Ahmad Bawagnih | Mechanical Engineering | Young Scientist Award

Mr. Ahmad Bawagnih | Mechanical Engineering | Young Scientist Award

King Fahd University of Petroleum & Minerals | Saudi Arabia

Mr. Ahmad Hatem Bawagnih is an emerging researcher in the field of mechanical and materials engineering, with a strong focus on advanced manufacturing processes, tribology, and finite element modeling (FEA). Currently pursuing his Master’s degree in Mechanical Engineering (Materials and Manufacturing) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, he has already made significant contributions through funded research projects, scholarly publications, and academic teaching. Ahmad’s expertise spans thermomechanical analysis, wear resistance, additive manufacturing, and corrosion studies, which are essential for advancing industrial applications in oil, gas, and materials science. His master’s thesis on tribological characterization of fiber-reinforced epoxy composites has direct industrial relevance, particularly in petroleum casing applications. Ahmad has collaborated with Saudi Aramco and the Deanship of Scientific Research at KFUPM, contributing to impactful projects such as non-metallic casing wear factor development and friction stir welding repair methods. His publications in high-quality journals and conference proceedings reflect his research depth and commitment to excellence. Alongside research, he contributes to academic growth as a Graduate Assistant, teaching courses in materials science and mechanical engineering labs. With a proven record of academic performance, industry experience, and technical expertise, Ahmad represents the new generation of researchers bridging academic knowledge with real-world applications.

Professional Profile

Scopus | ORCID | Google Scholar

Education

Mr. Ahmad Hatem Bawagnih’s educational journey demonstrates consistent academic excellence and specialization in mechanical engineering. He earned his Bachelor’s degree in Mechanical Engineering (Production and Machines) from Al-Balqaʼ Applied University, Jordan, graduating with a GPA of 3.56 and ranking 3rd in his class. His undergraduate project investigated the effect of welding current on the mechanical properties and microstructure of stainless steel, providing him with early exposure to metallurgical and materials research. Building on this strong foundation, Ahmad pursued his M.Sc. in Mechanical Engineering (Materials and Manufacturing) at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia, starting. KFUPM, ranked among the top 100 global universities, provided him with a highly competitive research environment. His graduate coursework includes advanced modules such as fracture of engineering materials, finite element analysis, mechanical properties of engineering polymers, and corrosion in petroleum systems. His thesis focuses on the tribological characterization of glass fiber–reinforced epoxy composites for oil well casing coatings, integrating both theoretical modeling and experimental validation. Additionally, he has completed research projects on friction stir welding, crack repair, and corrosion effects on mechanical properties, strengthening his expertise in simulation, testing, and material evaluation. This educational background forms a solid base for his ongoing research contributions.

Professional Experience

Mr. Ahmad Hatem Bawagnih combines academic teaching, research involvement, and industrial engineering practice, which enriches his professional profile. He has been serving as a Graduate Assistant at KFUPM, where he has contributed to teaching materials science, mechanical engineering workshops, and tribology labs. In this role, he has guided undergraduate students, supported laboratory experiments, and assisted in curriculum delivery, ensuring a balance between theory and practice. His earlier experience as a Mechanical Engineering Teacher under the Jordanian Ministry of Education enabled him to deliver complete courses in welding technology, metal forming, and mechanical drawing, as well as supervise student training workshops. Ahmad also worked as a Maintenance Engineer at Al Durra International for Food Industry, where he implemented maintenance schedules, modified production lines, and supervised the manufacturing of stainless-steel food tanks. This practical engineering experience provided him with insight into industrial problem-solving, process optimization, and team management. His diverse experiences across academia, research, and industry allow him to approach engineering challenges with both theoretical expertise and applied knowledge. These professional roles have not only shaped his technical and managerial abilities but also positioned him as a strong candidate for future leadership in engineering research and education.

Research Interests

Mr. Ahmad Hatem Bawagnih’s research interests lie at the intersection of materials engineering, advanced manufacturing, and mechanical testing, with a particular emphasis on tribology, corrosion, and structural integrity. He is deeply engaged in finite element modeling (FEA) for thermomechanical analysis of processes such as welding, friction stir processing, and additive manufacturing. His focus on tribological performance of coatings and composites is directly tied to industrial applications, especially in oil well casing protection where wear and corrosion resistance are crucial. Additionally, Ahmad is keen to explore additive manufacturing technologies and their integration into mechanical and materials engineering, targeting innovations that improve material properties, reduce costs, and enhance sustainability. His published research includes tribological characterization of epoxy composite coatings and surface crack repair in aluminum alloys using friction stir welding, both of which contribute to global advancements in manufacturing technologies. Ahmad also has a growing interest in corrosion testing, mechanical behavior under environmental stress, and the design of wear-resistant materials. Looking ahead, he intends to expand his research into smart materials and advanced composites, bridging fundamental studies with industrial challenges. This evolving interest ensures his work remains relevant and impactful in both academic and applied engineering contexts.

Research Skills

Mr. Ahmad Hatem Bawagnih has developed a comprehensive set of research and technical skills that enhance his ability to contribute effectively to mechanical and materials engineering. His core expertise lies in finite element analysis (FEA) using ANSYS, ABAQUS, and 3D Flow, where he has modeled fracture toughness, thermomechanical stresses, and corrosion effects on materials. He possesses advanced proficiency in 3D modeling and assembly using SolidWorks, enabling him to design components and simulate real-world engineering scenarios. Ahmad is also experienced in tribological testing, corrosion evaluation (ASTM G48 methods), and mechanical property assessments under various environmental conditions. His academic training has equipped him with strong skills in simulation, experimental testing, data interpretation, and academic writing. He has contributed to high-quality publications in journals such as Polymers and Journal of Advanced Joining Processes, as well as conference proceedings published by Springer. Beyond technical expertise, Ahmad is skilled in teaching laboratory-based courses, mentoring students, and assisting with research experiments, which strengthens his academic leadership profile. His exposure to collaborative, interdisciplinary, and industry-funded projects reflects his adaptability and teamwork skills. Collectively, these competencies highlight his ability to tackle complex engineering problems, produce publishable research, and transfer knowledge effectively within academia and industry.

Awards & Honors

Mr. Ahmad Hatem Bawagnih has consistently demonstrated academic excellence and merit, earning recognition through fully funded scholarships during both his undergraduate and graduate studies. His academic achievements at Al-Balqaʼ Applied University placed him among the top-performing students, graduating with a high GPA and ranking 3rd in his class. His performance earned him a competitive scholarship to continue his M.Sc. at KFUPM, one of the region’s most prestigious universities. In addition to scholarships, Ahmad’s contributions to the field are recognized through peer-reviewed journal articles and conference presentations, which serve as professional accolades of his research excellence. His publications in Polymers and Journal of Advanced Joining Processes, along with contributions to Springer’s TMS conference series, highlight his growing recognition in the global research community. Professionally, his ability to secure roles as a Graduate Assistant and Mechanical Engineering Teacher reflects trust in his academic competence and teaching skills. These honors and achievements underscore his dedication to both research and education. They also emphasize his potential to become a future leader in engineering research. His combination of awards, research output, and teaching accomplishments positions him as a well-rounded candidate for international recognition.

Publication Top Notes

  • Temperature and Stresses in AA 6082-T6 Friction Stir Spot Welding (FSSW) Using Coupled Eulerian–Lagrangian Finite Element Method — 2025 — 1 citation

  • Tribological Characterization of an Epoxy Composite Coating for Enhanced Wear Resistance in Oil Well Casing Applications — 2025

  • Surface Cracks Repair in AA6061-T6 Aluminum Alloys Using Friction Stir Processing — 2025

  • Influence of Friction Stir Welding on the Corrosion Resistance of Al6061 — 2025

  • A Novel Approach to Friction Stir Welding (FSW): Repairing Cracks in AA6061-T6 Aluminium Alloy Using Aluminium Filler Rod and SiC Nanoparticles — 2025

  • in AA6061-T6 Aluminium Alloy Using (Friction Stir Welding and Processing XIII) — 2025

Conclusion

In conclusion, Mr. Ahmad Hatem Bawagnih is a dynamic researcher and engineer whose academic, professional, and research journey reflects both dedication and innovation. His educational path from Jordan to Saudi Arabia demonstrates resilience and ambition, while his active contributions in tribology, finite element modeling, and materials characterization showcase his ability to address critical challenges in engineering. Through his publications, funded projects with Saudi Aramco, and teaching at KFUPM, he has already made a mark on the global research landscape. Ahmad’s technical expertise, academic leadership, and industry experience distinguish him as more than just a student researcher—he is a promising scholar positioned to influence both academia and industry. His future plans to explore additive manufacturing and advanced composite materials signal his forward-thinking approach to engineering challenges. Recognized with scholarships, publications, and teaching roles, he embodies the qualities of a dedicated researcher deserving of recognition through awards such as the Best Researcher Award. With continued focus on expanding collaborations and publishing in high-impact journals, Ahmad is well-positioned to become a global leader in mechanical and materials engineering research, driving innovation and contributing meaningfully to scientific and industrial advancements.

Xiaoqing Tian | Engineering | Best Researcher Award

Assoc. Prof. Dr. Xiaoqing Tian | Engineering | Best Researcher Award

Hangzhou Dianzi University | China

Dr. Xiaoqing Tian is an accomplished academic and researcher currently serving as an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China. With a strong foundation in hydrodynamics and its applications, she has made significant contributions to the development of underwater vehicles, propeller systems, and marine engineering innovations. Her educational background combines rigorous training in fluid machinery, mechanical engineering, and international research exposure, enabling her to integrate theoretical knowledge with practical technological advancements. Dr. Tian’s research excellence is evidenced by her extensive portfolio of patents, including more than ten granted patents such as a U.S. and Luxembourg patent, along with over twenty high-quality publications in peer-reviewed journals. Her work emphasizes hydrodynamic optimization, underwater robotics, and environmental applications, fostering solutions that bridge engineering challenges with sustainable maritime practices. Beyond her academic achievements, she has been recognized as a Zhejiang Province Overseas High-level Talent, a D-type Talent of Zhejiang Province, and a Qiantang Scholar of Hangzhou, reflecting her influence and leadership in her field. With a career that blends innovation, teaching, and applied research, Dr. Tian stands as a leading figure in advancing the boundaries of marine and mechanical engineering technologies.D

Professional Profile

Scopus Profile | ORCID Profile

Education

Dr. Xiaoqing Tian’s academic journey reflects a progressive and multidisciplinary approach to engineering, combining mechanical, electrical, and hydrodynamic expertise. She began her studies with a Bachelor’s degree in Mechanical & Electrical Engineering from the Henan Institute of Science and Technology, China. where she developed a foundational understanding of integrated engineering systems. Building on this, she earned a Master’s degree in Fluid Machinery and Engineering from the College of Mechanical Engineering at Hangzhou Dianzi University, China. focusing on fluid dynamics and mechanical system design. Her doctoral studies at the College of Water Conservancy and Hydropower Engineering, Hohai University, China. centered on advanced topics in fluid machinery and engineering, deepening her expertise in hydrodynamic modeling and marine applications. Notably, between, she conducted international research at the University of Helsinki, Finland, specializing in hydrodynamics and its environmental applications. This overseas experience broadened her perspective, allowing her to collaborate with global experts and explore the cross-disciplinary impacts of fluid mechanics on environmental science. Collectively, her academic background equips her with the technical knowledge, analytical skills, and global outlook necessary to address complex engineering challenges in both theoretical and applied contexts.

Professional Experience

Dr. Xiaoqing Tian has built an impressive professional career that blends teaching, research, and innovation in marine and mechanical engineering. Since December, she has served as a Lecturer and later an Associate Professor at the School of Mechanical Engineering, Hangzhou Dianzi University, China, where she teaches core engineering subjects, supervises graduate students, and leads research projects in hydrodynamics and underwater vehicle design. Her role involves both academic instruction and the development of innovative technologies aimed at solving practical engineering problems. she expanded her research portfolio through a postdoctoral position at the Ocean College, Zhejiang University, China, where she worked on advanced projects involving underwater robotics, propulsion systems, and hydrodynamic performance optimization. she undertook international research at the Department of Environmental Sciences, University of Helsinki, Finland, focusing on hydrodynamics applications in environmental and water systems. This combination of domestic and international experience has enabled her to cultivate a global research network, collaborate on interdisciplinary projects, and translate academic research into real-world engineering solutions. Her professional trajectory reflects a dedication to advancing knowledge while fostering innovation in marine engineering technology.

Research Interests

Dr. Xiaoqing Tian’s research interests span a wide range of topics in hydrodynamics, marine engineering, and mechanical design, with a strong emphasis on practical applications in underwater technologies. Her primary focus lies in the optimization of hydrodynamic performance for underwater vehicles and propulsion systems, including autonomous underwater vehicles (AUVs) and towed bodies. She is particularly interested in the integration of computational fluid dynamics (CFD) simulations with experimental testing to enhance propulsion efficiency, stability, and maneuverability. Her work also explores the development of novel propeller designs and hydrophobic coatings to improve performance in marine environments. Beyond vehicle propulsion, Dr. Tian investigates underwater sensing systems, such as magnetometer-equipped towed bodies, to support oceanographic surveys and environmental monitoring. She is also engaged in research on water quality improvement technologies, including artificially induced downwelling aeration systems. Her interdisciplinary approach allows her to bridge mechanical engineering principles with environmental science applications, ensuring that her innovations contribute to both technological advancement and sustainable marine resource management. By combining numerical modeling, prototype development, and field testing, Dr. Tian addresses real-world maritime challenges while advancing the scientific understanding of hydrodynamic systems.

Research Skills

Dr. Xiaoqing Tian possesses a robust set of research skills that enable her to conduct high-quality and impactful studies in marine and mechanical engineering. Her expertise includes hydrodynamic modeling, propeller performance analysis, and underwater vehicle design, supported by advanced use of computational fluid dynamics (CFD) tools. She has strong capabilities in designing and optimizing propulsion systems, integrating novel features such as hydrophobic coatings and guide flow devices to enhance efficiency. Dr. Tian is experienced in the development and testing of underwater towed bodies, including those equipped with environmental sensing devices like magnetometers. Her skills extend to mechanical system prototyping, laboratory experimentation, and large-scale field trials, ensuring that her work bridges theoretical models with real-world performance. In addition to technical competencies, she is proficient in patent development, having secured more than ten patents, including international ones, as the first inventor. Her research methodology combines creativity, precision, and multidisciplinary collaboration, enabling her to work across engineering, oceanography, and environmental science domains. Furthermore, her ability to manage complex projects, lead research teams, and publish extensively in high-impact journals underscores her effectiveness as both a scientist and innovator in her field.

Awards and Honors

Dr. Xiaoqing Tian’s contributions to marine and mechanical engineering have been recognized through several prestigious awards and honors, reflecting her status as a leading expert in her field. She has been named a Zhejiang Province Overseas High-level Talent, a designation awarded to individuals who have made significant contributions to scientific and technological innovation while fostering international collaboration. Additionally, she has been recognized as a D-type Talent of Zhejiang Province, highlighting her role in advancing regional research and innovation capacity. Her designation as a Qiantang Scholar of Hangzhou further underscores her academic excellence, leadership, and contributions to the local and national engineering community. These honors not only acknowledge her individual achievements but also her commitment to mentoring young researchers, driving technological progress, and addressing real-world engineering challenges. They also serve as a testament to her ability to integrate high-level research with societal impact, aligning her professional work with broader goals in innovation, sustainability, and economic development. Collectively, these awards solidify Dr. Tian’s reputation as a respected scholar, inventor, and leader within the global marine engineering research community.

Publication Top Notes

1. Calibration-free optical wave guide bending sensor for soft robots, 2025
2. Study on the hydrodynamic characteristics of an outboard engine propeller with hydrophobic coating, 2025
3. Laboratory Investigations on Parametric Configurations of Artificially Down welling Aerations in Stratified Water, 2023
4. Study on the Resistance of a Large Pure Car Truck Carrier with Bulbous Bow and Transom Stern, 2023
5. Numerical verification for a new type of UV disinfection reactor, 2020

Conclusion

In conclusion, Dr. Xiaoqing Tian embodies the qualities of an accomplished researcher, innovative engineer, and dedicated academic. Her career reflects a deliberate and consistent pursuit of excellence across multiple dimensions — from education and professional development to research innovation and community engagement. With an extensive academic background in fluid machinery, mechanical engineering, and hydrodynamics, complemented by valuable international research experience, she has developed a skill set that is both technically advanced and globally informed. Her work on underwater vehicle systems, propeller optimization, and environmental hydrodynamics demonstrates a unique ability to merge scientific insight with practical engineering solutions. The numerous patents and peer-reviewed publications she has produced serve as evidence of her commitment to technological advancement, while her awards and honors confirm her leadership in the field. Beyond her technical achievements, Dr. Tian contributes to the growth of future engineers through teaching, mentorship, and research collaboration. Looking ahead, she remains committed to expanding the frontiers of marine engineering research, promoting sustainable innovation, and making meaningful contributions to both the academic community and society at large. Her professional journey serves as an inspiring model for aspiring scientists and engineers worldwide.

Shaofeng Zheng | Engineering | Best Researcher Award

Mr. Shaofeng Zheng | Engineering | Best Researcher Award

Zheng Shaofeng is a seasoned Senior Engineer and currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center. With a longstanding dedication to the inspection and testing of import and export commodities, he has earned recognition for his technical expertise and leadership in national and international standardization. He is a registered expert and committee member in various prominent technical groups, including the Standardization Technical Committee for Fire Tests of Electrical and Electronic Products (SAC/TC 300), IEC/TC 89, and ISO TR 8124-9:2018. Zheng has actively contributed to the development and revision of 14 national standards, reflecting his deep influence on regulatory practices in China. His research efforts are highly interdisciplinary, spanning battery lifecycle traceability, environmental safety, and commodity quality evaluation. Over the years, he has published more than 20 academic papers in SCI, EI-indexed journals, and core Chinese journals, further establishing his academic presence. Zheng also holds over 10 patents and has received several prestigious awards recognizing his contributions to scientific advancement and technological innovation. He is a vital figure in connecting scientific inquiry with real-world application, particularly in energy storage systems, trade regulations, and product safety.

Professional Profile

Education

While specific institutional affiliations are not detailed, Zheng Shaofeng’s educational background is evidently rooted in a strong foundation in engineering and applied sciences. His advanced knowledge and professional roles suggest that he has undergone formal academic training in materials science, chemical engineering, environmental technology, or a closely related field. The technical nature of his research and his ability to lead high-level scientific projects imply both undergraduate and postgraduate education, likely supplemented with ongoing professional development. His qualifications are further validated by his active participation in national standardization committees and involvement in high-level research and policy formulation projects. Moreover, his standing as a senior engineer and technical expert in various regulatory and technological domains shows a continued commitment to learning and applying new knowledge in dynamic and complex environments. Though the exact degrees and institutions remain unspecified, Zheng’s career achievements and affiliations with multiple scientific and governmental bodies reflect his strong academic grounding and ability to translate education into impactful practice.

Professional Experience

Zheng Shaofeng currently serves as the Technical Head of the Laboratory at the Huangpu Customs Technology Center, where he has played a central role in the development and implementation of inspection protocols for import and export commodities. With extensive experience in applied laboratory science, regulatory compliance, and technical assessment, he is responsible for managing large-scale testing procedures that align with national and international standards. His professional experience also includes significant participation in governmental science and technology evaluations as an expert for the Guangdong Province Department of Science and Technology and as a technical trade expert for the WTO/TBT Notification and Research Center. Zheng’s leadership spans collaborative, interdisciplinary projects on battery lifecycle traceability, carbon footprint analysis, and product safety evaluation. His input in these areas helps shape national policy and contributes to global standards. His role involves hands-on testing, risk assessment, standardization, and training of personnel, making him both a technical and administrative leader in his organization. By bridging the gap between research and regulation, he ensures that emerging technologies and products entering Chinese markets comply with the highest safety and environmental standards.

Research Interests

Zheng Shaofeng’s research interests lie at the intersection of environmental technology, energy systems, regulatory science, and materials testing. He focuses particularly on risk monitoring, traceability, and lifecycle assessment of energy storage systems, especially imported and exported new energy vehicle power batteries. His work aligns with global sustainability goals, as it emphasizes full lifecycle carbon footprint analysis and the residual value assessment of second-life batteries. He is also deeply involved in safety testing protocols and fire hazard assessments for electronic and electrical commodities. Zheng’s involvement in international technical committees such as IEC/TC 89 and ISO TR 8124-9:2018 reflects a strong interest in standardization and global regulatory harmonization. His interdisciplinary research contributes not only to scientific innovation but also to public safety, international trade policies, and environmental protection. Through his work, Zheng is addressing some of the most pressing challenges in product safety and green technology—ensuring safe, traceable, and sustainable product development and deployment. His focus on real-world applicability gives his research a strategic relevance that extends beyond academia into the realms of industry and policy.

Research Skills

Zheng Shaofeng brings a rich array of technical and analytical skills to his research endeavors. He is proficient in advanced laboratory testing methods for electronic and electrical products, with a particular emphasis on fire hazard assessments and quality inspection protocols. His research methodology incorporates lifecycle analysis, carbon footprint modeling, and residual value assessment—tools that are critical for evaluating the sustainability and safety of new energy vehicle batteries. He has extensive experience in managing complex research projects at provincial and ministerial levels, demonstrating his capabilities in project design, data interpretation, and results dissemination. Zheng’s skills also extend to technical writing, as evidenced by his publication record in high-impact journals and his role in developing national standards. Furthermore, his patent portfolio highlights his ability to innovate and solve real-world technical problems. In regulatory science, he has a deep understanding of WTO/TBT compliance, international standardization frameworks, and risk-based monitoring approaches. His combined laboratory expertise, policy knowledge, and interdisciplinary communication skills position him as a multifaceted researcher who seamlessly integrates technical proficiency with practical application.

Awards and Honors

Zheng Shaofeng has received multiple awards and honors recognizing his significant contributions to scientific research and technological development. His projects have been honored with the Third Prize of the Science and Technology Award by the China General Chamber of Commerce, the Third Prize of the Science and Technology Progress Award by the China Federation of Logistics & Purchasing, and commendations from the Guangdong Quality Development Promotion Association and the Guangdong Measurement, Control & Instrumentation Society. These accolades reflect the impactful nature of his work in commodity inspection, safety evaluation, and battery lifecycle analysis. Additionally, his contributions to the development and revision of 14 national standards have earned him respect and authority in China’s regulatory ecosystem. His membership in prestigious technical committees and expert groups—including IEC/TC 89 and SAC/TC 300—further illustrates the national and international recognition of his expertise. The combination of awards and leadership roles underlines his reputation as a leading expert in environmental testing and regulatory compliance, emphasizing both his technical contributions and his strategic influence in shaping policy and standards.

Conclusion

In conclusion, Zheng Shaofeng exemplifies the qualities of a leading researcher whose work bridges scientific innovation, regulatory compliance, and public safety. Through his leadership in laboratory testing, participation in national and international standardization efforts, and direction of cutting-edge projects on battery traceability and carbon monitoring, he has significantly contributed to the field of environmental technology and product safety. His technical acumen is matched by his strategic foresight, making his research not only relevant but also transformative in its application. With more than 20 research publications, 10+ patents, and multiple national awards, Zheng’s achievements reflect a sustained commitment to excellence, innovation, and service. He stands out as a role model for integrating scientific rigor with real-world impact. While there is room for deeper international collaboration and broader global publication presence, Zheng’s current trajectory positions him strongly within both national and international research communities. His multifaceted expertise and proven results make him a highly deserving candidate for the Best Researcher Award, and his continued work will undoubtedly yield further advancements in science, technology, and policy.

Publications Top Notes

  1. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis
  2. Authors: Wang, Bin Zheng, Shaofeng Gan, Jiulin Yang, Zhongmin Song, Wuyuan
  3. Journal: Guang Pu Xue Yu Guang Pu Fen Xi (Spectroscopy and Spectral Analysis)
  4. Publication Year: 2023

Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Assist. Prof. Dr. Mehdi Chemseddine FARAH | Engineering | Best Researcher Award

Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbes, Algeria

Dr. FARAH Mehdi Chemseddine is a Lecturer Class B at the Telecommunications and Digital Signal Processing Laboratory, Djillali Liabes University, Sidi Bel Abbès, Algeria. He specializes in the design and optimization of microwave circuits, with a focus on microstrip technology. His research encompasses the development of compact and efficient microwave components such as hybrid couplers, power dividers, low-pass filters, and diplexers. Dr. Chemseddine has authored several publications in reputable journals, including the Journal of Circuits, Systems and Computers and Telecommunications and Radio Engineering. His work is characterized by innovative approaches to improving electrical performance, selectivity, and reducing the footprint of microwave devices. He has also participated in international conferences, presenting his research findings to the global scientific community. Dr. Chemseddine’s contributions to the field of telecommunications engineering demonstrate his commitment to advancing microwave circuit design and his potential as a leading researcher in this domain.

Professional Profile

Education

Dr. Chemseddine’s academic journey began with a Bachelor’s degree in Exact Sciences in 2008. He then pursued a License in Electrical Engineering, specializing in Communication Networks, which he completed in 2014. In 2016, he obtained a Master’s degree in High-Frequency Communication Systems from Djillali Liabes University. His academic pursuits culminated in earning a Ph.D. in Telecommunication Systems from the same university in 2022. Throughout his educational career, Dr. Chemseddine has demonstrated a strong foundation in electrical and communication engineering principles, which has been instrumental in his research endeavors. His academic background has equipped him with the necessary skills and knowledge to contribute significantly to the field of microwave circuit design.

Professional Experience

Dr. Chemseddine began his professional career as a Maître-Assistant Class B at the Faculty of Electrical Engineering, Department of Telecommunications, Djillali Liabes University, in 2023. In 2024, he was promoted to Maître-Conférence Class B at the same institution. His responsibilities include teaching undergraduate and graduate courses, supervising student research projects, and conducting his own research in microwave circuit design. Dr. Chemseddine has also completed internships, including one at the Hubert Curien Laboratory in Saint-Étienne, France, where he designed and implemented a microwave low-pass filter using planar technology. His professional experience reflects a commitment to both education and research in telecommunications engineering.

Research Interests

Dr. Chemseddine’s research interests are centered on the design and optimization of microwave circuits, particularly using microstrip technology. He focuses on developing compact, efficient, and cost-effective components such as hybrid couplers, power dividers, low-pass filters, and diplexers. His work aims to address challenges in electrical performance, selectivity, and device miniaturization. Dr. Chemseddine employs advanced simulation tools like HFSS and ADS to model and analyze microwave components, ensuring their practical applicability in telecommunications systems. His research contributes to the advancement of microwave engineering by providing innovative solutions for modern communication systems.

Research Skills

Dr. Chemseddine possesses a robust set of research skills in microwave circuit design and telecommunications engineering. He is proficient in using simulation and design tools such as HFSS (High-Frequency Structure Simulator), ADS (Advanced Design System), and MATLAB for modeling and analyzing microwave components. His expertise includes designing microstrip-based devices, optimizing their performance parameters, and validating their functionality through simulations and experimental measurements. Dr. Chemseddine’s skills enable him to develop innovative solutions that meet the demands of modern communication systems, emphasizing efficiency, compactness, and cost-effectiveness. His technical competencies are integral to his contributions to the field of microwave engineering.

Awards and Honors

While specific awards and honors are not detailed in the provided information, Dr. Chemseddine’s selection as a nominee for the Best Researcher Award at the International Research Awards on Science, Health, and Engineering underscores his recognition in the scientific community. His publications in reputable journals and presentations at international conferences further attest to his contributions and standing in the field of telecommunications engineering. These accomplishments reflect his dedication to research excellence and his potential for future accolades in his area of expertise.

Conclusion

Dr. FARAH Mehdi Chemseddine is an emerging researcher in the field of microwave circuit design and telecommunications engineering. His academic background, professional experience, and focused research interests have led to significant contributions in developing compact and efficient microwave components. Through his publications and conference presentations, he has demonstrated a commitment to advancing the field and addressing practical challenges in communication systems. Dr. Chemseddine’s proficiency in simulation tools and design methodologies positions him as a valuable contributor to both academic and industry-related projects. His nomination for the Best Researcher Award highlights his potential and the impact of his work in the scientific community.

Publications Top Notes

  1. Title: A Design of a Compact Microwave Diplexer in Microstrip Technology Based on Bandpass Filters Using Stepped Impedance Resonator
    Authors: M.C. Farah, F. Salah-Belkhodja, K. Khelil
    Journal: Journal of Microwaves, Optoelectronics and Electromagnetic Applications
    Year: 2022
    Citations: 6

  2. Title: A Novel Design of a Wilkinson Power Divider Based on the Circular-Shape Resonator
    Authors: R. El Bouslemti, C.M. Farah
    Journal: Frequenz, Vol. 78 (11-12), pp. 621–631
    Year: 2024
    Citations: 3

  3. Title: A Design of Microstrip Low-pass Filter Using Ground-Plane Coplanar Waveguide (GCPW)
    Authors: F.M. Chemseddine, E. Rahmouna, V. Didier
    Journal: Telecommunications and Radio Engineering
    Year: 2024
    Citations: 1

  4. Title: Design of Wilkinson Power Divider for Mobile and WLAN Applications
    Authors: M.C. Farah, F. Salah-Belkhodja
    Source: Proceedings of the International Conference for Pioneering and Innovative Technologies
    Year: 2023
    Citations: 1

  5. Title: A Design of Microstrip 180 Degree Hybrid Coupler Using T-Shape Structure for Monopulse Radar
    Authors: F.M. Chemseddine, S.B. Faouzi, F.Y. Hadj Aissa
    Journal: Journal of Circuits, Systems and Computers
    Year: 2025

  6. Title: Exploring Corrosion Behavior in Different Environments Using a Passive Microstrip Sensor
    Authors: R. El Bouslemti, M.C. Farah
    Journal: Communication Science et Technologie, Vol. 22 (1), pp. 7–17
    Year: 2024

  7. Title: Conception d’un Coupleur Microondes à Branches en Technologie Microstrip
    Authors: M.C. Farah, F. Salah-Belkhodja, Z. Kaldoune, A. Cheikh
    Journal: Communication Science et Technologie, Vol. 21 (1), pp. 13–33
    Year: 2023

  8. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: F.M. Chemseddine
    Year: 2022

  9. Title: Conception en Technologie Microstrip d’un Diplexeur Microondes Basé sur des Filtres à Saut d’Impédance
    Authors: M.C. Farah, F. Salah-Belkhodja
    Year: 2022

Bashar Ibrahim | Engineering | Innovative Research Award

Mr. Bashar Ibrahim | Engineering | Innovative Research Award

Project Engineer from Fraunhofer Institute for Non-Destructive Testing, Germany

Bashar Ibrahim is a skilled engineering professional specializing in materials science, non-destructive testing (NDT), and sensor systems development. Currently employed as a Project Engineer at Fraunhofer IZFP in Saarbrücken, he plays a central role in coordinating and executing applied research projects. His expertise lies in designing and implementing advanced sensor modules, analyzing material structures, and utilizing simulation tools such as FEM to evaluate electromagnetic measurement techniques. With a strong interdisciplinary background, Mr. Ibrahim is capable of integrating mechanical design with data processing to optimize research outcomes. His contributions include the construction of test components using additive manufacturing and the supervision of student assistants in laboratory settings. Fluent in Arabic, German, and English, he brings strong multicultural communication skills to collaborative environments. His academic training, combined with practical industry experience, demonstrates his ability to bridge theoretical knowledge with hands-on technical application. While his profile is currently oriented towards application-focused research, he has potential for further academic impact through publications and knowledge dissemination. Mr. Ibrahim’s work reflects strong potential for innovation, and with greater emphasis on scholarly outputs, he could emerge as a leading contributor in his field. He is a capable, dedicated, and technically sound professional with emerging research strengths.

Professional Profile

Education

Bashar Ibrahim holds a Master of Science degree in Materials Science and Engineering with a specialization in materials technology from the University of Saarland, Germany, completed between 2019 and 2022. His academic focus during the master’s program equipped him with knowledge in advanced materials characterization, mechanical behavior of materials, and data evaluation techniques. Prior to this, he earned a Bachelor of Engineering degree in Mechanical Engineering with a concentration in design and production from Al-Baath University in Homs, Syria (2005–2010). This foundational education emphasized core mechanical engineering principles, including machine design, thermodynamics, and fluid mechanics. Mr. Ibrahim has also pursued professional development through specialized training, such as a fundamentals course in non-destructive testing (BC 3 Q M1) at DGZFP Berlin in 2022. Additionally, he gained hands-on industrial training during his time at Wipotec GmbH in Kaiserslautern, where he worked on 2D and 3D modeling and technical drawing creation. His education is complemented by his earlier self-employed work as a CAD instructor, where he taught software such as Mechanical Desktop, AutoCAD, and SolidWorks. This comprehensive educational background has laid a strong technical and analytical foundation, allowing him to contribute meaningfully to complex, interdisciplinary research projects.

Professional Experience

Bashar Ibrahim’s professional career is anchored in his current role as a Project Engineer at Fraunhofer IZFP in Saarbrücken, Germany, a position he has held since 2022. Here, he leads and coordinates multiple research initiatives, particularly in the areas of sensor technology, data visualization, and non-destructive material testing. His responsibilities include designing test structures via additive manufacturing, developing sensor systems, and performing FEM simulations to optimize electromagnetic testing methods. From 2020 to 2022, he served as a Research Assistant at the same institution, where he contributed to the development of a deflection measurement system for urban cable monitoring and participated in various simulation-based research tasks. His earlier experience includes technical support roles such as at Kern GmbH, where he handled large-format digital printing and material processing, and at Wipotec GmbH, where he worked in the design department focusing on 3D modeling and technical drawing. In addition, from 2010 to 2016, he worked independently as a private CAD instructor in Salamieh, Syria, where he trained professionals and students in mechanical design and simulation software. Mr. Ibrahim’s career trajectory demonstrates consistent growth in technical and research competencies, with increasing responsibility and a clear transition into applied research within a leading European research institution.

Research Interests

Bashar Ibrahim’s research interests are centered on advanced non-destructive testing (NDT) methods, sensor integration, additive manufacturing, and material characterization. His focus lies in the development and application of electromagnetic and vibrational testing systems to evaluate material structures and properties without causing damage. Ibrahim is particularly interested in the design and optimization of multi-module sensor systems for data acquisition and analysis in industrial and research environments. Additionally, he engages in the use of simulation software to model physical phenomena, with an emphasis on the finite element method (FEM) to study electromagnetic responses in materials. He also explores the application of additive manufacturing techniques to produce customized test samples and components for laboratory testing. His interdisciplinary interests span mechanical design, materials engineering, data processing, and digital fabrication, placing him at the convergence of hardware development and computational analysis. He is also drawn to the automation of testing systems and real-time data interpretation, reflecting a strong inclination toward smart manufacturing and Industry 4.0 concepts. Through these interests, Mr. Ibrahim aims to contribute to innovations that improve testing efficiency, accuracy, and integration into broader industrial applications. His research is inherently practical, with a clear orientation toward solving real-world engineering problems.

Research Skills

Bashar Ibrahim brings a diverse and robust set of research skills, making him well-equipped for multidisciplinary engineering projects. His core competencies include non-destructive testing techniques, particularly in the application of electromagnetic methods for assessing material properties. He is adept at conducting FEM simulations using tools such as Comsol and Ansys to model and analyze physical interactions within materials. His programming and data analysis skills in Python, Matlab, and Octave allow him to process complex datasets and visualize results effectively. Mr. Ibrahim has practical experience with sensor system design, including the integration and calibration of multiple measurement modules for real-time data collection. He is also proficient in mechanical design and modeling, using CAD platforms like SolidWorks, AutoCAD, and Mechanical Desktop. His background in additive manufacturing supports the fabrication of experimental setups and prototype components for research testing. Furthermore, he has experience in mentoring and guiding student assistants, indicating his capability in team collaboration and technical training. His ability to bridge computational analysis with physical experimentation is a significant strength, allowing him to contribute both theoretically and practically. These skills collectively empower him to work effectively in experimental research, data-driven engineering, and innovation-driven projects.

Awards and Honors

While there is currently no formal documentation of major awards or honors in Bashar Ibrahim’s profile, his ongoing work at Fraunhofer IZFP—a renowned research institution—demonstrates a level of trust and recognition in his professional capabilities. Being employed in a project engineering capacity at such a prestigious institute suggests that he has consistently met high standards of technical and research performance. His selection for participation in specialized training programs, such as the DGZFP course on non-destructive testing, further reflects his commitment to professional development and his potential for recognition in the future. Additionally, his earlier role as an independent CAD instructor and his involvement in supervising student assistants imply acknowledgment of his subject matter expertise and leadership potential. Although formal awards are not currently listed, Mr. Ibrahim’s work ethic, multidisciplinary skills, and contributions to applied research projects position him well for future accolades, especially if he continues to increase his scholarly output through publications, conference participation, or patents. With continued growth in academic visibility and project leadership, he is likely to gain formal honors that reflect his ongoing innovation in materials science and sensor-based technologies.

Conclusion

Bashar Ibrahim is a technically competent and professionally driven researcher with a strong foundation in mechanical engineering, materials science, and non-destructive testing. His current role at Fraunhofer IZFP places him at the forefront of applied research in sensor systems, FEM-based simulations, and data-driven material analysis. His practical experience is complemented by a strong academic background and continuous professional development, including specialized training and mentorship roles. While his contributions are primarily focused on application-oriented research, his skills, initiative, and interdisciplinary approach make him a promising candidate for innovation-driven recognition. To fully meet the criteria of an Innovative Research Award, further emphasis on academic dissemination—through publications, patents, or technical conferences—would strengthen his profile. Nonetheless, Mr. Ibrahim has already demonstrated the capacity to contribute meaningfully to the field and to solve complex engineering challenges. With a growing track record and potential for increased scholarly output, he stands out as a candidate with emerging research excellence and innovation potential. His career path reflects both competence and ambition, making him a strong contender for future research-based honors and awards.

Publication Top Notes

  1. Title: Complete CASSE acceleration data measured upon landing of Philae on comet 67P at Agilkia
    Authors: Arnold, Walter K.; Becker, Michael M.; Fischer, Hans Herbert; Knapmeyer, Martin; Krüger, Harald
    Journal: Acta Astronautica
    Year: 2025

Mingjie Pu | Solid Mechanics | Best Researcher Award

Dr. Mingjie Pu | Solid Mechanics | Best Researcher Award

School of Mechanical Engineering and Rail Transit from Changzhou University, China

Dr. Mingjie Pu is an accomplished lecturer at the School of Mechanical Engineering and Rail Transit, Changzhou University, China. He received his Ph.D. in Solid Mechanics from Nanjing University of Aeronautics and Astronautics (NUAA), where his research focused on the intricate relationship between mechanical deformation and electrocatalytic performance in low-dimensional materials. Dr. Pu has made significant strides in the field of mechano-electro-chemical coupling, a multidisciplinary area combining principles from mechanics, physics, and chemistry. His investigations emphasize how surface and interface engineering can modulate electrochemical activities, contributing to improved hydrogen evolution (HER), oxygen evolution (OER), and carbon dioxide reduction (CO₂RR) reactions. With an impressive portfolio of publications in top-tier journals like Advanced Materials and ACS Applied Materials & Interfaces, he is emerging as a notable researcher in the field of energy materials. His commitment to scientific innovation is recognized through multiple national and institutional awards. While he is in the early stages of his academic career, Dr. Pu exhibits strong potential for leadership in interdisciplinary research. His work not only advances fundamental understanding but also lays the groundwork for next-generation sustainable energy technologies. This makes him a compelling candidate for honors such as the Best Researcher Award.

Professional Profile

Education

Dr. Mingjie Pu has built a strong educational foundation that reflects both depth and progression in the field of mechanical and materials engineering. He earned his Ph.D. in Solid Mechanics from the prestigious Nanjing University of Aeronautics and Astronautics (NUAA) between September 2019 and October 2023. His doctoral studies were conducted at the Institute of Nano Science under the mentorship of Prof. Yufeng Guo, focusing on mechano-electro-chemical phenomena in low-dimensional materials. Prior to his Ph.D., Dr. Pu completed his Master of Science in Power Engineering at Nanjing Tech University in June 2019. Under the supervision of Prof. Jianqiu Zhou, his master’s research dealt with the mechanical behavior and deformation mechanisms of nanocrystalline alloys. His academic journey began at Changzhou University Huaide College, where he obtained a Bachelor of Engineering degree in Process Equipment and Control Engineering in June 2016. This undergraduate experience laid the groundwork for his future academic endeavors, equipping him with fundamental skills in mechanical systems and materials science. Throughout his academic career, Dr. Pu has consistently demonstrated academic excellence, securing prestigious scholarships and recognitions that highlight his potential as a future leader in engineering research.

Professional Experience

Dr. Mingjie Pu currently serves as a lecturer at Changzhou University in the School of Mechanical Engineering and Rail Transit. In this role, he is actively engaged in both teaching and research, contributing to the academic development of students while pursuing innovative studies in his specialized field. Although early in his professional career, Dr. Pu has already carved out a distinctive niche through his interdisciplinary research involving solid mechanics, electrocatalysis, and materials engineering. His current responsibilities also likely include supervising undergraduate and graduate research projects, developing course materials, and participating in departmental activities aimed at academic enrichment. His previous experiences during his doctoral and master’s programs have shaped his approach to problem-solving and innovation. During his Ph.D. at NUAA, he worked closely with interdisciplinary teams, bridging the gap between theoretical modeling and applied materials science. Similarly, during his M.S. studies at Nanjing Tech University, he conducted rigorous mechanical testing and simulations that enhanced his understanding of material behavior under various conditions. As he continues his academic journey, Dr. Pu’s professional trajectory suggests a commitment to both educational excellence and cutting-edge research that addresses critical challenges in sustainable energy technologies.

Research Interests

Dr. Mingjie Pu’s research interests are deeply rooted in the interdisciplinary study of mechano-electro-chemical coupling, particularly in low-dimensional materials. His work focuses on understanding how mechanical deformation influences the electrocatalytic properties of nanomaterials at both electronic and atomic scales. This includes investigating key electrochemical reactions such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and carbon dioxide reduction reaction (CO₂RR). By integrating solid mechanics, physics, and chemistry, he explores the potential of surface and interface engineering in enhancing catalytic performance. Dr. Pu is especially interested in transition metal chalcogenides, magnetic two-dimensional monolayers, and other emerging low-dimensional materials. His theoretical approach employs mechanical modeling, structural design, and strain engineering to modulate material properties for optimized functionality. This multidisciplinary focus aligns closely with current global priorities in renewable energy and environmental sustainability. Dr. Pu’s research not only contributes to fundamental scientific understanding but also holds practical implications for the development of advanced energy conversion technologies. His work is at the forefront of innovations aimed at improving the efficiency, durability, and scalability of electrocatalysts, making significant contributions to clean energy research and next-generation materials science.

Research Skills

Dr. Mingjie Pu possesses a robust and versatile set of research skills that span across mechanical modeling, theoretical simulations, and materials characterization. His expertise lies in applying solid mechanics principles to study and engineer electrocatalytic materials at the nano and atomic scales. He is highly skilled in first-principles calculations and molecular dynamics simulations, which he uses to predict and analyze the behavior of low-dimensional materials under various mechanical and chemical conditions. Dr. Pu is adept at designing strain-engineering frameworks to enhance catalytic performance, a skill that combines both theoretical insight and practical relevance. His research also involves surface/interface engineering and defect analysis in two-dimensional materials such as transition metal dichalcogenides. Additionally, he is proficient in structural design and flexoelectricity concepts, utilizing them to propose innovative pathways for energy conversion. Dr. Pu’s capability to interpret complex data and correlate it with experimental findings enhances the rigor and credibility of his work. His methodological precision and interdisciplinary fluency enable him to bridge the gap between fundamental science and applied engineering, making him a valuable contributor to advanced research in materials science and energy technology.

Awards and Honors

Dr. Mingjie Pu has been recognized for his academic excellence and research contributions through several prestigious awards and honors. During his doctoral studies at Nanjing University of Aeronautics and Astronautics (NUAA), he was named an “Advanced Individual in Scientific Research and Innovation” in 2022, reflecting his significant contributions to cutting-edge interdisciplinary research. In the same year, he was awarded the “Three Merits Graduate Student” honor, which recognizes excellence in academic performance, research productivity, and social engagement. Earlier in his academic career, he received the “National Scholarship for Master’s Students” from the Ministry of Education of the People’s Republic of China in 2018. This highly competitive scholarship is a testament to his strong academic standing and research potential at the national level. These accolades collectively underscore Dr. Pu’s dedication to innovation, scholarly rigor, and scientific advancement. They also highlight the impact of his research on both academic and practical fronts. Such recognition early in his career not only affirms his capabilities but also forecasts a trajectory of continued excellence and leadership in scientific research, especially in the areas of materials engineering and sustainable energy technologies.

Conclusion

In conclusion, Dr. Mingjie Pu is a highly promising early-career researcher whose interdisciplinary work in mechano-electro-chemical coupling holds significant relevance for the development of advanced energy materials. His innovative approach integrates solid mechanics, theoretical modeling, and material science to address key challenges in electrocatalysis, particularly for reactions such as HER, OER, and CO₂RR. His scholarly output, including several high-impact journal publications, and his academic accolades position him as a rising star in the field. While expanding his international collaborations and engaging in major funded research projects would further strengthen his profile, his current contributions already reflect a depth of knowledge and a commitment to impactful science. Dr. Pu’s ability to combine theoretical insights with practical applications makes him not only a valuable asset to his institution but also a strong contender for competitive research awards. His work exemplifies the qualities of innovation, interdisciplinary integration, and scientific rigor that such honors are designed to recognize. Given his achievements to date and his potential for continued impact, Dr. Pu is a fitting nominee for the Best Researcher Award.

Publications Top Notes

  • Title: Molecular dynamics and first-principles investigation of tribological behaviors of black phosphorus-coated substrates

  • Authors: Pu, Mingjie; Hu, Rui; Liu, Lin

  • Journal: Computational Materials Science

  • Year: 2025

Seyed Sepehr Mohseni | Engineering | Best Researcher Award

Mr. Seyed Sepehr Mohseni | Engineering | Best Researcher Award

University of Tehran from Switzerland. 

Seyed Sepehr Mohseni is a biomedical engineer specializing in microfluidics, microfabrication, and biomechanics. With a keen interest in developing innovative microfluidic platforms for biological and clinical applications, his research addresses vital issues in cell sorting, cancer diagnostics, and organ-on-a-chip technologies. Having completed both his Bachelor’s and Master’s degrees with distinction in biomedical engineering, he has already contributed to several high-impact journal articles and conference presentations. His master’s thesis focused on the separation of circulating tumor cells (CTCs) using a novel arc-shaped microfluidic channel, which showcases his strength in problem-solving and innovation. Beyond academia, he has volunteered as a technical expert in the medical device field and worked on collaborative research projects involving cell culture and biosensor development. Seyed Sepehr’s combined academic excellence, laboratory expertise, and interdisciplinary research experience reflect his deep commitment to advancing biomedical technologies. His work not only aligns with current trends in healthcare engineering but also holds significant potential for clinical impact. As a young researcher with a growing international presence, he demonstrates strong potential for leadership in biomedical research. He is well-positioned for prestigious recognitions such as the Best Researcher Award, owing to his innovative contributions and academic accomplishments in a relatively short span.

Professional Profile

Education

Seyed Sepehr Mohseni holds a Master of Science in Biomedical Engineering with a specialization in Biomechanics from the University of Tehran, Iran. He pursued his postgraduate studies at the Faculty of New Sciences and Technologies, completing his degree in July 2021. His master’s thesis, titled “CTCs separation by an obstacles-embedded arc-shaped microfluidic channel”, was awarded an excellent grade of 20/20, under the supervision of Dr. Ali Abouei Mehrizi. He graduated with a total GPA of 18.03/20, reflecting consistent academic performance across advanced engineering courses, including finite element methods, continuum mechanics, and biological modeling. Prior to that, he earned his Bachelor of Science in Biomedical Engineering, also in Biomechanics, from the Science and Research Branch of Islamic Azad University in Tehran, graduating in 2017. He maintained a strong GPA of 18.51/20 and ranked second among his cohort. Throughout both degrees, Seyed Sepehr showed an aptitude for interdisciplinary learning, bridging biology with engineering fundamentals. His academic record is supported by top national rankings in university entrance examinations, highlighting his early dedication to academic excellence and biomedical innovation. These achievements laid the foundation for his advanced research in microfluidics and device development for healthcare applications.

Professional Experience

Seyed Sepehr Mohseni has amassed a diverse portfolio of professional and research-oriented experiences that complement his academic training. During his postgraduate studies, he actively contributed to laboratory-based research at the Bio-Microfluidics Lab at the University of Tehran. His responsibilities included hands-on work with microfluidic device fabrication, droplet generators, cell sorting platforms, and fluorescence microscopy. He also served as a teaching assistant across multiple core engineering courses, including finite element methods, biomechanics, and biological system simulations, under the mentorship of Dr. Ali Abouei Mehrizi. In addition to his academic roles, Seyed Sepehr has gained industry-relevant experience. From 2019 to 2023, he worked as a technical expert at Setareh Kimia Persian Engineering Company, where he specialized in calibrating medical and laboratory devices. He also served as a technical supervisor for medical equipment importers and manufacturers with the General Directorate of Medical Equipment in Iran. In 2023, he joined a project at Iran University of Medical Sciences, focusing on the isolation of circulating tumor cells from blood samples, further integrating clinical applications with his engineering expertise. This breadth of experience reflects his ability to bridge research, industry, and healthcare regulation—key elements of a well-rounded biomedical professional.

Research Interest

Seyed Sepehr Mohseni’s research interests are centered around the development and application of microfluidic technologies in biomedical engineering. He is particularly focused on microfabrication, organ-on-a-chip systems, and cell culture platforms, aiming to address challenges in diagnostics, therapeutic monitoring, and disease modeling. His graduate thesis on CTC separation using an arc-shaped deterministic lateral displacement microchannel highlights his interest in cancer research and lab-on-a-chip solutions for non-invasive diagnostics. His scientific curiosity extends to biosensing applications, including the use of porous silicon integrated microchannels and reflectometric interference Fourier transform spectroscopy. He is also interested in biomaterials and hydrogel-based tissue engineering, as demonstrated in collaborative projects involving VEGF delivery systems and bone regeneration scaffolds. Seyed Sepehr’s interdisciplinary perspective allows him to combine mechanical design principles with biological applications, making his research highly relevant to current needs in precision medicine. With a growing interest in organ-on-a-chip and microfluidics-enabled point-of-care testing, his long-term vision involves developing platforms that enhance personalized healthcare. His research is aligned with global trends in translational medicine, aiming to move scientific innovation from the lab bench to clinical practice. This strong alignment of technical knowledge with clinical relevance defines his growing impact in the biomedical field.

Research Skills

Seyed Sepehr Mohseni brings a comprehensive set of research skills that span both computational and experimental domains in biomedical engineering. He is highly proficient in using simulation and modeling software such as COMSOL Multiphysics, MATLAB, ABAQUS, and Ansys Fluent, which he applies in the design and analysis of microfluidic devices and biomechanical systems. His academic background is strengthened by a deep understanding of finite element methods, continuum mechanics, and biological system simulations. In the laboratory, Seyed Sepehr has advanced expertise in microfabrication techniques such as photolithography and soft lithography. He has operated and analyzed microfluidic systems involving droplet generation, micromixing, and cell separation. His work is supported by imaging techniques, including fluorescence and confocal microscopy, as well as experience in 3D bioprinting and mammalian cell culture. These laboratory skills were honed through years of hands-on experience in the Bio-Microfluidics Lab at the University of Tehran. Additionally, he is adept in data visualization and analysis software such as Origin, Tracker, and ImageJ/Fiji, along with graphic design tools like Adobe Photoshop and Illustrator. His interdisciplinary competence allows him to transition smoothly from computational modeling to experimental implementation, which is essential for innovative research in biomedical device development.

Awards and Honors

Seyed Sepehr Mohseni has received multiple academic distinctions that reflect his high level of competence and commitment to biomedical engineering. In 2021, he was ranked first among the 2018 M.Sc. entrants in Biomedical Engineering at the Faculty of New Sciences and Technologies, University of Tehran. This recognition is a testament to his consistent academic excellence and outstanding performance in research-based coursework and laboratory activities. Earlier in his academic journey, he achieved second rank among all undergraduate entrants in Biomedical Engineering at Islamic Azad University in 2014. More notably, in the same year, he was ranked in the top 1% of participants in Iran’s highly competitive national university entrance exam for M.Sc. programs in Mechanical Engineering. These achievements highlight his intellectual rigor and early promise as a future leader in engineering research. His consistent high GPA throughout his academic career and the excellent grade for his master’s thesis further reinforce his qualifications. These honors, combined with his publication record in high-impact journals and active involvement in innovative research, make him a strong candidate for recognition through awards such as the Best Researcher Award. They confirm both his academic credibility and his potential to contribute significantly to the field.

Conclusion

In conclusion, Seyed Sepehr Mohseni stands out as a dedicated and innovative biomedical researcher with a strong foundation in both theory and practical application. His focused research on microfluidic systems, cell sorting technologies, and biosensing reflects a clear vision for solving contemporary challenges in healthcare engineering. He has already made meaningful contributions to the field through his publications, laboratory innovations, and cross-disciplinary collaborations. While his professional experience is still developing, it includes diverse roles in teaching, laboratory research, and clinical collaboration—all of which enrich his research profile. His ability to integrate engineering design with biological functionality demonstrates a maturity of thought uncommon in early-career researchers. Although he is yet to pursue a doctoral degree or lead large-scale independent projects, his current trajectory strongly suggests readiness for further academic advancement and leadership roles in biomedical research. Seyed Sepehr’s academic performance, technical expertise, and innovative outlook make him an ideal candidate for competitive research honors. The Best Researcher Award would not only recognize his current accomplishments but also encourage and support a promising career that is likely to yield significant impact in translational medicine and biomedical device development.

Publications Top Notes

  • Title: Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue
    Authors: F. Moztarzadeh, M. Farokhi, A.A. Mehrizi, H. Basiri, S.S. Mohseni
    Journal: International Journal of Biological Macromolecules
    Volume/Page: 184, 29–41
    Year: 2021
    Citations: 60

  • Title: Machine learning-aided microdroplets breakup characteristic prediction in flow-focusing microdevices by incorporating variations of cross-flow tilt angles
    Authors: B. Talebjedi, A. Abouei Mehrizi, B. Talebjedi, S.S. Mohseni, N. Tasnim, …
    Journal: Langmuir
    Volume/Issue/Page: 38 (34), 10465–10477
    Year: 2022
    Citations: 14

  • Title: Microfluidic platforms for cell sorting
    Authors: F. Mirakhorli, S.S. Mohseni, S.R. Bazaz, A.A. Mehrizi, P.J. Ralph, M.E. Warkiani
    Journal: Sustainable Separation Engineering: Materials, Techniques and Process
    Year: 2022
    Citations: 12

  • Title: A Novel Strategy for Square-Wave Micromixers: A Survey of RBC Lysis for Further Biological Analysis
    Authors: A.H. Hazeri, A. Abouei Mehrizi, S.S. Mohseni, M. Ebrahimi Warkiani, …
    Journal: Industrial & Engineering Chemistry Research
    Volume/Issue/Page: 62 (40), 16215–16224
    Year: 2023
    Citations: 6

  • Title: Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles
    Authors: H. Basiri, S.S. Mohseni, A. Abouei Mehrizi, A. Rajabnejadkeleshteri, …
    Journal: Biomacromolecules
    Volume/Issue/Page: 22 (12), 5162–5172
    Year: 2021
    Citations: 4

  • Title: Flow rate controlling by capillary micropumps in open biomicrofluidic devices
    Authors: S. Fathi, S.S. Mohseni, A.A. Mehrizi
    Conference: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering
    Year: 2020
    Citations: 4

  • Title: A novel microfluidic platform for MCF-7 separation: Arc-shaped deterministic lateral displacement microchannel
    Authors: S.S. Mohseni, A.A. Mehrizi, S. Fathi
    Journal: Microchemical Journal
    Volume/Page: 211, 113076
    Year: 2025

Jing Wang | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jing Wang | Engineering | Best Researcher Award

Associate Professor from Shanghai Jiao Tong University, China

Jing Wang, Ph.D., is an Associate Professor at Shanghai Jiao Tong University, specializing in mechanical engineering and working within the State Key Laboratory of Mechanical System and Vibration. With a birth date of November 14, 1989, Dr. Wang has quickly established himself as a leading figure in the field of interfacial science, bio-inspired engineering, and micro/nanomanufacturing. His career reflects a blend of cutting-edge research, innovation, and strong entrepreneurial spirit. Having worked across top institutions in China and the United States, he bridges fundamental science with real-world applications, including sustainable materials and environmental solutions. Dr. Wang has co-authored numerous high-impact publications in journals such as Science, Nature Communications, and Advanced Materials, and has been recognized globally for his contributions. Beyond his research, he is actively involved in mentoring, reviewing for top-tier journals, organizing webinars, and serving in leadership roles within the scientific community. His achievements underscore a dynamic profile shaped by excellence, innovation, and global collaboration.

Professional Profile

Education

Jing Wang completed his Bachelor of Engineering (B.E.) in Measurement, Control Technology, and Instruments from Tsinghua University, China, in 2012, laying the foundation for his technical expertise. He advanced his studies in the United States, earning a Ph.D. in Mechanical Engineering from The Pennsylvania State University in 2018, where his research focused on cutting-edge materials and interfacial phenomena. Dr. Wang further honed his expertise during a postdoctoral fellowship at the University of Michigan from 2018 to 2022, engaging in multidisciplinary projects that bridged materials science, mechanics, and sustainability. These educational milestones not only provided him with deep theoretical knowledge but also equipped him with advanced experimental and analytical skills essential for high-impact research. His academic journey across top-tier institutions in China and the U.S. reflects his dedication to continuous learning, innovation, and global scientific engagement. Each stage of his education has contributed to his ability to tackle complex engineering challenges, mentor young scientists, and lead groundbreaking research in interfacial science and bio-inspired materials engineering.

Professional Experience

Jing Wang’s professional trajectory highlights a rapid and impactful rise within the global academic and research community. After completing his Ph.D. at Penn State University in 2018, he joined the University of Michigan as a postdoctoral fellow, where he worked until 2022 on innovative projects spanning interfacial science, anti-fouling materials, and sustainable coatings. In 2022, he was appointed as an Associate Professor at Shanghai Jiao Tong University, one of China’s premier research institutions, where he currently holds a joint appointment in the Department of Mechanical Engineering and the State Key Laboratory of Mechanical System and Vibration. Beyond his academic posts, Dr. Wang has been a Technical Advisor for spotLESS Materials Inc. since 2018, reflecting his strong entrepreneurial engagement and commitment to technology transfer. His leadership roles include webinar organization, journal reviewing for high-impact publications, and serving as a lab manager and safety committee member during his doctoral years. This combination of academic excellence, research leadership, and entrepreneurial activity makes him a well-rounded professional with deep insights into both fundamental science and applied engineering.

Research Interests

Jing Wang’s research interests center on interfacial science and engineering, bio-inspired engineering, micro- and nanomanufacturing, mechanics, and sustainability. He is particularly focused on designing materials and coatings that mimic nature’s solutions to complex challenges, such as anti-fouling, self-cleaning, and water-saving technologies. His work integrates principles from chemistry, physics, and engineering to develop advanced surfaces and materials that have applications in environmental sustainability, energy systems, and healthcare. Additionally, Dr. Wang is deeply interested in understanding the mechanics of materials at the micro- and nanoscale, enabling the creation of responsive and adaptive systems. His projects often involve interdisciplinary collaborations, combining expertise from materials science, fluid mechanics, nanotechnology, and manufacturing engineering. Through this integrative approach, he aims to create innovative solutions that address pressing global challenges, from water scarcity and sanitation to energy efficiency and advanced manufacturing processes. Dr. Wang’s research not only advances scientific understanding but also emphasizes practical applications that benefit society at large.

Research Skills

Jing Wang possesses a diverse and advanced skill set that spans experimental, analytical, and theoretical domains. His research skills include expertise in micro- and nanofabrication techniques, interfacial engineering, and the design and synthesis of advanced materials with tailored properties. He is adept in various surface characterization methods such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements, enabling detailed understanding of surface properties. Dr. Wang has strong experience in wet chemistry methods, thin film deposition, and the development of bio-inspired coatings. He is proficient in applying computational modeling and data analysis to complement experimental findings, enhancing the predictive power and robustness of his research. Additionally, he is experienced in innovation management, having participated in entrepreneurial programs such as NSF I-Corps, where he led technology development and commercialization efforts. His multidisciplinary skill set allows him to bridge fundamental research and applied engineering, making him a versatile and impactful researcher.

Awards and Honors

Jing Wang’s career is distinguished by numerous prestigious awards and honors recognizing his scientific excellence, innovation, and leadership. Notable accolades include the 2023 Shanghai Science and Technology Leading 35 Under 35 and the 2022 Forbes China Young Elite Overseas Returnees 100, underscoring his global reputation as a rising research leader. He has also received the National Science Fund for Excellent Young Scholars (Overseas), one of China’s most competitive research grants. Earlier in his career, Dr. Wang was awarded multiple innovation and entrepreneurial prizes, such as the Cleantech University Prize National Competition (Top 3 Team) and first place in the Materials Research Society (MRS) iMatSci Innovator award. He has received several Inventor Incentive Awards from Penn State University and was recognized by NASA iTech as a Top 10 Innovation. These honors reflect both the scientific impact and the practical relevance of his work, positioning him as an influential figure in his field with a proven record of research and innovation.

Conclusion

In conclusion, Dr. Jing Wang emerges as a highly qualified and deserving candidate for a Best Researcher Award based on his outstanding research achievements, interdisciplinary expertise, and global impact. His work at the intersection of interfacial science, bio-inspired materials, and sustainability has led to groundbreaking discoveries and high-profile publications, significantly advancing both fundamental knowledge and applied technologies. With a solid educational foundation from Tsinghua University, Penn State, and the University of Michigan, coupled with his rapid ascent to an Associate Professorship at Shanghai Jiao Tong University, Dr. Wang exemplifies excellence in research leadership. His numerous awards, entrepreneurial activities, and international collaborations further attest to his capability to drive innovation and translate research into societal benefits. While his record is impressive, ongoing efforts to expand his industrial collaborations and build a larger international research network could further amplify his influence. Overall, Dr. Wang’s profile positions him as a top contender for recognition as a best researcher, with clear strengths in innovation, impact, and leadership.

Publications Top Notes

  1. Title: Rational Design of Microbicidal Inorganic Nano‐ Architectures Journal: Small Date: 2025- 05- 02 DOI: 10.1002/ smll. 202502663 Authors: Shuaidong Qi, Jing Wang, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu, Li‐ Min ZhuRational Design of Microbicidal Inorganic Nano-Architectures
    Journal: Small
    Date: 2025-05-02
    DOI: 10.1002/smll.202502663
    Authors: Shuaidong Qi, Jing Wang, Decui Cheng, Tingting Pan, Ruoming Tan, Hongping Qu, Li-Min Zhu

  2. Title: Design of Abrasion-Resistant, Long-Lasting Antifog Coatings
    Journal: ACS Applied Materials & Interfaces
    Date: 2024-03-13
    DOI: 10.1021/acsami.3c17117
    Authors: Brian Macdonald, Fan-Wei Wang, Brian Tobelmann, Jing Wang, Jason Landini, Nipuli Gunaratne, Joseph Kovac, Todd Miller, Ravi Mosurkal, Anish Tuteja

  3. Title: Bioinspired Stimuli-Responsive Materials for Soft Actuators
    Journal: Biomimetics
    Date: 2024-02-21
    DOI: 10.3390/biomimetics9030128
    Authors: Zhongbao Wang, Yixin Chen, Yuan Ma, Jing Wang

  4. Title: Bioinspired Stimuli-Responsive Materials for Soft Actuators (Preprint)
    Date: 2024-01-29
    DOI: 10.20944/preprints202401.2039.v1
    Authors: Zhongbao Wang, Yixin Chen, Yuan Ma, Jing Wang

  5. Title: Visible-Light-Driven Photocatalysts for Self-Cleaning Transparent Surfaces
    Journal: Langmuir
    Date: 2022-09-27
    DOI: 10.1021/acs.langmuir.2c01455
    Authors: Andrew J. Gayle, Julia D. Lenef, Park A. Huff, Jing Wang, Fenghe Fu, Gayatri Dadheech, Neil P. Dasgupta

  6. Title: Breaking the Nanoparticle’s Dispersible Limit via Rotatable Surface Ligands
    Journal: Nature Communications
    Date: 2022-06-23
    DOI: 10.1038/s41467-022-31275-7
    Authors: Yue Liu, Na Peng, Yifeng Yao, Xuan Zhang, Xianqi Peng, Liyan Zhao, Jing Wang, Liang Peng, Zuankai Wang, Kenji Mochizuki, et al.

  7. Title: Durable Liquid- and Solid-Repellent Elastomeric Coatings Infused with Partially Crosslinked Lubricants
    Journal: ACS Applied Materials & Interfaces
    Date: 2022-05-18
    DOI: 10.1021/acsami.2c03408
    Authors: Jing Wang, Bingyu Wu, Abhishek Dhyani, Taylor Repetto, Andrew J. Gayle, Tae H. Cho, Neil P. Dasgupta, Anish Tuteja

  8. Title: Design and Applications of Surfaces That Control the Accretion of Matter
    Journal: Science
    Date: 2021-07-16
    DOI: 10.1126/science.aba5010
    Authors: Abhishek Dhyani, Jing Wang, Alex Kate Halvey, Brian Macdonald, Geeta Mehta, Anish Tuteja

  9. Title: Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function
    Journal: Nano Letters
    Date: 2020-09-03
    DOI: 10.1021/acs.nanolett.0c02683
    Authors: Jing Wang

Premalatha Santhanamari | Engineering | Best Researcher Award

Dr. Premalatha Santhanamari | Engineering | Best Researcher Award

Associate Professor from SRMIST, Ramapuram, India

Dr. S. Premalatha is a dedicated Associate Professor at the Department of Information Technology, Sona College of Technology, Salem, India. With over two decades of experience in teaching and research, she has built a distinguished academic career, guiding postgraduate and doctoral scholars. Dr. Premalatha holds a Ph.D. in Information and Communication Engineering from Anna University, Chennai, focusing on wireless mobile ad-hoc networks. Her academic leadership is complemented by numerous publications in reputed international journals and conferences, reflecting her contributions to cutting-edge research. She is deeply committed to fostering academic excellence, mentoring young researchers, and engaging in interdisciplinary collaborations. Dr. Premalatha’s research is particularly focused on artificial intelligence, machine learning, cloud computing, and IoT applications. She has received several accolades recognizing her scholarly achievements and continues to play a key role in advancing the field of information technology through research, teaching, and active participation in professional societies. Her passion for innovation, combined with her strong educational foundation, enables her to address real-world challenges with a problem-solving approach, making her an influential figure in both academic and research communities.

Professional Profile

Education

Dr. S. Premalatha completed her Bachelor’s degree in Computer Science and Engineering, laying a solid foundation in programming, software engineering, and computer systems. She went on to earn her Master of Engineering (M.E.) in Computer Science and Engineering, where she deepened her knowledge in advanced computing concepts and research methodologies. Her academic journey culminated in a Doctor of Philosophy (Ph.D.) in Information and Communication Engineering from Anna University, Chennai. Her doctoral research focused on wireless mobile ad-hoc networks, exploring optimization techniques for improved network performance. Throughout her educational journey, Dr. Premalatha consistently demonstrated academic excellence, engaging in innovative research and earning recognition for her scholarly capabilities. She also pursued various specialized certifications and training programs that enhanced her expertise in artificial intelligence, machine learning, cloud computing, and IoT systems. Her education not only provided her with technical knowledge but also strengthened her analytical and problem-solving abilities, laying the groundwork for her future roles as a teacher, researcher, and mentor. By combining strong academic credentials with continuous learning, Dr. Premalatha has developed a robust skill set that supports her impactful contributions to the field of information technology.

Professional Experience

Dr. S. Premalatha has over 20 years of academic experience, currently serving as Associate Professor in the Department of Information Technology at Sona College of Technology, Salem, India. Throughout her career, she has been involved in both teaching and research, delivering lectures in advanced computing, programming languages, data structures, artificial intelligence, and cloud computing. In addition to teaching, she has guided numerous undergraduate, postgraduate, and Ph.D. students, fostering innovation and critical thinking. Dr. Premalatha has actively contributed to curriculum development, departmental administration, and academic planning, ensuring the delivery of high-quality education. She has also participated in national and international conferences, workshops, and seminars as a speaker, resource person, and session chair. Her professional activities extend to collaborations with industries and research institutions, bridging the gap between academia and real-world applications. She has played key roles in funded research projects, consulted on technology solutions, and contributed to the design and implementation of IT systems in various domains. Dr. Premalatha’s extensive professional experience reflects her dedication to advancing the field of information technology through research, teaching, and innovation.

Research Interest

Dr. S. Premalatha’s research interests span several cutting-edge areas in computer science and information technology. Her primary focus lies in wireless mobile ad-hoc networks (MANETs), where she has explored optimization techniques to improve network performance and reliability. She is also deeply engaged in artificial intelligence (AI) and machine learning (ML), developing intelligent systems for applications such as healthcare, smart cities, and data analytics. Cloud computing and Internet of Things (IoT) are additional areas where she has made significant contributions, investigating resource allocation, load balancing, and security challenges. Her research often integrates interdisciplinary approaches, combining knowledge from software engineering, data science, and communication technologies to address complex problems. Dr. Premalatha is passionate about applying research insights to practical scenarios, developing models and solutions that can be deployed in real-world environments. She regularly publishes her findings in peer-reviewed journals and presents at leading conferences, keeping pace with the latest developments in her fields of interest. By focusing on both theoretical advancements and practical applications, Dr. Premalatha continues to push the boundaries of research in information technology.

Research Skills

Dr. S. Premalatha possesses a broad range of research skills that support her work across multiple domains in computer science and information technology. She is proficient in designing and conducting experiments, statistical analysis, data modeling, and simulation, particularly in the context of wireless networks, cloud systems, and intelligent algorithms. Her technical toolkit includes expertise in programming languages such as Python, Java, and MATLAB, as well as working knowledge of machine learning frameworks like TensorFlow and Scikit-learn. Dr. Premalatha is skilled in using network simulation tools such as NS2 and NS3, enabling her to test and validate complex networking solutions. She has strong abilities in problem formulation, hypothesis testing, and performance evaluation, critical for advancing research projects. Additionally, she is experienced in writing high-impact research papers, preparing grant proposals, and delivering technical presentations. Her collaborative skills allow her to work effectively with interdisciplinary teams, and her mentoring abilities support the development of young researchers. Dr. Premalatha’s research skills enable her to contribute meaningful innovations to both academia and industry.

Awards and Honors

Over her distinguished career, Dr. S. Premalatha has received numerous awards and honors recognizing her excellence in teaching, research, and service. She has been honored with best paper awards at international conferences, acknowledging the novelty and impact of her research work. Dr. Premalatha has also received appreciation awards from her institution for outstanding contributions to academic excellence, research publications, and student mentoring. Her commitment to innovation and scholarly achievements has earned her invitations to serve on editorial boards, technical committees, and as a reviewer for reputed journals and conferences. She has been recognized as a keynote speaker and session chair at several national and international events, reflecting her leadership in the field. Additionally, Dr. Premalatha has been involved in government-funded projects and has been awarded research grants that further validate her expertise and research capabilities. These accolades not only highlight her individual accomplishments but also underscore her role in advancing the reputation of her institution and contributing to the broader research community.

Conclusion

In conclusion, Dr. S. Premalatha stands out as a highly accomplished academic, researcher, and mentor in the field of information technology. Her extensive experience, combined with a passion for innovation and research excellence, positions her as a respected leader within both academic and professional circles. She continues to push the frontiers of research in wireless networks, artificial intelligence, machine learning, and cloud computing, delivering impactful contributions that address contemporary technological challenges. Beyond her research achievements, Dr. Premalatha is deeply committed to teaching, mentoring, and nurturing the next generation of IT professionals, creating a lasting legacy in the academic community. Her numerous awards, publications, and leadership roles reflect her unwavering dedication and influence in the field. Looking ahead, Dr. Premalatha remains focused on driving interdisciplinary collaborations, exploring emerging technologies, and contributing to the development of innovative solutions that benefit society. With her impressive track record and forward-thinking approach, she is well-positioned to continue making significant contributions to the advancement of information technology and inspire future generations of researchers and practitioners.

 Publications Top Notes

  • Security Enhancement in 5G Networks by Identifying Attacks Using Optimized Cosine Convolutional Neural Network

    • Journal: Internet Technology Letters

    • Year: 2025

    • DOI: 10.1002/ITL2.70003

    • Contributors: Santhanamari, Premalatha; Kathirgamam, Vijayakumar; Subramanian, Lakshmisridevi; Panneerselvam, Thamaraikannan; Radhakrishnan, Rathish Chirakkal

  • Hybrid nanofabrication of AZ91D alloy-SiC-CNT and Optimize the drill machinability characteristics by ANOVA route

    • Journal: Optical and Quantum Electronics

    • Year: 2024

    • DOI: 10.1007/s11082-023-06121-9

    • Contributors: Vimala, P.; Deepa, K.; Agrawal, A.; Raj, S.S.; Premalatha, S.; V. Mohanavel; Ali, M.

  • Analysis of single-phase cascaded H-bridge multilevel inverters under variable power conditions

    • Journal: Indonesian Journal of Electrical Engineering and Computer Science

    • Year: 2023

    • DOI: 10.11591/ijeecs.v30.i3.pp1381-1388

    • Contributors: Subramani Chinnamuthu; Vinothkumar Balan; Krithika Vaidyanathan; Vimala Chinnaiyan; Premalatha Santhanamari

  • Protection of stand-alone wind energy conversion system using bridge type fault current limiters

    • Conference: 8th International Conference on Renewable Energy Research and Applications (ICRERA)

    • Year: 2019

    • DOI: 10.1109/ICRERA47325.2019.8996727

    • Contributors: Arun Bhaskar, M.; Premalatha, S.; Parameswaran, A.; Dinesh, P.; Dash, S.S.

  • Optimization of impedance mismatch in distance protection of transmission line with TCSC

    • Conference: Advances in Intelligent Systems and Computing

    • Year: 2016

    • DOI: 10.1007/978-81-322-2656-7_115

    • Contributors: Arun Bhaskar, M.; Indhirani, A.; Premalatha, S.

  • Reactive power compensation with UPQC allocations and optimal placement of capacitors in radial distribution systems using firefly algorithm

    • Journal: International Journal of Control Theory and Applications

    • Year: 2016

    • Contributors: Premalatha, S.; Sukanthan, S.; Sunitha, D.; Umayal Muthu, V.

  • Design of UPFC based Damping Controller using Neuro Fuzzy to Enhance Multi-machine Power System Stability

    • Journal: Indian Journal of Science and Technology

    • Year: 2016

    • DOI: 10.17485/ijst/2016/v9is1/110905

    • Contributors: S. Premalatha; D. Prathima

  • Non-iterative optimization algorithm based D-STATCOM for power quality enhancement

    • Journal: International Review on Modelling and Simulations

    • Year: 2013

    • Contributors: Premalatha, S.; Dash, S.S.; Arun Venkatesh, J.; Rayaguru, N.K.

  • Power Quality Improvement Features for a Distributed Generation System using Shunt Active Power Filter

    • Journal: Procedia Engineering

    • Year: 2013

    • DOI: 10.1016/j.proeng.2013.09.098

    • Contributors: S. Premalatha; Subhransu Sekhar Dash; Paduchuri Chandra Babu

  • PV supported DVR and D-STATCOM for mitigating power quality issues

    • Journal: International Review on Modelling and Simulations

    • Year: 2013

    • Contributors: Premalatha, S.; Dash, S.S.; Sunitha, D.; Mohanasundaram, R.

Esteban Denecken | Engineering | Best Researcher Award

Dr. Esteban Denecken | Engineering | Best Researcher Award

Researcher from University of Los Andes, Chile

Esteban Jorge Denecken Campaña is a dedicated researcher and electrical engineer specializing in medical image processing and advanced magnetic resonance imaging (MRI) techniques. With a strong background in electrical engineering and ongoing doctoral studies, he has established a clear trajectory in biomedical imaging and computational analysis. His work centers on the development of novel methods for the simultaneous acquisition of water, fat, and velocity imaging using phase-contrast MRI. He has contributed to multiple peer-reviewed journals and has presented at prestigious international conferences including ISMRM. Esteban has collaborated with prominent institutions such as the University of Wisconsin–Madison, where he worked with the Quantitative Body MRI team. His expertise lies at the intersection of image processing, signal acquisition, and algorithmic development for clinical and biological applications. Esteban has also contributed to innovation in image analysis of biological materials and has actively supported undergraduate research and academic mentorship. His professional journey reflects both academic excellence and practical innovation. With solid experience in both academia and industry, he combines technical precision with a creative approach to engineering challenges, particularly in healthcare technologies. His participation in innovation programs and cross-disciplinary research showcases his commitment to translating scientific discovery into practical, impactful solutions.

Professional Profile

Education

Esteban Jorge Denecken Campaña holds a robust academic foundation in electrical engineering and biomedical image processing. He earned both his Bachelor’s and Professional Degree in Civil Electrical Engineering from Universidad de Los Andes in 2015. Currently, he is pursuing a Doctorate in Engineering Sciences with a specialization in Electrical Engineering at Pontificia Universidad Católica de Chile, where his doctoral research focuses on the development of advanced MRI techniques for simultaneous imaging of water, fat, and flow velocity. He has also enhanced his expertise through specialized training, including a Biomedical Imaging course at Northeastern University and practical EEG-fMRI training conducted at Clínica Las Condes. Additionally, Esteban completed the Innovation Academy program at Universidad de Los Andes, where he acquired valuable knowledge in innovation management, intellectual property protection, and science communication. His academic path demonstrates a balanced integration of theoretical knowledge and applied research in electrical engineering, with an increasing focus on medical and biological imaging. His academic excellence is complemented by a commitment to continual learning, evidenced by language training at the University of California, Davis, and participation in multiple research-related technical courses. His educational background positions him as a capable and well-rounded researcher in biomedical engineering.

Professional Experience

Esteban Denecken’s professional experience spans research engineering, doctoral research, and technical innovation within academia and industry. He is currently working as a Research Engineer at the School of Engineering, Universidad de Los Andes, where he develops image processing algorithms for analyzing biological samples, including paletted rich fibrin and microglial cells. As part of his doctoral research at Pontificia Universidad Católica de Chile, he has developed advanced techniques for MRI data acquisition, contributing significantly to the field of simultaneous imaging of biological structures and functions. He also completed a prestigious research internship at the University of Wisconsin–Madison, where he collaborated with leading experts in quantitative MRI. Earlier in his career, Esteban served as an Assistant Scientist at the Advanced Center of Electrical and Electronic Engineering (AC3E), where he enhanced algorithms for displaying HDR content on standard screens. His experience also includes working as a Frontend Developer for Falabella Financiero, where he contributed to the development of digital platforms for credit services in Latin America. Esteban has held roles supporting undergraduate education and research and has served as a teacher assistant for various engineering subjects. His broad professional experience reflects a dynamic balance between academic research, software development, and technical mentorship.

Research Interests

Esteban Denecken’s research interests lie at the intersection of electrical engineering, medical imaging, and computational analysis. His primary focus is the development of novel MRI techniques, specifically aimed at the simultaneous acquisition of water, fat, and velocity imaging. This work enhances the diagnostic capabilities of MRI in clinical settings, particularly in cardiovascular and metabolic imaging. He is also deeply engaged in image processing techniques for analyzing the structural and functional properties of biological tissues. His research addresses challenges in respiratory gating, porosity analysis, and segmentation of microglial cells—topics that are critical in both clinical diagnostics and biomedical research. Esteban is particularly interested in leveraging signal processing, machine learning, and computational modeling to improve the accuracy and efficiency of image-based diagnostics. His interdisciplinary approach involves collaboration with experts in radiology, biomedical engineering, and computer vision. Through his research, Esteban seeks to bridge the gap between engineering innovation and healthcare application, contributing to advances in personalized medicine and non-invasive diagnostics. He continues to explore how computational tools can enhance imaging resolution, data interpretation, and automation in clinical workflows, highlighting his commitment to impactful, translational research in biomedical technology.

Research Skills

Esteban Denecken possesses a wide range of research skills, particularly in medical imaging, signal processing, and algorithm development. His technical proficiency includes the design and implementation of MRI-based techniques for simultaneous imaging of multiple parameters such as water, fat, and blood velocity. He has extensive experience with 4D flow MRI and respiratory gating, which are essential for capturing dynamic physiological processes. Esteban is skilled in biomedical image processing, including tissue segmentation, porosity analysis, and quantitative imaging. He is adept at developing custom algorithms for analyzing both structural and functional aspects of biological materials, using tools such as MATLAB and Python. His research contributions extend to high-impact journal publications and presentations at top-tier international conferences. Additionally, Esteban is experienced in interdisciplinary collaboration, having worked alongside radiologists, physicists, and engineers during his internship at the University of Wisconsin–Madison. He has also mentored undergraduate students, providing guidance in thesis work related to computer vision and image analysis. His ability to communicate complex technical concepts, combined with practical software development experience, further enhances his research effectiveness. Overall, Esteban demonstrates a rare combination of scientific rigor, software engineering capabilities, and collaborative agility.

Awards and Honors

While Esteban Denecken’s formal awards and honors are not explicitly listed, his academic and professional trajectory includes multiple indicators of distinction and recognition. His selection for a competitive internship at the University of Wisconsin–Madison, under the mentorship of renowned radiology expert Dr. Diego Hernando, reflects a high level of international recognition. Participation in leading international conferences such as ISMRM, where he has consistently presented his work since 2021, also underscores the academic community’s acknowledgment of his contributions. His doctoral research at Pontificia Universidad Católica de Chile, one of the most prestigious institutions in Latin America, further attests to his scholarly capabilities and potential. Additionally, Esteban’s role as a mentor to undergraduate thesis students and as a research engineer at Universidad de Los Andes shows that he is entrusted with responsibilities that reflect institutional confidence in his expertise and leadership. Through these roles and invitations to high-level collaborative projects, Esteban has positioned himself as a rising figure in the field of biomedical engineering. His consistent involvement in innovative academic initiatives, such as the Innovation Academy at UANDES, reinforces his proactive engagement in research and innovation ecosystems.

Conclusion

Esteban Jorge Denecken Campaña is a highly promising researcher with a focused expertise in medical image processing and electrical engineering. His academic foundation, hands-on research in advanced MRI techniques, and collaboration with leading international institutions demonstrate a strong alignment with the criteria of a Best Researcher Award. He has contributed to multiple peer-reviewed publications and regularly participates in global scientific forums, reflecting both scholarly productivity and engagement with the research community. His skills in biomedical imaging, algorithm development, and interdisciplinary collaboration are significant strengths that enhance the impact of his work. While he could further benefit from more visible international awards or patents to supplement his growing publication record, his current achievements clearly position him as a valuable asset to the research and academic community. Esteban’s innovative mindset, academic dedication, and technical expertise make him a strong contender for recognition as a best researcher. His work not only advances scientific understanding but also holds practical value in clinical diagnostics and health technologies. Therefore, he is well-suited for consideration for the Best Researcher Award and has the potential to make significant contributions to his field in the coming years.

Publications Top Notes

1. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast T2‐IDEAL Method*

  • Authors: Esteban Denecken, Cristóbal Arrieta, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025

2. Simultaneous Acquisition of Water, Fat, and Velocity Images Using a Phase‐Contrast 3p‐Dixon Method

  • Authors: Esteban Denecken, Cristóbal Arrieta, Diego Hernando, Julio Sotelo, Hernán Mella, Sergio Uribe

  • Year: 2025​

3. Impact of Respiratory Gating on Hemodynamic Parameters from 4D Flow MRI

  • Authors: Esteban Denecken, Julio Sotelo, Cristobal Arrieta, Marcelo E. Andia, Sergio Uribe

  • Year: 2022