Nitiraj V. Kulkarni | Mathematics | Young Scientist Award

Mr. Nitiraj Kulkarni | Mathematics | Young Scientist Award

Student Researcher at Vishwakarma University, Pune, India

Nitiraj V. Kulkarni is an aspiring researcher currently pursuing a Bachelor of Technology (B.Tech.) in Artificial Intelligence and Data Science at Vishwakarma University, Pune. His academic and research contributions span across multiple disciplines, including Computational Fluid Mechanics, Artificial Neural Networks (ANN), and Data Science. He has co-authored the Handbook for Basics of Artificial Intelligence and has published 10 research papers in reputed journals indexed in SCI and Scopus. Nitiraj has also made a significant impact by publishing over 12,000 datasets on various platforms, contributing valuable resources to the research community. Beyond academia, he has applied his technical skills to cybersecurity, receiving a letter of appreciation from the Director General of MSRTC for identifying a critical system vulnerability. Additionally, he has authored 8 books and has a patent under review, showcasing his dedication to knowledge dissemination and innovation. With his multidisciplinary approach, Nitiraj is making remarkable strides in integrating AI with engineering applications.

Professional Profile

Education

Nitiraj V. Kulkarni is pursuing his Bachelor of Technology (B.Tech.) in Artificial Intelligence and Data Science at Vishwakarma University, Pune. His academic background is centered around Machine Learning, Neural Networks, Computational Mathematics, and Data Science, providing a strong theoretical foundation in AI and its real-world applications. He has actively engaged in research-driven learning, with a focus on Artificial Neural Networks (ANN) in Fluid Mechanics. His education extends beyond formal coursework, as he has participated in research projects, self-learning, and collaborative work with leading scientists like Dr. Jagadish V. Tawade. Through these experiences, he has gained proficiency in computational modeling, numerical simulations, and AI-driven predictive analytics. His commitment to education is evident in his scientific publications and books, which contribute to knowledge dissemination in AI and engineering. Nitiraj’s strong academic foundation, combined with practical research exposure, positions him as a promising young scientist with significant contributions to AI and computational sciences.

Professional Experience

Despite being an undergraduate student, Nitiraj V. Kulkarni has built an impressive professional profile through active research, collaborations, and industry engagement. His most notable achievement includes receiving a letter of appreciation from the Director General of MSRTC (Government of Maharashtra) for identifying a critical system vulnerability, showcasing his expertise in cybersecurity and system analysis. He has also worked on an advanced research project involving Artificial Neural Networks (ANN) for Unsteady Boundary Layer Flow and Heat Transfer, demonstrating his ability to integrate AI with engineering and physics. In addition, Nitiraj has published 10 research papers in SCI and Scopus-indexed journals, authored 8 books, and has a patent under review, highlighting his contributions to innovation and knowledge dissemination. He has also actively collaborated with senior researchers like Dr. Jagadish V. Tawade, further strengthening his research capabilities. His multidisciplinary expertise reflects his commitment to bridging AI with computational mechanics and industry applications.

Research Interests

Nitiraj V. Kulkarni’s research interests are deeply rooted in the fields of Artificial Intelligence, Computational Fluid Mechanics, and Data Science. His primary focus lies in applying Artificial Neural Networks (ANN) to Fluid Mechanics for solving complex engineering problems, including boundary layer flow, heat transfer analysis, and thermoelectric energy harvesting. Additionally, he is interested in Machine Learning and Data Science, where he develops AI-driven predictive models and analyzes large-scale datasets to extract meaningful insights. His research extends into cybersecurity, where he explores system vulnerabilities and AI-based security solutions, as demonstrated by his work with MSRTC. Nitiraj is also engaged in nanofluid heat transfer studies, contributing to advancements in thermal energy management. His diverse research interests highlight his multidisciplinary approach, allowing him to tackle complex engineering challenges using AI and computational techniques. His work is aimed at developing innovative, data-driven solutions for real-world applications in engineering and technology.

Research Skills

Nitiraj V. Kulkarni possesses a diverse and advanced set of research skills, making him a valuable contributor to multiple scientific disciplines. His expertise in Artificial Neural Networks (ANN) allows him to develop AI-driven models for fluid mechanics and thermal engineering. He is highly proficient in Computational Fluid Dynamics (CFD), numerical modeling, and predictive analytics, which he applies in solving complex engineering problems. His data analysis and machine learning skills enable him to handle large-scale datasets and optimize predictive models for various applications. Additionally, his scientific writing and publishing experience is evident from his 10+ research papers and 8 books, contributing significantly to AI and computational sciences. Nitiraj also has strong skills in cybersecurity and vulnerability assessment, as demonstrated by his MSRTC recognition. His combination of theoretical knowledge, computational proficiency, and real-world application skills makes him a promising young scientist in AI and engineering research.

Awards and Honors

Nitiraj V. Kulkarni has received multiple recognitions for his contributions to AI, computational research, and cybersecurity. One of his most significant honors is the letter of appreciation from the Director General of MSRTC (Government of Maharashtra) for identifying a critical system vulnerability, highlighting his cybersecurity expertise. He has also published 10+ research papers in prestigious SCI and Scopus-indexed journals, demonstrating his strong academic research impact. His contributions to education and knowledge dissemination are reflected in his 8 books on AI, computational techniques, and scientific research. Additionally, he has published over 12,000 datasets, significantly aiding the research community in data-driven studies. Nitiraj has also collaborated with renowned scientists like Dr. Jagadish V. Tawade and has a patent under review, showcasing his innovation potential. His recognitions reflect his dedication to AI, cybersecurity, computational mechanics, and scientific research, positioning him as a strong candidate for the Young Scientist Award.

Conclusion

Nitiraj V. Kulkarni is an exceptional young researcher with a strong foundation in Artificial Intelligence, Data Science, and Computational Fluid Mechanics. His contributions to scientific research, cybersecurity, and AI-driven engineering solutions set him apart as an emerging leader in these fields. Through 10+ research papers, 8 books, a patent application, and over 12,000 datasets, he has demonstrated an impressive commitment to knowledge dissemination and innovation. His research has practical applications, as seen in his MSRTC cybersecurity recognition, proving his ability to solve real-world technological challenges. Nitiraj’s ability to integrate AI with computational mechanics, cybersecurity, and industry applications showcases his multidisciplinary expertise. With continued research, global collaborations, and industry engagement, he has the potential to make groundbreaking contributions to AI, fluid mechanics, and engineering applications. His achievements and dedication to innovation make him a deserving candidate for the Young Scientist Award, and a future leader in scientific research.

Publications Top Notes

  1. Effect of Williamson Nanofluid Across an Exponentially Stretched Sheet with Chemical Reaction Under the Influence of Joules Heating
    S. Swami, S. Biradar, J.V. Tawade, N.V. Kulkarni, F. Yuldashev, M. Gupta, …
    2025

  2. Thermo-fluid dynamics of non-Newtonian Casson fluid in expanding-contracting channels with Joule heating and variable thermal properties
    S. Rafiq, B.A. Bilal, A. Afzal, J.V. Tawade, N.V. Kulkarni, B. Abdullaeva, …
    2025

  3. Numerical solutions for unsteady laminar boundary layer flow and heat transfer over a horizontal sheet with radiation and nonuniform heat source/sink
    M. Diwate, J.V. Tawade, P.G. Janthe, M. Garayev, M. El-Meligy, N. Kulkarni, …
    2024

  4. Heat transfer mechanism for Newtonian and non-Newtonian Casson hybrid nanofluid subject to thermophoresis and Brownian motion over a movable wedge surface
    S. Swami, S. Biradar, M.Q. Gubari, S.P. Samrat, J.V. Tawade, N. Kulkarni, …
    2025

  5. Thermoelectric energy harvesting from geothermal micro-seepage
    N. Kulkarni, M. Al-Dossari, J. Tawade, A. Alqahtani, M.I. Khan, B. Abdullaeva, …
    2024

  6. Soret and nonuniform heat source/sink effects in micropolar nanofluid flow over an inclined stretching sheet
    M. Diwate, P.G. Janthe, N. Kulkarni, S. Sunitha, J.V. Tawade, N. Nazarova, …
    2025

  7. Optimizing nanoparticle dispersion and heat transfer in Williamson nanofluids under magnetic influence
    S. Swami, S. Biradar, J.V. Tawade, N.V. Kulkarni, B.S. Abdullaeva, D.M. Khidhir, …
    2025

  8. Optimizing Ibrutinib bioavailability: Formulation and assessment of hydroxypropyl-β-cyclodextrin-based nanosponge delivery systems
    S. Sampathi, N. Kulkarni, D. Bhikshapathi, J.V. Tawade, N. Tarakaramu, …
    2025

  9. Thermal and solutal performance analysis featuring fully developed chemically reacting micro-rotational convective flow in an open-ended vertical channel
    G.T. Gitte, S. Kalyan, H. Saraswathi, V. Kulkarni, M. Jameel, J.V. Tawade, …
    2025

  10. Effects of exponentially stretching sheet for MHD Williamson nanofluid with chemical reaction and thermal radiative
    S.P. Pallavi, M.B. Veena, J.V. Tawade, N. Kulkarni, S.U. Khan, M. Waqas, …
    2024

Gayrat Urazboev | Mathematics | Best Scholar Award

Prof. Gayrat Urazboev | Mathematics | Best Scholar Award

Professor at Urgench State University, Uzbekistan

Gayrat Urazboev is a distinguished mathematician specializing in nonlinear evolution equations, soliton theory, and integrability. With a Doctor of Science in Mathematics, he has made significant contributions to mathematical physics, particularly in inverse scattering methods and direct analytical approaches. He currently serves as the Vice Rector for International Relations and Professor at Urgench State University in Uzbekistan. Throughout his career, he has held research positions at prestigious institutions in Germany, Spain, and Italy. His extensive academic collaborations, leadership roles, and involvement in international research projects have established him as a key figure in the field. He has organized several international conferences and contributed to academic community building through his role as an editor and reviewer for mathematical journals. His dedication to education and research is reflected in his involvement with ERASMUS+, TEMPUS, and other global academic initiatives. Recognized with multiple research fellowships and grants, he has played a crucial role in advancing mathematical sciences in Uzbekistan. His expertise in differential equations and mathematical physics, coupled with his strong leadership and mentorship, make him an influential scholar in the global academic community.

Professional Profile

Education

Gayrat Urazboev earned his Diploma (equivalent to an M.S.) in Mathematics and Applied Mathematics from Moscow State University, Russia, in 1992. His master’s thesis focused on optimal control of singular distributed systems, laying the foundation for his future research in nonlinear mathematical physics. He pursued a Ph.D. at the Romanovskiy Mathematical Institute, Academy of Sciences of Uzbekistan, where he defended his dissertation in 2001 on the integration of the Korteweg-de Vries equation with self-consistent sources. This research played a crucial role in understanding nonlinear wave equations. In 2007, he completed his Doctor of Science (Doctor Habilitatus) at the National University of Uzbekistan, where he further advanced his studies on nonlinear evolution equations with self-consistent sources. His doctoral research significantly contributed to the field of soliton theory and integrable systems. His academic journey across prestigious institutions has equipped him with profound expertise in mathematical modeling, differential equations, and applied mathematics. Through continuous professional development, he has remained at the forefront of mathematical research and has played an instrumental role in promoting mathematical education and research excellence in Uzbekistan and beyond.

Professional Experience

Dr. Gayrat Urazboev has an extensive academic and research career spanning over three decades. He is currently the Vice Rector for International Relations and a Professor in the Department of Physics and Mathematics at Urgench State University, a position he has held since 2019. Previously, he served as a full professor at the same institution from 2011 to 2018. His international research experience includes roles as a Scientific Researcher at the University of Duisburg-Essen, Germany, in 2011, and as a Postdoctoral Researcher at the University of Santiago de Compostela, Spain, in 2009. Additionally, he served as Vice-Rector and Head of the Department of Mathematical Physics and Applied Mathematics at Urgench State University. His professional contributions extend beyond academia, as he has been involved in multiple international research collaborations and projects, including Erasmus+ and TEMPUS. As a key figure in higher education, he has played a crucial role in curriculum development, faculty training, and research capacity building in Uzbekistan. His expertise in nonlinear mathematical physics, coupled with his leadership in academic administration, has significantly influenced mathematical research and education at both national and international levels.

Research Interests

Dr. Gayrat Urazboev’s research interests lie in the fields of nonlinear evolution equations, inverse scattering methods, soliton theory, and integrability. His work focuses on the development of direct and inverse methods for solving complex partial differential equations with self-consistent sources. He has made significant contributions to the mathematical analysis of solitons, particularly in the study of nonlinear wave phenomena and their applications in physics. His research explores the integration of nonlinear evolution equations, which are fundamental in mathematical physics and engineering. His expertise extends to spectral theory and its applications to differential operators, helping advance the theoretical understanding of wave propagation, fluid dynamics, and quantum mechanics. As a researcher dedicated to mathematical physics, he continuously explores innovative techniques for analyzing and solving nonclassical partial differential equations. His work has been instrumental in advancing the study of integrable systems and has contributed to the development of mathematical tools for tackling real-world problems in science and engineering. Through collaborations with international scholars and participation in global research initiatives, he has expanded the scope of his research, making a lasting impact on the mathematical community.

Research Skills

Dr. Urazboev possesses a strong set of research skills that make him a leading expert in mathematical physics and applied mathematics. His expertise includes analytical and numerical methods for solving nonlinear differential equations, with a focus on integrability and soliton theory. He is proficient in advanced mathematical modeling techniques used in the study of wave dynamics and inverse scattering methods. His computational skills include proficiency in MATLAB, Mathematica, Maple, and LaTeX, which he utilizes for complex mathematical simulations and research documentation. He has extensive experience in academic writing, peer reviewing, and editing mathematical publications, serving as a reviewer for Mathematical Reviews and an editor for the Open Journal of Mathematical Sciences. His ability to design and implement interdisciplinary research projects is evident through his involvement in international collaborations such as Erasmus+ and TEMPUS. Additionally, his strong problem-solving skills, combined with his ability to mentor and guide research students, have contributed to the development of new mathematical theories and applications. His research skills, combined with his leadership in academia, continue to shape the future of mathematical sciences.

Awards and Honors

Dr. Urazboev has been the recipient of numerous prestigious awards and research fellowships, recognizing his contributions to mathematical sciences. In 2020, he was awarded the Weiser Professional Development Fellowship by the University of Michigan, USA, acknowledging his leadership in research and academic development. His international research achievements have been supported by multiple DAAD research scholarships in Germany (2011, 2016) and Erasmus Mundus academic staff mobility scholarships from European institutions such as the University of Graz, Austria, and the University of Santiago de Compostela, Spain. He was also awarded the National Scholarship Programme of the Slovak Republic in 2015. His excellence in research was recognized by the Ministry of Higher and Secondary Special Education of Uzbekistan, which named him Young Doctor of Science in 2007. Additionally, he received the prestigious Istedod Foundation Award from the President of Uzbekistan in 2006. These accolades highlight his global recognition and contributions to the advancement of mathematical research. His numerous research grants and fellowships reflect his dedication to fostering academic excellence and international collaboration in the field of mathematics.

Conclusion

Dr. Gayrat Urazboev is a highly accomplished mathematician with a distinguished career in nonlinear evolution equations, soliton theory, and integrability. His extensive research experience, combined with his leadership roles in academia, has made a significant impact on mathematical sciences. His international collaborations, numerous research grants, and contributions to mathematical education highlight his commitment to advancing the field. His proficiency in mathematical modeling, analytical techniques, and computational tools underscores his technical expertise. While his research output is impressive, further expanding his publication record in high-impact journals and enhancing his English proficiency would strengthen his global influence. His dedication to mentoring young researchers, organizing conferences, and participating in international research programs demonstrates his commitment to academic development. Recognized with prestigious awards and fellowships, he has played a pivotal role in promoting mathematical research and education both in Uzbekistan and internationally. As a researcher and academic leader, he continues to contribute to the field of mathematical physics, making him a strong candidate for research excellence awards and further academic recognition.

Publication Top Notes

  1. Title: “Analysis of the Solitary Wave Solutions of the Negative Order Modified Korteweg–de Vries Equation with a Self-Consistent Source”

    • Authors: G.U. Urazboev, I.I. Baltaeva, Shoira E. Atanazarova
    • Year: 2025
  2. Title: “Integration of the Negative Order Nonlinear Schrödinger Equation in the Class of Periodic Functions”

    • Authors: G.U. Urazboev, Muzaffar M. Khasanov, Aygul K. Babadjanova
    • Year: 2024
  3. Title: “Integration of Negative-Order Modified Korteweg–de Vries Equation with an Integral Source”

    • Authors: G.U. Urazboev, Muzaffar M. Khasanov, O.B. Ismoilov
    • Year: 2024

 

 

Nacira Agram | Mathematics | Best Researcher Award

Assoc. Prof. Dr. Nacira Agram | Mathematics | Best Researcher Award

Mathematics Department at KTH Royal, Algeria

Dr. Nacira Agram is an Associate Professor in the Department of Mathematics at KTH Royal Institute of Technology in Stockholm, Sweden. With a robust academic background and extensive research experience, her work primarily focuses on stochastic analysis, optimal control theory, and their applications in finance, insurance, and biology. Dr. Agram has made significant contributions to the field of applied mathematics, particularly in the study of stochastic differential equations and backward stochastic differential equations. Her research is characterized by a deep integration of theoretical mathematics with practical problem-solving, aiming to develop models that address real-world challenges. In addition to her research, Dr. Agram is actively involved in teaching and mentoring, guiding both master’s and doctoral students in their academic pursuits. Her international experience spans multiple countries, reflecting a commitment to fostering global academic collaborations and contributing to the advancement of mathematical sciences.

Professional Profile

Education

Dr. Agram’s academic journey began at the University of Biskra in Algeria, where she earned her Bachelor’s degree in Mathematics in 2008. She continued at the same institution to obtain her Master’s degree in Mathematics in 2010, focusing on stochastic analysis and optimal control. Her passion for these subjects culminated in a Ph.D. in Applied Mathematics from the University of Biskra in 2013, with a dissertation titled “Optimal Control in Infinite Time Horizon.” In 2021, Dr. Agram achieved the title of Docent from Linnaeus University in Växjö, Sweden, recognizing her substantial contributions to research and teaching in mathematics. This progression through rigorous academic training has equipped her with a solid foundation in both theoretical and applied aspects of mathematics, enabling her to tackle complex problems in her subsequent research and professional endeavors.

Professional Experience

Dr. Agram’s professional trajectory is marked by a series of esteemed positions across various academic institutions. Following her Ph.D., she served as an Associate Professor at the University of Biskra from 2014 to 2019, where she was instrumental in advancing the department’s research profile. She then pursued postdoctoral research at the University of Oslo in Norway between 2016 and 2018, collaborating on projects involving stochastic processes. In 2019, Dr. Agram joined Linnaeus University in Växjö, Sweden, as a Tenure-Track Assistant Professor, further honing her research and teaching skills. Her career advanced as she assumed the role of Associate Professor at KTH Royal Institute of Technology in March 2022, where she continues to contribute to the fields of probability, mathematical physics, and statistics. Throughout her career, Dr. Agram has demonstrated a commitment to academic excellence, interdisciplinary collaboration, and mentorship, impacting both her students and the broader mathematical community.

Research Interests

Dr. Agram’s research interests are centered around applied mathematics, with a particular emphasis on stochastic processes and optimal control theory. She delves into stochastic differential equations, backward stochastic differential equations, and partial differential equations, exploring their applications in various domains such as finance, insurance, and biology. Her work often involves the development of deep learning and reinforcement learning algorithms to solve complex optimal control problems, aiming to enhance decision-making processes in uncertain environments. Dr. Agram is also interested in the interplay between stochastic analysis and machine learning, seeking to leverage data-driven approaches to inform and improve mathematical models. Her interdisciplinary approach reflects a dedication to addressing practical problems through rigorous mathematical frameworks, contributing to advancements in both theory and application.

Research Skills

Dr. Agram possesses a diverse set of research skills that underpin her contributions to applied mathematics. She is proficient in stochastic modeling, adept at formulating and analyzing models that incorporate randomness to reflect real-world uncertainties. Her expertise extends to optimal control theory, where she develops strategies to influence dynamic systems towards desired objectives. Dr. Agram is skilled in the application of deep learning techniques, utilizing neural networks to approximate complex functions and solve high-dimensional problems. Her programming capabilities in Python, MATLAB, and C++ facilitate the implementation and simulation of mathematical models, enabling her to test hypotheses and validate theoretical findings. Additionally, her multilingual proficiency in Arabic, French, English, Norwegian, and Swedish enhances her ability to collaborate across diverse cultural and academic settings, fostering international research partnerships.

Awards and Honors

Throughout her career, Dr. Agram has been recognized for her academic excellence and research contributions. She has been the recipient of several prestigious grants, including a Starting Grant from KTH in 2024 amounting to 3 million SEK, and a VR Project Grant in 2020 totaling 3.6 million SEK, underscoring the significance and impact of her research endeavors. Her early academic achievements were marked by accolades such as the Best Bachelor Student Prize in 2008, Best Master Student Prize in 2010, and the First Ph.D. Defense Prize in 2013 from the University of Biskra, highlighting her consistent dedication to scholarly excellence. In 2017, Dr. Agram was selected to participate in the 5th Heidelberg Laureate Forum, an honor that connects promising researchers with laureates in mathematics and computer science, reflecting her standing in the global scientific community. These honors collectively attest to Dr. Agram’s sustained commitment to advancing mathematical sciences and her influence as a leading researcher in her field.

Conclusion

Dr. Nacira Agram exemplifies a distinguished scholar whose career seamlessly integrates rigorous research, dedicated teaching, and impactful mentorship. Her extensive work in stochastic analysis and optimal control has not only advanced theoretical mathematics but also provided practical solutions to complex problems in finance, insurance, and biology. Dr. Agram’s ability to secure significant research funding and her recognition through various awards underscore the value and relevance of her contributions to the scientific community. Her commitment to fostering international collaborations and guiding the next generation of mathematicians reflects a holistic approach to academia, where knowledge creation and dissemination go hand in hand. As she continues her tenure at KTH Royal Institute of Technology, Dr. Agram remains poised to make further strides in her research, inspiring both her peers and students through her exemplary dedication to the advancement of mathematical sciences.

Publication Top Notes

  1. “Deep learning for quadratic hedging in incomplete jump market”

    • Authors: Nacira Agram, Bernt Karsten Øksendal, Jan Rems
    • Year: 2024
    • Citations: 1
  2. “Optimal stopping of conditional McKean–Vlasov jump diffusions”

    • Authors: Nacira Agram, Bernt Karsten Øksendal
    • Year: 2024

Cong Gao | Mathematics | Best Researcher Award

Dr. Cong Gao | Mathematics | Best Researcher Award

Associate Research Fellow at Harbin Engineering University, China

Cong Gao is a dedicated researcher specializing in structural vibration, noise control, and the mechanical properties of composite materials. His research focuses on understanding and mitigating vibration and acoustic issues in complex engineering structures, with significant contributions to the analysis of stiffened cylindrical shells, functionally graded materials, and composite structures. Cong Gao’s work bridges theory and experimentation, employing advanced analytical methods such as the Ritz method and Jacobi polynomials to solve complex vibration problems. His prolific academic output includes publications in high-impact journals, covering topics like vibro-acoustics, free and forced vibration, and dynamic behavior of shells and plates. His innovative research has applications in aerospace, marine engineering, and structural design.

Professional Profile

Education

Cong Gao holds advanced degrees in engineering, focusing on structural mechanics and material science. His academic journey has equipped him with profound expertise in analytical and computational methods for solving structural vibration problems. With rigorous training in theoretical and experimental mechanics, Cong Gao combines mathematical modeling with practical application to develop innovative solutions for real-world engineering challenges. His education has provided the foundation for his impactful contributions to the field of composite materials and vibration analysis.

Professional Experience

Cong Gao has gained significant professional experience as a researcher and academic. He has been actively involved in projects addressing vibration and noise issues in engineering structures, particularly in aerospace and marine applications. His work frequently involves collaboration with multidisciplinary teams to develop and validate advanced models for structural analysis. Cong Gao’s experience spans from theoretical development to experimental validation, ensuring the practical relevance of his research. His expertise in handling complex structural systems makes him a vital contributor to projects requiring cutting-edge vibration and acoustic analysis techniques.

Research Interests

Cong Gao’s research interests lie at the intersection of structural mechanics, vibration analysis, and material science. His primary focus is on the vibro-acoustic behavior of composite materials, particularly stiffened cylindrical shells and functionally graded structures. He is passionate about developing semi-analytical methods for vibration and noise prediction, leveraging techniques like the Ritz method and Jacobi polynomials to enhance the understanding of dynamic behavior in engineering systems. Cong Gao’s research has implications for reducing noise pollution, optimizing structural performance, and advancing material design in industries like aerospace, marine, and automotive engineering.

Research Skills

Cong Gao possesses exceptional research skills in both analytical and experimental mechanics. He is adept at using advanced semi-analytical techniques, such as the Ritz method and Jacobi polynomials, for solving complex structural dynamics problems. His expertise extends to finite element modeling, vibro-acoustic analysis, and dynamic characterization of composite materials. He is proficient in designing and conducting experiments to validate theoretical models, ensuring the reliability of his research findings. His ability to integrate theory and practice highlights his versatility and depth in addressing multidisciplinary challenges in structural vibration and noise control.

Awards and Honors

Cong Gao’s outstanding contributions to structural mechanics and material science have earned him recognition in the academic and professional communities. He has received accolades for his innovative research on the dynamic behavior of composite materials and stiffened shells. His impactful publications in high-impact journals have further established his reputation as a leading researcher in vibration and noise analysis. Cong Gao’s work has been highlighted at international conferences, where he has received awards for excellence in research presentations. His achievements reflect his dedication to advancing knowledge and solving critical engineering problems.

Conclusion

Cong Gao is a highly suitable candidate for the Best Researcher Award due to his significant contributions to structural vibration, noise analysis, and composite materials research. His methodological rigor and consistent productivity make him a standout researcher in his field. While addressing areas such as leadership roles, industrial collaborations, and public engagement could further enhance his profile, his current achievements strongly position him as a deserving candidate for this recognition.

Publication Top Notes

  1. A unified Jacobi-Ritz-spectral BEM for vibro-acoustic behavior of spherical shell
    Authors: Li, H., Xu, J., Pang, F., Gao, C., Zheng, J.
    Year: 2024
  2. Jacobi-Ritz method for dynamic analysis of functionally graded cylindrical shell with general boundary conditions based on FSDT
    Authors: Xu, J., Gao, C., Li, H., Zheng, J., Hang, T.
    Year: 2024
  3. Coaxial composite resonator for vibration damping: Bandgap characteristics and experimental research
    Authors: Qin, Y.-X., Xie, Y.-X., Tang, Y., Pang, F.-Z., Gao, C.
    Year: 2024
  4. Dynamic analysis of stepped functionally graded conical shells with general boundary restraints using Jacobi polynomials-Ritz method
    Authors: Lu, L., Gao, C., Xu, J., Li, H., Zheng, J.
    Year: 2024
  5. Reconstructed source method for underwater noise prediction of a stiffened cylindrical shell
    Authors: Pang, F., Tang, Y., Li, C., Gao, C., Li, H.
    Year: 2024
  6. Prediction of vibro-acoustic response of ring stiffened cylindrical shells by using a semi-analytical method
    Authors: Gao, C., Pang, F., Li, H., Huang, X., Liang, R.
    Year: 2024
    Citations: 2
  7. Prediction of Time Domain Vibro-Acoustic Response of Conical Shells Using Jacobi–Ritz Boundary Element Method
    Authors: Gao, C., Zheng, J., Pang, F., Li, H., Yan, J.
    Year: 2024
  8. Modeling and experiments on the vibro-acoustic analysis of ring stiffened cylindrical shells with internal bulkheads: A comparative study
    Authors: Gao, C., Xu, J., Pang, F., Li, H., Wang, K.
    Year: 2024
    Citations: 6
  9. Experimental and numerical investigation on vibro-acoustic performance of a submerged stiffened cylindrical shell under multiple excitations
    Authors: Tang, Y., Zhao, Z., Qin, Y., Gao, C., Li, H.
    Year: 2024
    Citations: 6
  10. Forced vibration response analysis of hemispherical shell under complex boundary conditions | 复杂边界条件下半球壳受迫振动响应分析
    Authors: Pang, F.-Z., Zhang, M., Gao, C., Zheng, J.-J., Li, H.-C.
    Year: 2024
    Citations: 1

 

Saima Zainab | Mathematics | Best Researcher Award

Dr. Saima Zainab | Mathematics | Best Researcher Award

Lecturer,  The Women University Multan,  Pakistan 

Dr. Saima Zainab is a distinguished candidate for the Research for Best Paper Award, holding a Ph.D. in Mathematics from Bahauddin Zakariya University. Her thesis, titled “Numerical Study of some Pre-combustion Phenomena in Diesel Engine,” highlights her expertise in computational fluid dynamics and numerical analysis. Dr. Zainab has made significant contributions to the field through her publications, including research on artificial intelligence-based classifiers for breast cancer diagnosis and the optimization of bio-convective flow in nanofluids. Her work illustrates the application of advanced mathematical modeling in solving complex real-world problems. As a lecturer at The Women University Multan, she teaches various courses, including Numerical Analysis and Mathematical Modeling, while also serving as a program coordinator for BS Mathematics. Dr. Zainab’s leadership in organizing academic events and workshops demonstrates her dedication to advancing mathematical research and education. Her comprehensive background positions her as a strong candidate for this prestigious award.

Profile

Education

Dr. Saima Zainab earned her Ph.D. in Mathematics from Bahauddin Zakariya University in Multan, Pakistan, where she conducted her thesis on “Numerical Study of some Pre-combustion Phenomena in Diesel Engine,” showcasing her expertise in computational fluid dynamics and numerical analysis. She also holds an M.Phil. in Mathematics from the same institution, with a thesis titled “Numerical Simulation of Turbulent Flow in a Square Duct using k-Model.” Her educational journey has provided her with a solid foundation in advanced mathematical concepts, equipping her with the skills necessary to tackle complex problems in her research. Dr. Zainab has also furthered her knowledge through various certifications, including courses in machine learning and data analytics, enhancing her proficiency in applying mathematical modeling to real-world applications. This comprehensive educational background underlines her commitment to academic excellence and her significant contributions to the field of mathematics.

Professional Experience

Dr. Saima Zainab has been a Lecturer in the Department of Mathematics at The Women University, Multan, Pakistan, since March 2017. In her role, she teaches a variety of courses, including Computer Programming, Numerical Computing, and Mathematical Modeling, equipping students with essential skills in mathematics and its applications. Dr. Zainab also serves as the Program Coordinator for the BS Mathematics program, overseeing curriculum development and student engagement. She plays a pivotal role in the Office of Research Innovation and Commercialization (ORIC), promoting research initiatives and collaboration within the academic community. Additionally, her responsibilities include managing the departmental timetable and supervising computer labs, ensuring a conducive learning environment for her students. As a member of the Departmental Semester Implementation Committee, Dr. Zainab contributes to the strategic planning and execution of academic programs, demonstrating her commitment to enhancing the educational experience in mathematics. Her dedication and multifaceted contributions make her an invaluable asset to her institution.

Research Interests

Dr. Saima Zainab’s research interests encompass a dynamic range of topics within the field of Mathematics, primarily focusing on Computational Fluid Dynamics (CFD), Data Science, and Artificial Intelligence (AI). Her work in CFD involves exploring complex fluid flow phenomena, particularly in relation to pre-combustion processes in diesel engines, where she employs numerical analysis and mathematical modeling to enhance understanding and efficiency. In the realm of Data Science, Dr. Zainab is dedicated to applying advanced computational techniques to real-world challenges, such as developing AI-based classifiers for medical diagnostics, notably in breast cancer detection. Additionally, her interest in AI extends to predictive modeling in flow dynamics, where she utilizes innovative methodologies like nonlinear autoregressive artificial neural networks. Dr. Zainab’s multifaceted research not only contributes to theoretical advancements in mathematics but also has significant practical implications across various scientific and engineering disciplines. Her passion for integrating mathematics with technology continues to drive her research endeavors.

Research Skills

Dr. Saima Zainab possesses a diverse skill set that is integral to her research in mathematics and its applications. Her expertise in computational fluid dynamics enables her to model and analyze complex fluid behavior, essential for her investigations into pre-combustion phenomena in diesel engines. Proficient in numerical analysis, she utilizes advanced mathematical techniques to solve problems related to turbulent flows and heat transfer, demonstrating her ability to apply theoretical concepts to practical scenarios. Dr. Zainab is well-versed in mathematical modeling, allowing her to construct and analyze models that represent real-world systems accurately. Furthermore, her proficiency in programming languages and tools such as MATLAB and ANSYS Workbench enhances her capability to perform simulations and data analysis. In addition, her recent training in machine learning and data analytics equips her with the necessary tools to leverage artificial intelligence in her research, making her a versatile researcher capable of addressing multifaceted challenges in the field.

Awards and Honors

Dr. Saima Zainab has received numerous awards and honors throughout her academic career, reflecting her outstanding contributions to the field of mathematics. She has been recognized for her exceptional teaching abilities, leading to accolades from both students and faculty. In 2019, Dr. Zainab was awarded the “Best Faculty Award” at The Women University Multan for her innovative approach to teaching and her commitment to student success. Her research on computational fluid dynamics and artificial intelligence has garnered attention, leading to invitations to present her work at various national and international conferences, including the prestigious UMT International Conference on Pure and Applied Mathematics. Additionally, Dr. Zainab played a crucial role in organizing the 1st International Conference on Mathematics for a Sustainable Future, showcasing her leadership in the academic community. These accolades, alongside her publications in reputable journals, underscore her dedication to advancing mathematical research and education.

Conclusion

In conclusion, Dr. Saima Zainab exemplifies the qualities of an outstanding candidate for the Research for Best Paper Award. Her extensive academic background, highlighted by a Ph.D. in Mathematics and a strong focus on computational fluid dynamics and numerical analysis, underscores her expertise in complex mathematical modeling. Dr. Zainab’s impressive portfolio of published research demonstrates her ability to address significant challenges in fields such as artificial intelligence and fluid dynamics, showcasing innovative methodologies and practical applications. Furthermore, her active involvement in organizing academic events and workshops reflects her dedication to fostering a collaborative research environment and mentoring future mathematicians. Dr. Zainab’s commitment to advancing knowledge in her field, coupled with her leadership roles within her institution, positions her as a key contributor to the academic community. Given her achievements and contributions, Dr. Zainab is not only a deserving candidate but also an inspiration for aspiring researchers in mathematics.

Publication Top Notes

  • Title: A comparative performance assessment of artificial intelligence-based classifiers and optimized feature reduction technique for breast cancer diagnosis
    Authors: Batool, S., Zainab, S.
    Year: 2024
    Citations: 0
    Journal: Computers in Biology and Medicine
    Volume: 183
    Article Number: 109215
  • Title: An investigation of heat transfer and optimization of entropy in bio-convective flow of Eyring-Powell nanomaterial with gyrotactic microorganisms
    Authors: Batool, K., Haq, F., Zainab, S., Alshammari, A.S., M. El-Bahy, Z.
    Year: 2024
    Citations: 0
    Journal: Case Studies in Thermal Engineering
    Volume: 61
    Article Number: 104903
  • Title: Predictive modelling of flow dynamics in micropolar hybrid nanofluids subjected to magnetic dipole influence using nonlinear autoregressive artificial neural networks with exogenous input
    Authors: Zainab, S., Shakir, S., Batool, K., Waqas, H., Muhammad, T.
    Year: 2024
    Citations: 1
    Journal: Numerical Heat Transfer; Part A: Applications
  • Title: Investigation of nozzle geometry and wall roughness effects on diesel injector flow
    Authors: Zainab, S., Syed, K.S.
    Year: 2023
    Citations: 0
    Journal: AIP Advances
    Volume: 13(11)
    Article Number: 115129

 

Lakshmi Narayan Mishral | Mathematics | Best Researcher Award

Dr . Lakshmi Narayan Mishral | Mathematics | Best Researcher Award

Assistant Professor Senior Grade 2, Vellore Institute of Technology, Vellore, Tamil Nadu, Vellore, India.

Dr. Lakshmi Narayan Mishra is a distinguished scholar in the field of mathematics, currently serving as a faculty member at the Vellore Institute of Technology, India. With a Ph.D. focused on nonlinear integral equations, his research spans various areas, including neural networks, fractional calculus, and optimization. Dr. Mishra has published extensively, contributing to numerous peer-reviewed journals and focusing on topics such as existence theorems and approximation theory. He has supervised multiple Ph.D. candidates, demonstrating a commitment to fostering the next generation of researchers. His work is recognized for its practical applications in areas like dynamic programming and signal processing. Despite his significant achievements, there are opportunities for Dr. Mishra to enhance his interdisciplinary collaboration and increase his visibility in global academic forums. Overall, his contributions to mathematics and dedication to research and education position him as a strong candidate for the Best Scholar Award.

 

Publication Profile👤

Current Position

Dr. Lakshmi Narayan Mishra currently serves as a faculty member in the Department of Mathematics at the Vellore Institute of Technology (VIT) in Vellore, Tamil Nadu, India. Since May 2018, he has been involved in both teaching and research, contributing significantly to various areas of mathematics, particularly in neural networks, fractional calculus, and nonlinear analysis. His extensive research background includes a Ph.D. focused on nonlinear integral equations, and he has authored numerous publications in reputable journals. Dr. Mishra is dedicated to advancing mathematical knowledge and mentoring students, supervising several Ph.D. candidates in their research pursuits. He is actively engaged in academic activities and is well-respected in the mathematical community for his expertise and contributions to the field. His commitment to research excellence and education underscores his role as a valuable asset to VIT and the broader academic community.

 

Previous Experience

Dr. Lakshmi Narayan Mishra has a diverse academic background and extensive experience in teaching and research. He began his career as a lecturer at Mody University of Science and Technology, where he taught undergraduate and postgraduate students. Subsequently, he served as an Assistant Professor at Lovely Professional University, engaging in both teaching and research activities. Since May 2018, Dr. Mishra has been a faculty member at the Vellore Institute of Technology, contributing to the Department of Mathematics. In addition to his teaching roles, he has been involved in supervising several Ph.D. candidates, guiding them in their research projects. His previous experience includes working as a research scholar at the National Institute of Technology, Silchar, where he deepened his expertise in nonlinear analysis, approximation theory, and fractional calculus. Dr. Mishra’s broad academic exposure equips him with valuable insights into the evolving landscape of mathematical research and education.

 

Educational Background

Dr. Lakshmi Narayan Mishra has an impressive educational background in mathematics. He completed his Bachelor of Science in 2010 and Master of Science in Mathematics in 2012, both from Dr. Ram Manohar Lohia Avadh University, Ayodhya. He then pursued his Ph.D., focusing on nonlinear integral equations and their applications, which he completed in February 2017 at the National Institute of Technology, Silchar. His doctoral research, titled “On existence and behavior of solutions to some nonlinear integral equations with applications,” showcases his deep understanding of advanced mathematical concepts. Dr. Mishra’s academic journey reflects his dedication to the field, reinforced by various research interests, including neural networks, fractional calculus, and nonlinear analysis. His educational qualifications provide a strong foundation for his ongoing contributions to mathematical research and teaching, positioning him as a prominent figure in his area of expertise.

 

Research Directions

Dr. Lakshmi Narayan Mishra’s research primarily focuses on various advanced topics in mathematics, including neural networks, fractional calculus, and nonlinear integral equations. His work explores the existence and behavior of solutions to nonlinear integral equations, emphasizing applications in fields like dynamic programming and optimization. He also investigates fixed-point theory and approximation theory, contributing significantly to the understanding of numerical solutions in fractional differential equations. Additionally, Dr. Mishra’s research extends to areas such as measure of noncompactness, Banach algebra, and operator theory, which play crucial roles in the analysis of functional equations. His interdisciplinary approach not only enhances theoretical frameworks but also facilitates practical applications in signal processing, image analysis, and optimization problems, showcasing the versatility and relevance of his work in contemporary mathematical research. Through his publications and ongoing Ph.D. supervision, Dr. Mishra continues to inspire and guide emerging scholars in the field.

 

Professional Contributions

Dr. Lakshmi Narayan Mishra has made significant professional contributions in the field of mathematics, particularly in areas such as neural networks, fractional calculus, and nonlinear integral equations. He has published extensively in peer-reviewed journals, with a focus on the existence and behavior of solutions to complex mathematical equations, which has advanced understanding in both theoretical and applied mathematics. Dr. Mishra’s work in approximation theory and functional analysis demonstrates his commitment to tackling challenging problems, leading to innovative solutions that have practical applications in various fields, including dynamic programming and signal processing. As a dedicated educator, he has supervised multiple Ph.D. candidates, fostering the next generation of mathematicians. His involvement in academic collaborations, along with his active participation in conferences and seminars, further underscores his commitment to the mathematical community. Overall, Dr. Mishra’s contributions reflect a profound impact on both research and education in mathematics.

Conclusion

Dr. Lakshmi Narayan Mishra is a commendable candidate for the Best Scholar Award, showcasing a robust academic and research background in mathematics. His impressive educational qualifications, culminating in a Ph.D. focused on nonlinear integral equations, reflect his expertise in a diverse range of specializations, including neural networks and fractional calculus. Dr. Mishra’s substantial publication record, featuring numerous articles in reputable journals, demonstrates his commitment to advancing mathematical research. His effective supervision of Ph.D. candidates further illustrates his dedication to nurturing the next generation of scholars. While he exhibits significant strengths in research productivity and mentorship, there are opportunities for improvement, such as enhancing interdisciplinary collaborations and seeking external funding for research projects. In conclusion, Dr. Mishra’s scholarly contributions and potential for growth make him a deserving candidate for the Best Scholar Award, recognizing his valuable impact on the academic community and the field of mathematics.

 

Publication Top Notes
    1. Attributes of residual neural networks for modeling fractional differential equations
      • Authors: Agarwal, S., Mishra, L.N.
      • Year: 2024
      • Citations: 0
    2. A comprehensive analysis for weakly singular nonlinear functional Volterra integral equations using discretization techniques
      • Authors: Bhat, I.A., Mishra, L.N., Mishra, V.N., Abdel-Aty, M., Qasymeh, M.
      • Year: 2024
      • Citations: 2
    3. A comparative study of discretization techniques for augmented Urysohn type nonlinear functional Volterra integral equations and their convergence analysis
      • Authors: Bhat, I.A., Mishra, L.N.
      • Year: 2024
      • Citations: 6
    4. Convergence analysis of modified Szász operators associated with Hermite polynomials
      • Authors: Kumar, A., Verma, A., Rathour, L., Mishra, L.N., Mishra, V.N.
      • Year: 2024
      • Citations: 2
    5. Precision and efficiency of an interpolation approach to weakly singular integral equations
      • Authors: Bhat, I.A., Mishra, L.N., Mishra, V.N., Tunç, C., Tunç, O.
      • Year: 2024
      • Citations: 9
    6. Approximation on bivariate of Durrmeyer operators based on beta function
      • Authors: Raiz, M., Rajawat, R.S., Mishra, L.N., Mishra, V.N.
      • Year: 2024
      • Citations: 4
    7. Analysis of efficient discretization technique for nonlinear integral equations of Hammerstein type
      • Authors: Bhat, I.A., Mishra, L.N., Mishra, V.N., Tunc, C.
      • Year: 2024
      • Citations: 0
    8. Some Approximation Properties Of A Certain Summation Integral Type Operator
      • Authors: Maindola, S., Gairola, A.R., Rathour, L., Mishra, L.N.
      • Year: 2024
      • Citations: 0
    9. Tracing roots and linkages: Harnessing graph theory and social network analysis in genealogical research, based on the kin naming system
      • Authors: Joram, A., Singh, K.R., Mishra, L.N., Rathour, L., Vanav Kumar, A.
      • Year: 2024
      • Citations: 1
    10. Approximation of Periodic Functions by Wavelet Fourier Series
      • Authors: Karanjgaokar, V., Rahatgaonkar, S., Rathour, L., Mishra, L.N., Mishra, V.N.
      • Year: 2024
      • Citations: 0

Sneha Agarwal | Mathematics | Best Researcher Award

Ms. Sneha Agarwal | Mathematics | Best Researcher Award

Ph.D, Vellore institute of technology, Vellore, India.

Sneha Agarwal, Ph.D., is a promising researcher with a robust academic background, having earned her Ph.D. from VIT University and an M.Sc. in Mathematics from Gurukul Kangri Vishwavidyalaya. She has made notable contributions to the field through her publications on residual neural networks and fractional differential equations, showcasing her expertise in advanced mathematical concepts. Proficient in Python and MATLAB, Sneha demonstrates strong technical skills that are vital for contemporary research. Her strong command of English and Hindi facilitates effective communication in diverse settings. Additionally, qualifying for the GATE exam in Mathematics further highlights her capabilities. While she has a solid foundation, expanding her research topics and engaging more in interdisciplinary collaborations could enhance her academic profile. Overall, Sneha is a strong candidate for the Best Researcher Award, with significant potential for future contributions to the field of mathematics.

Publication Profile👤

Current Position

Sneha Agarwal is currently positioned as a researcher with a Ph.D. from VIT University, Vellore, where she has demonstrated exceptional expertise in mathematics, particularly in the field of fractional differential equations and neural networks. Her research contributions include published journal articles and presentations at international conferences, showcasing her ability to tackle complex mathematical problems and collaborate effectively with other scholars. In addition to her research, Sneha possesses strong technical skills in programming languages such as Python and MATLAB, which she employs to enhance her research methodologies. With her qualifications, including GATE qualification in Mathematics, she is well-equipped for academic and research roles. Sneha’s language proficiency in English and Hindi further enables her to communicate her findings effectively in diverse academic contexts. As she continues to advance her career, her focus on innovative research and collaborative opportunities positions her as a promising contributor to the field of mathematics.

Previous Experience

Sneha Agarwal has a solid foundation in both academic and practical aspects of mathematics and research. She completed her Ph.D. at VIT University, where she focused on advanced mathematical concepts, particularly in modeling fractional differential equations using residual neural networks. During her M.Sc. at Gurukul Kangri Vishwavidyalaya, she excelled academically, achieving an impressive CGPA of 8.61. Her educational journey began with a B.Sc. in Physics, Chemistry, and Mathematics from M.J.P. Rohilkhand University, where she graduated with a commendable percentage. Alongside her studies, Sneha has gained valuable experience in academic research and teaching, demonstrating her ability to convey complex concepts effectively. Her proficiency in programming languages like Python and MATLAB, coupled with her skills in LATEX typesetting, equips her to tackle sophisticated mathematical problems. Additionally, she has been recognized for her academic excellence, notably qualifying for the GATE exam in Mathematics conducted by IIT Kanpur.

Educational Background

Sneha Agarwal has a strong educational background that underpins her research expertise in mathematics. She earned her Ph.D. from VIT University, Vellore, in 2023, where she focused on advanced topics in mathematics, demonstrating her commitment to academic excellence. Prior to her doctoral studies, she completed her Master of Science in Mathematics at Gurukul Kangri Vishwavidyalaya, Haridwar, in 2021, achieving a commendable CGPA of 8.61. This solid foundation in mathematical principles was further reinforced during her Bachelor of Science degree at M.J.P. Rohilkhand University, Bareilly, where she studied Physics, Chemistry, and Mathematics, graduating in 2019 with a percentage of 66.89. Through her educational journey, Sneha has developed a deep understanding of mathematical concepts, preparing her for rigorous research and contributions to the field. Her academic achievements reflect her dedication and capability, making her a promising researcher in mathematics.

Research Directions

Sneha Agarwal’s research directions primarily focus on the application of advanced mathematical techniques in the realm of fractional differential equations and neural networks. Her work explores the characteristics and attributes of residual neural networks, aiming to enhance their effectiveness in modeling complex mathematical phenomena. By investigating the intersection of machine learning and applied mathematics, she seeks to develop innovative solutions for real-world problems. Furthermore, Sneha is interested in expanding her research to include interdisciplinary applications, such as data science and computational mathematics, to address challenges in diverse fields like engineering and physics. She aims to collaborate with experts from different domains, which could lead to novel methodologies and applications of her findings. As she continues to build on her expertise, Sneha’s future research directions are likely to contribute significantly to both theoretical advancements and practical implementations in mathematics and related disciplines.

Professional Contributions

Sneha Agarwal, Ph.D., has made significant professional contributions in the field of mathematics, particularly through her research on residual neural networks and fractional differential equations. Her recent publications, including journal articles and conference proceedings, reflect her deep understanding of complex mathematical concepts and their practical applications. Sneha’s work demonstrates her ability to blend theoretical knowledge with computational techniques, showcasing her proficiency in programming languages such as Python and MATLAB. Additionally, she is skilled in LATEX typesetting, enabling her to present her research findings effectively. Beyond her academic achievements, Sneha has qualified for the GATE exam in Mathematics, underscoring her strong foundational knowledge. Her commitment to academic research, coupled with her teaching experience, positions her as a valuable contributor to both the academic community and the broader field of mathematics. Overall, Sneha’s contributions not only advance mathematical research but also inspire future generations of scholars in the discipline.

Conclusion

Sneha Agarwal emerges as a compelling candidate for the Best Researcher Award, showcasing a strong educational foundation with a recent Ph.D. from VIT University and notable achievements in her research. Her contributions to the field of mathematics, particularly through her work on residual neural networks and fractional differential equations, reflect her ability to tackle complex problems and engage with advanced topics. Proficiency in programming languages like Python and MATLAB, along with her skills in LATEX typesetting, further enhance her research capabilities. While her focus on specific research areas is commendable, expanding her topics of interest and increasing her participation in conferences could bolster her profile. Additionally, engaging in community outreach can demonstrate her commitment to applying research for societal benefit. Overall, Sneha’s dedication, technical expertise, and potential for impactful contributions position her as a deserving recipient of the Best Researcher Award.

Publication Top Notes
  • Attributes of residual neural networks for modeling fractional differential equations
    1. Journal: Heliyon
    2. Year: 2024
    3. DOI: 10.1016/j.heliyon.2024.e38332
    4. EID: 2-s2.0-85204805580
    5. ISSN: 2405-8440
    6. Authors: S. Agarwal and L.N. Mishra

 

 

HABIBA | Agricultural and Biological Sciences | Best Researcher Award

Dr.HABIBA | Agricultural and Biological Sciences | Best Researcher Award

RESEACRCH SCHOLAR,UNIVERSITY OF LUCKNOW, INDIA.

Dr. Habiba Khan is a dedicated researcher in the field of zoology, specializing in cancer biology, with a focus on the effects of phytochemicals on prostate cancer. She has seven years of research experience and recently completed her Ph.D. at the University of Lucknow. Her dissertation, “Effect of promising phytochemicals on proliferation and apoptosis of androgen-sensitive and androgen-insensitive prostate cancer cell lines,” showcases her expertise in this critical area of study. Dr. Khan has a robust skill set that includes cell and tissue culture, molecular biology techniques, and biochemistry assays. She has received multiple accolades, including best oral presentation and best research paper awards in 2024. In addition to her research accomplishments, she serves as a visiting faculty member, highlighting her commitment to education and mentorship. With numerous publications in reputable journals, Dr. Khan is poised to make significant contributions to cancer research and the scientific community.

 

Publication Profile👤

Current Position

Dr. Habiba Khan is currently a visiting faculty member in the Department of Zoology at the Institute of Advanced Molecular Genetics & Infectious Diseases, University of Lucknow. With a specialization in cancer biology, she is finalizing her Ph.D. degree, focusing on the effects of phytochemicals on prostate cancer cell lines. Her extensive research experience spans over seven years, during which she has developed a diverse skill set, including proficiency in cell culture, molecular biology techniques, and in vivo studies. Dr. Khan has contributed significantly to the field through multiple publications in reputable journals and has been recognized with several awards for her presentations at conferences. Her role as a visiting faculty member demonstrates her commitment to education and mentorship, where she shares her expertise with students pursuing advanced degrees in molecular and human genetics. Dr. Khan is dedicated to advancing her research in cancer biology and making impactful contributions to the scientific community.

 

Previous Experience

Dr. Habiba Khan has accumulated over seven years of extensive research experience, primarily in the field of Zoology with a specialization in Cancer Biology. Her Ph.D. research, titled “Effect of promising phytochemicals on proliferation and apoptosis of androgen-sensitive and androgen-insensitive prostate cancer cell lines,” showcases her focus on critical health issues. In addition to her doctoral work, Dr. Khan served as a visiting faculty member in the M.Sc. Molecular & Human Genetics program at the Institute of Advanced Molecular Genetics & Infectious Diseases at the University of Lucknow. Her expertise spans various advanced techniques, including cell and tissue culture, molecular biology, biochemistry, and histological studies. Throughout her career, she has received multiple awards for her presentations and publications, highlighting her contributions to the field. Dr. Khan’s diverse skill set, coupled with her academic accomplishments, positions her as a valuable asset in both research and education within the scientific community.

 

Educational Background

Dr. Habiba Khan has a solid educational foundation in the field of zoology. She completed her Bachelor of Science (B.Sc.) in Zoology, Botany, and Chemistry from Isabella Thoburn College, Lucknow, in 2012. Building on this, she pursued a Master of Science (M.Sc.) in Zoology at the University of Lucknow, graduating in 2014. Dr. Khan is currently finalizing her Ph.D. in Zoology with a specialization in Cancer Biology, which she is expected to complete in 2024. Her doctoral research focuses on the effects of promising phytochemicals on the proliferation and apoptosis of both androgen-sensitive and androgen-insensitive prostate cancer cell lines. Throughout her academic journey, Dr. Khan has demonstrated a strong commitment to advancing her knowledge and skills, as evidenced by her successful participation in various competitive exams, including the Graduate Aptitude Test in Engineering (GATE) and the CSIR-UGC NET, which she qualified in 2017.

 

Research Directions

Dr. Habiba Khan’s research directions primarily focus on the intersection of cancer biology and phytochemistry, particularly in exploring the therapeutic potential of natural compounds against prostate cancer. Her work emphasizes the investigation of promising phytochemicals, such as 6-Gingerol, for their anti-cancerous and apoptotic properties, aimed at both androgen-sensitive and androgen-insensitive prostate cancer cell lines. Future research endeavors could expand into the molecular mechanisms underlying the efficacy of these compounds, as well as their potential synergistic effects when combined with conventional therapies. Additionally, Dr. Khan may explore the role of dietary polyphenols in cancer prevention, enhancing the understanding of their mechanisms of action. Incorporating advanced techniques like nanotechnology and molecular docking could facilitate the development of novel treatment strategies. Collaborative projects with interdisciplinary teams could also enhance her research scope, allowing for a comprehensive approach to cancer treatment and prevention, ultimately contributing to advancements in oncology and therapeutic methodologies.

 

Professional Contributions

Dr. Habiba Khan has made significant professional contributions to the field of cancer biology, particularly in the study of prostate cancer. With over seven years of research experience, her doctoral dissertation focused on the effects of phytochemicals on cancer cell proliferation and apoptosis, highlighting her commitment to exploring natural compounds for therapeutic use. Dr. Khan has authored several impactful publications in reputable journals, showcasing her findings on anti-cancer agents and molecular targets. Her work has earned her multiple awards, including recognition for the best oral presentation and research paper in 2024. In addition to her research, she has served as a visiting faculty member, imparting knowledge in molecular and human genetics to the next generation of scientists. Through her involvement in conferences and collaborations with esteemed institutions, Dr. Khan actively contributes to advancing cancer research, making her a notable figure in her field and an inspiration to aspiring researchers.

 

Conclusion

Dr. Habiba Khan stands out as an exemplary candidate for the Best Researcher Award due to her extensive background in cancer biology, particularly her focus on the effects of phytochemicals on prostate cancer cell lines. With over seven years of research experience, she has demonstrated proficiency in advanced techniques ranging from cell and tissue culture to molecular biology and biochemistry. Her impressive academic achievements, including multiple awards for her presentations and high-impact publications, reflect her commitment to excellence and innovation in her field. As a visiting faculty member, Dr. Habiba also showcases her ability to mentor and inspire the next generation of scientists. To further enhance her research profile, she could focus on expanding her publication scope, securing research funding, and increasing her outreach efforts. Overall, Dr. Khan’s remarkable contributions to science and her potential for future impact make her a deserving recipient of this prestigious award.

 

Publication Top Notes
    1. Structure based docking and biological evaluation towards exploring potential anti-cancerous and apoptotic activity of 6-Gingerol against human prostate carcinoma cells
      • Authors: Khan, H., Azad, I., Arif, Z., Kumar, S., Arshad, M.
      • Year: 2024
      • Citations: 2
    2. Synthesis, crystal structure analysis, computational modelling and evaluation of anti-cervical cancer activity of novel 1,5-dicyclooctyl thiocarbohydrazone
      • Authors: Shukla, S., Trivedi, P., Johnson, D., Banerjee, M., Bishnoi, A.
      • Year: 2024
      • Citations: 0
    3. Elucidating molecular and cellular targets and the antiprostate cancer potentials of promising phytochemicals: a review
      • Authors: Khan, H., Rais, J., Afzal, M., Arshad, M.
      • Year: 2023
      • Citations: 1
    4. The Role of Phytochemicals in Cancer Prevention: A Review with Emphasis on Baicalein, Fisetin, and Biochanin A
      • Authors: Rais, J., Khan, H., Arshad, M.
      • Year: 2023
      • Citations: 2

Smaai RADI | Environmental Science | Best Researcher Award

Prof .Smaai RADI | Environmental Science | Best Researcher Award

Dean of the Faculty of Sciences, Faculty of Sciences Oujda, Morocco

Prof. Smaail Radi is a distinguished Moroccan academic, currently serving as the Dean of the Faculty of Sciences at Mohamed Premier University of Oujda. He holds a State Doctorate and a Ph.D. in chemistry and has published over 220 articles in top-tier international journals, earning him numerous awards, including the First Prize for Scientific Excellence at his university. Prof. Radi is also the Director of the Laboratory of Applied and Environmental Chemistry and has led various national and international research projects. He is recognized for his expertise, serving as an evaluator for institutions like the National Center for Scientific and Technical Research (CNRST) and Taibah University in Saudi Arabia. Beyond his contributions to chemistry, he has published works in Sufi studies and serves as a supervisor for numerous doctoral theses. His interdisciplinary approach and leadership make him a prominent figure in both scientific and educational communities.

 

Publication Profile👤

Current Position

Prof. Smaail Radi currently holds the position of Dean of the Faculty of Sciences at Mohamed Premier University in Oujda, Morocco, a role he has held since 2018. In addition, he is the Director of the Laboratory of Applied and Environmental Chemistry, overseeing significant research activities in the field. Prof. Radi serves as an expert for Morocco’s National Center for Scientific and Technical Research (CNRST) and chairs the Scientific Research Commission at Mohamed Premier University. His influence extends beyond his home institution as he acts as an advisor and expert evaluator for academic bodies such as Taibah University in Saudi Arabia and various international scientific journals. His academic career, which began in 1993, includes visiting professorships at prestigious institutions, including the Catholic University of Louvain in Belgium. Prof. Radi’s leadership, extensive research contributions, and expertise in chemistry have positioned him as a prominent figure in the Moroccan and international scientific communities.

 

Previous Experience

Prof. Smaail Radi has an extensive academic and administrative background spanning over three decades. He began his career as a professor at Mohamed Premier University of Oujda in 1993 and has since taken on multiple leadership roles. Currently, he serves as Dean of the Faculty of Sciences in Oujda and Director of the Laboratory of Applied and Environmental Chemistry. He has been responsible for numerous national and international scientific research projects and collaborations. His expertise is recognized beyond Morocco, having held visiting professorships at the Catholic University of Louvain in Belgium (2015-2022) and serving as an accredited expert at Taibah University in Saudi Arabia. Prof. Radi has also made significant contributions as a supervisor of theses, editor-in-chief of scientific journals, and an advisor to the chemical industry. His extensive management experience includes directing various academic councils, research commissions, and university accreditation evaluations, making him a key figure in academic and research leadership.

 

Educational Background

Prof. Smaail Radi has a robust and diverse educational background rooted in Morocco’s leading institutions. He earned his State Doctorate in Chemistry from Mohamed Premier University of Oujda in 1997, following his Doctorate from Cadi Ayyad University of Marrakech in 1993. His doctoral work laid the foundation for his extensive contributions to applied and environmental chemistry. Prior to this, Prof. Radi completed his Diploma of Advanced Studies (DEA) at Cadi Ayyad University in 1990, specializing in scientific research, after obtaining his Bachelor’s degree in 1989 from the same institution. His academic journey began with the Baccalaureate Diploma, which he achieved in 1985. This strong academic formation provided Prof. Radi with the critical skills and knowledge to pursue a career in both teaching and research, ultimately leading to his prestigious roles as a university professor, dean, and director of various scientific projects and laboratories.

 

Research Directions

Prof. Smaail Radi’s research is primarily focused on applied and environmental chemistry, with a strong emphasis on addressing contemporary challenges through scientific innovation. His work spans the development of novel materials and chemical processes aimed at environmental sustainability, such as waste treatment and pollution control. He is also deeply involved in the study of chemical interactions at the molecular level, which has implications for both industrial applications and academic research. Furthermore, Prof. Radi has explored interdisciplinary connections, including the intersection of chemistry with Sufi studies, demonstrating a unique approach to blending scientific inquiry with cultural and philosophical perspectives. His leadership in international scientific projects and his supervision of theses in collaboration with institutions like the Catholic University of Louvain highlight his commitment to advancing chemistry through collaboration and education. Prof. Radi’s research is characterized by both its practical applications in industry and its contributions to the academic understanding of complex chemical processes.

 

Professional Contributions

Prof. Smaail Radi has made significant contributions to the field of chemistry and academia, notably through his leadership as the Director of the Laboratory of Applied and Environmental Chemistry and as Dean of the Faculty of Sciences at Mohamed Premier University. He has published over 220 articles in leading Q1 international journals, cementing his reputation as a prolific researcher. His work extends beyond chemistry into interdisciplinary fields, including Sufi studies, reflecting his broad intellectual curiosity. Prof. Radi has received numerous prestigious awards, such as the First Prize for Scientific Excellence at Mohamed I University. He has served as an expert evaluator for multiple academic institutions and scientific journals, demonstrating his respected authority in scientific evaluation. In addition to his research, he has supervised numerous doctoral and master’s theses, contributing to the development of future scientists. His contributions extend internationally, with visiting professorships and collaborations across universities, further expanding his global scientific impact.

 

Conclusion

Prof. Smaail Radi is an outstanding candidate for the Best Researcher Award, with a remarkable record of over 220 international publications in top-tier scientific journals, extensive leadership in research projects, and a respected role as a professor and mentor. His contributions span both the natural sciences, particularly in chemistry, and interdisciplinary areas like Sufi studies, showcasing his diverse intellectual range. Prof. Radi’s numerous awards, such as the First Prize for Scientific Excellence, highlight the quality and impact of his work. His expertise is sought by prestigious institutions worldwide, reinforcing his standing as a leading figure in his field. While his research is highly esteemed in academic circles, expanding his public outreach and cross-disciplinary collaborations could further enhance his influence. Overall, Prof. Radi’s dedication, innovation, and leadership make him highly deserving of this prestigious recognition.

 

Publication Top Notes
    1. “Rapid and selective separation of heavy metal ions from aquatic medium using a bidentate functionalized hybrid material”
      • Authors: Oulmidi, A., Radi, S., Tighadouini, S., Rotaru, A., Garcia, Y.
      • Year: 2025
      • Citations: 0
    2. “Synthesis, structural characterizations, in vitro biological evaluation and computational investigations of pyrazole derivatives as potential antidiabetic and antioxidant agents”
      • Authors: Mortada, S., Karrouchi, K., Hamza, E.H., Masrar, A., Faouzi, M.E.A.
      • Year: 2024
      • Citations: 12
    3. “Progress in the modification of cellulose-based adsorbents for the removal of toxic heavy metal ions”
      • Authors: El Mahdaoui, A., Radi, S., Elidrissi, A., Neves, M.G.P.M.S., Moura, N.M.M.
      • Year: 2024
      • Citations: 0
    4. “Experimental and Computational Investigation of Novel Triazole-Pyrazole Derivative as a Synthetic Corrosion Inhibitor for M-Steel in 1.0M HCl”
      • Authors: Setti, N., Barrahi, A., Elyoussfi, A., Zarrouk, A., Dafali, A.
      • Year: 2024
      • Citations: 0
    5. “High Inhibition for a CoII Tetrazole Bi-pyrazole Dinuclear Complex against Fusarium Oxysporum f. sp. Albedinis”
      • Authors: Bahjou, Y., Radi, S., El Massaoudi, M., Wolff, M., Garcia, Y.
      • Year: 2024
      • Citations: 1
    6. “Synthesis, Crystal Structures, Genotoxicity, and Antifungal and Antibacterial Studies of Ni(II) and Cd(II) Pyrazole Amide Coordination Complexes”
      • Authors: El Mahdaoui, A., Radi, S., Draoui, Y., Robeyns, K., Garcia, Y.
      • Year: 2024
      • Citations: 1
    7. “Unexpected efficient one-pot synthesis, DFT calculations, and docking study of new 4-hydroxy-2H-chromen-2-one derivatives predicted to target SARS-CoV-2 spike protein”
      • Authors: Toubi, Y., Hakmaoui, Y., EL Ajlaoui, R., Lgaz, H., Hammouti, B.
      • Year: 2024
      • Citations: 3
    8. “New triazole-based coordination complexes as antitumor agents against triple negative breast cancer MDA-MB-468 cell line”
      • Authors: Draoui, Y., Radi, S., Bahjou, Y., Rotaru, A., Garcia, Y.
      • Year: 2023
      • Citations: 0
    9. “CuII Pyrazolyl-Benzimidazole Dinuclear Complexes with Remarkable Antioxidant Activity”
      • Authors: Chkirate, K., Ati, G.A., Karrouchi, K., Essassi, E.M., Garcia, Y.
      • Year: 2023
      • Citations: 2
    10. “Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances”
      • Authors: Draoui, Y., Radi, S., El Massaoudi, M., Robeyns, K., Garcia, Y.
      • Year: 2023
      • Citations: 6