on periodic immersion + infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium
    Authors: Guo, Tieming; Yang, Haizhen; Wu, Weihong; Nan, Xueli; Hu, Yanwen
    Journal: Materialwissenschaft und Werkstofftechnik
    Year: 2024