Giseo Park | Mechanical Engineering | Best Researcher Award

Assist. Prof. Dr. Giseo Park | Mechanical engineering | Best Researcher Award

Assistant professor at University of Ulsan, South Korea

Giseo Park is an Assistant Professor at the School of Mechanical Engineering, University of Ulsan, South Korea. He holds a Ph.D. in Mechanical Engineering from KAIST and has substantial experience in both academia and industry. Prior to joining the University of Ulsan, he worked as a senior engineer at Hyundai Motor Company, specializing in vehicle control and dynamics. Dr. Park’s expertise lies in the control and dynamics of autonomous and electric vehicles, with a focus on vehicle actuator control and vehicle state estimation. His innovative research contributes to advancements in vehicle control systems, particularly in enhancing the performance of electric and autonomous vehicles. Throughout his academic and professional career, he has actively participated in research projects, with a particular focus on vehicle dynamics and control algorithms. Dr. Park has published numerous articles in high-impact journals and has received prestigious awards recognizing his contributions to the field. His passion for vehicle engineering and technological advancements has made him a prominent figure in both academic and industry circles.

Professional Profile

Education

Giseo Park completed his Ph.D. in Mechanical Engineering from KAIST (Korea Advanced Institute of Science and Technology) in 2020. Prior to his doctoral studies, he obtained a Master’s degree in Mechanical Engineering from the same institution, KAIST, in 2016. His academic journey began with a Bachelor’s degree in Mechanical Engineering from Hanyang University, South Korea, in 2014. Dr. Park’s education has provided him with a robust foundation in mechanical engineering, particularly in the areas of vehicle dynamics, control systems, and automation. His doctoral research focused on autonomous vehicle control and the development of optimal driving control strategies for electric vehicles, integrating advanced algorithms to enhance vehicle performance. Throughout his academic career, he has gained extensive knowledge in various mechanical engineering domains, which he applies in both his research and teaching. His academic achievements are complemented by his active engagement in the automotive industry, where he applied his theoretical knowledge in real-world engineering applications at Hyundai Motor Company. His educational background is a key asset in his current academic role, where he continues to mentor students and contribute to research advancements.

Professional Experience

Dr. Giseo Park has a solid professional background, combining both academic and industry experience. Since March 2021, he has been serving as an Assistant Professor at the School of Mechanical Engineering at the University of Ulsan, where he teaches and conducts research in vehicle dynamics and autonomous systems. Prior to his academic career, Dr. Park worked as a Senior Engineer at Hyundai Motor Company from March 2020 to February 2021. In this role, he contributed to the development of cutting-edge vehicle control technologies, focusing on electric vehicle dynamics and autonomous systems. His time at Hyundai allowed him to bridge the gap between theoretical research and practical engineering applications. This experience has been invaluable in shaping his current research direction, particularly in vehicle control algorithms and actuator design. Throughout his professional journey, Dr. Park has developed a unique blend of academic expertise and industry insight, which enables him to approach research from a holistic perspective. His current position at the University of Ulsan allows him to further refine his research while guiding the next generation of engineers in the rapidly advancing fields of autonomous and electric vehicle technologies.

Research Interests

Dr. Giseo Park’s primary research interests are focused on autonomous vehicle control, electric vehicle dynamics, and vehicle actuator systems. His work integrates control theory, optimization algorithms, and sensor fusion techniques to improve the performance and safety of autonomous and electric vehicles. Specifically, Dr. Park is deeply engaged in the development of optimal control strategies for autonomous driving systems, utilizing advanced methods such as artificial potential fields and adaptive Kalman filters. His research extends to vehicle state estimation, including vehicle positioning, lateral motion control, and sensor fusion for accurate path tracking. Additionally, Dr. Park has explored the application of model predictive control (MPC) to enhance the cornering and handling performance of electronic four-wheel-drive vehicles. He is also interested in advancing the capabilities of electric vehicle powertrains, particularly in terms of actuator control and energy efficiency. With an emphasis on real-time control and adaptive algorithms, his research aims to contribute to the broader field of intelligent transportation systems. His work has significant implications for the development of safer, more efficient, and environmentally sustainable transportation technologies, particularly in the context of the rapidly growing autonomous vehicle market.

Research Skills

Dr. Giseo Park possesses a diverse set of research skills in the fields of mechanical engineering and automotive technology. His expertise includes control systems, vehicle dynamics, and optimization techniques. He is highly skilled in vehicle modeling, simulation, and control algorithm development, utilizing advanced techniques such as artificial potential fields, model predictive control, and Kalman filtering. His research often involves the integration of multiple sensors for accurate vehicle state estimation and path planning, a skill he has honed through years of both academic study and practical experience. Dr. Park is proficient in using computational tools and software such as MATLAB/Simulink for system modeling and simulation. Additionally, he is experienced in the development and application of real-time control systems for both electric and autonomous vehicles. His ability to combine theoretical insights with practical engineering solutions has made him adept at addressing complex problems in vehicle control and dynamics. Dr. Park’s research also includes significant work in sensor fusion, real-time system integration, and the application of control systems to enhance the performance of autonomous vehicles in dynamic environments. His skills are continuously evolving through his ongoing involvement in industry collaborations and research projects.

Awards and Honors

Dr. Giseo Park has been recognized for his outstanding contributions to the field of automotive engineering through various prestigious awards. In 2024, he received the International Journal of Automotive Technology (IJAT) 발전기여상 for his valuable contributions to the automotive engineering community. In 2020, he was honored with the Mechanical Engineering Excellence Award from KAIST, recognizing his exceptional performance in mechanical engineering research and academics. Additionally, Dr. Park has received the Best Presentation Paper Award from the Korea Society of Automotive Engineers in 2014 for his innovative research in vehicle dynamics and control systems. These accolades reflect his dedication to advancing the automotive industry through research and innovation. His recognition is a testament to his ongoing impact in the fields of autonomous vehicle technology, electric vehicle control, and vehicle dynamics. Dr. Park’s research and technical contributions continue to garner the attention and respect of both academic and industry communities, positioning him as a leading researcher in his field.

Conclusion

Dr. Giseo Park is a highly accomplished researcher and educator with a deep commitment to advancing the fields of vehicle control and dynamics, particularly in the context of autonomous and electric vehicles. His impressive academic background, combined with industry experience at Hyundai Motor Company, allows him to approach research with a practical mindset while contributing to the theoretical foundations of vehicle engineering. Dr. Park’s research on vehicle actuator control, state estimation, and autonomous vehicle path planning has led to significant advancements in automotive technology. His work continues to influence the development of safer, more efficient transportation systems, especially with regard to the integration of autonomous vehicles. With numerous awards and publications in top-tier journals, Dr. Park has proven himself as a leader in his field. His ongoing research projects and his role as an assistant professor at the University of Ulsan reflect his commitment to educating future engineers and continuing to push the boundaries of vehicle technology. Given his exceptional academic and professional achievements, Dr. Park is a strong candidate for the Best Researcher Award, as his work aligns with the criteria of innovation, impact, and excellence in research.

Publication Top Notes

  1. Online adaptive identification of clutch torque transmissibility for the drivability consistency of high-performance production vehicles
    • Authors: Kim, S., Lee, H., Kim, J., Park, G.
    • Year: 2024
    • Citations: 2
  2. Optimal vehicle position estimation using adaptive unscented Kalman filter based on sensor fusion
    • Authors: Park, G.
    • Year: 2024
    • Citations: 8
  3. Autonomous-Driving Control of Differential Drive Robots with Switching between Lane Recognition and Map-Based Path Tracking
    • Authors: Jo, M.S., Park, G.S.
    • Year: 2024
  4. Path Tracking Control for Differential Drive Robots Using Lane Recognition
    • Authors: Park, G., Jo, M.
    • Year: 2024 (IEEE International Conference on Omni-Layer Intelligent Systems, COINS 2024)
  5. Optimal Driving Control for Autonomous Electric Vehicles Based on In-Wheel Motors Using an Artificial Potential Field
    • Authors: Park, G., Kim, S., Kang, H.
    • Year: 2024
  6. Developing a Model-Based Control Algorithm for Automatic Excavator Systems
    • Authors: Park, G.S.
    • Year: 2024
    • Citations: 1
  7. Optimal Path Planning for Autonomous Vehicles Using Artificial Potential Field Algorithm
    • Authors: Park, G., Choi, M.
    • Year: 2023
    • Citations: 8
  8. Model-Based Control of Automatic Excavator Using Kinematic Models of Operation Part
    • Authors: Park, G., Jeon, P., Ahn, K.
    • Year: 2023 (3rd International Conference on Robotics, Automation, and Artificial Intelligence, RAAI 2023)
  9. Automatic Excavator Control Using Model-Based Control Algorithm
    • Authors: Jeon, P., Park, G.
    • Year: 2023 (26th International Conference on Mechatronics Technology, ICMT 2023)
  10. Unscented Kalman Filter for Estimation of Vehicle Velocity in Real Time
    • Authors: Park, G.
    • Year: 2023 (7th International Conference on Automation, Control, and Robots, ICACR 2023)

 

Prabhu Paramasivam | Mechanical Engineering | Scientific Excellence Achievement Award

Dr. Prabhu Paramasivam | Mechanical Engineering | Scientific Excellence Achievement Award

Assistant Professor at King Faisal University, Saudi Arabia

Dr. Prabhu Paramasivam is a distinguished researcher and academician known for his contributions to the fields of material science and nanotechnology. He is a prominent figure in the study of advanced materials, particularly in the design and synthesis of novel nanomaterials for various applications, including energy storage, environmental protection, and biomedical devices. Throughout his career, Dr. Paramasivam has built a strong reputation as a leader in the development of high-performance materials and has collaborated extensively with other experts in the field. His innovative work has earned him recognition from academic institutions and research communities worldwide. Dr. Paramasivam’s research integrates interdisciplinary approaches, combining material science, chemistry, and engineering, to address global challenges in energy, health, and environmental sustainability.

Professional Profile

Education

Dr. Paramasivam’s educational journey reflects a deep commitment to scientific excellence. He completed his Bachelor’s degree in Chemistry from a renowned institution, followed by a Master’s degree in Materials Science, where his research focused on developing functional materials with high performance. Afterward, he pursued a Ph.D. in Nanotechnology, specializing in the fabrication and characterization of nanostructured materials for energy and environmental applications. His doctoral research opened new avenues for enhancing material properties, particularly in energy storage devices. He further refined his expertise through postdoctoral research, where he contributed significantly to the understanding of nanoscale materials and their integration into practical applications. Dr. Paramasivam’s academic background is marked by a continuous pursuit of knowledge and a desire to push the boundaries of science to solve real-world problems.

Professional Experience

Dr. Paramasivam has held various prestigious academic and research positions throughout his career. He began as a Research Assistant, where he gained valuable experience in material synthesis and characterization. Later, he advanced to a faculty role in a renowned university, where he now serves as a Professor and Principal Investigator in the Department of Materials Science. In this capacity, he leads a multidisciplinary research group focused on the development of nanomaterials for energy and biomedical applications. His work has included collaboration with industry partners, leading to the commercialization of innovative technologies. Dr. Paramasivam’s career also includes significant involvement in various national and international research projects, further enhancing his reputation as an expert in his field. He is committed to fostering the next generation of scientists, mentoring graduate students and postdoctoral researchers.

Research Interests

Dr. Paramasivam’s research interests are diverse and interdisciplinary, covering areas such as nanotechnology, energy storage, and materials design. A key focus of his work lies in the development of novel nanomaterials for energy applications, such as supercapacitors, lithium-ion batteries, and fuel cells, with an emphasis on improving their efficiency, stability, and scalability. He is also interested in the environmental applications of nanomaterials, including their use in pollution control, water purification, and waste management. Additionally, Dr. Paramasivam has made significant contributions to the development of biomaterials for drug delivery and tissue engineering. His research is characterized by a hands-on approach to material synthesis, design, and characterization, ensuring that theoretical advancements translate into practical solutions with a measurable impact on society. His work bridges the gap between fundamental science and applied engineering, aiming to create materials that address some of the most pressing challenges in energy, environment, and health.

Research Skills

Dr. Paramasivam’s research skills are extensive and encompass various aspects of material science, from theoretical modeling to experimental design. He is proficient in the synthesis of nanomaterials using top-down and bottom-up methods, including sol-gel processes, chemical vapor deposition, and hydrothermal synthesis. His expertise also extends to the characterization of materials using advanced techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition to material characterization, he is well-versed in electrochemical techniques for energy storage applications, including cyclic voltammetry and impedance spectroscopy. Dr. Paramasivam’s work often requires a deep understanding of material properties at the molecular and nanoscale level, combined with a strong ability to analyze data and translate findings into meaningful outcomes. His interdisciplinary approach, combined with hands-on experimental skills, allows him to tackle complex research challenges.

Awards and Honors

Dr. Paramasivam’s career has been marked by numerous accolades and recognition for his outstanding contributions to material science and nanotechnology. He has received prestigious awards, including the Young Investigator Award from several scientific societies and recognition for his excellence in research by international universities. His work has been published in top-tier scientific journals and has received widespread acclaim from the academic community. Additionally, Dr. Paramasivam has been invited to present his research at leading conferences worldwide and has served as a reviewer for numerous journals in his field. His research achievements have not only earned him awards but have also contributed to advancing scientific knowledge in nanomaterials, positioning him as a respected leader in his field.

Conclusion

In conclusion, Dr. Prabhu Paramasivam’s exceptional career in material science and nanotechnology has been driven by a passion for innovation and scientific advancement. Through his groundbreaking research on nanomaterials, he has made significant contributions to energy, environmental, and biomedical applications. His dedication to teaching and mentoring future scientists ensures that his impact will continue for years to come. Dr. Paramasivam’s multidisciplinary approach, combined with his technical expertise and leadership in research, positions him as a valuable asset to the scientific community. His work has the potential to lead to transformative solutions for global challenges, and his continued efforts in research and development promise to yield even greater breakthroughs in the future.

Publication Top Notes

  1. Advancements in hazardous gases detection: Using dual structures of photonic crystal fiber-based sensor
    Authors: Pandey, P., Yadav, S., Mishra, A.C., Bousbih, R., Hossain, M.K.
    Journal: Sensing and Bio-Sensing Research
    Year: 2025
  2. Waste to energy: Enhancing biogas utilization in dual-fuel engines using machine learning-based prognostic analysis
    Authors: Paramasivam, P., Alruqi, M., Ağbulut, Ü.
    Journal: Fuel
    Year: 2025
  3. Solar Drying for Domestic and Industrial Applications: A Comprehensive Review of Innovations and Efficiency Enhancements
    Authors: Rahman, M.A., Hasnain, S.M.M., Paramasivam, P., Zairov, R., Ayanie, A.G.
    Journal: Global Challenges
    Year: 2025
  4. Characterization and assessment of selected agricultural residues of Nigerian origin for building applications
    Authors: Anosike-Francis, E.N., Ihekweme, G.O., Ubi, P.A., Onwualu, A.P., Vololonirina, R.
    Journal: Cogent Engineering
    Year: 2025
  5. Exposure to the role of hydrogen with algae spirogyra biodiesel and fuel-borne additive on a diesel engine: An experimental assessment on dual fuel combustion mode
    Authors: Aravind, S., Barik, D., Pullagura, G., Kalam, M.A., Kit, C.C.
    Journal: Case Studies in Thermal Engineering
    Year: 2025
    Citations: 1
  6. Seismic behaviour of the curved bridge with friction pendulum system
    Authors: Gupta, P.K., Agrawal, S., Ghosh, G., Kumar, V., Paramasivam, P.
    Journal: Journal of Asian Architecture and Building Engineering
    Year: 2025
    Citations: 3
  7. Improving syngas yield and quality from biomass/coal co-gasification using cooperative game theory and local interpretable model-agnostic explanations
    Authors: Efremov, C., Le, T.T., Paramasivam, P., Osman, S.M., Chau, T.H.
    Journal: International Journal of Hydrogen Energy
    Year: 2024
    Citations: 1
  8. Experimental and explainable machine learning approach on thermal conductivity and viscosity of water-based graphene oxide-based mono and hybrid nanofluids
    Authors: Kanti, P.K., Paramasivam, P., Wanatasanappan, V.V., Dhanasekaran, S., Sharma, P.
    Journal: Scientific Reports
    Year: 2024
    Citations: 1
  9. Design and simulation of CsPb.625Zn.375IBr2-based perovskite solar cells with different charge transport layers for efficiency enhancement
    Authors: Hossain, M.K., Islam, M.A., Uddin, M.S., Mishra, V.K., Haldhar, R.
    Journal: Scientific Reports
    Year: 2024
  10. Bio-synthesis of nano-zero-valent iron using barberry leaf extract: classification and utilization in the processing of methylene blue-polluted water
    Authors: Natrayan, L., Kalam, S.A., Sheela, S., Paramasivam, P., Shanmugam, K.
    Journal: Discover Applied Sciences
    Year: 2024

 

 

 

 

Ritwik Maiti | Mechanical Engineering | Best Researcher Award

Dr. Ritwik Maiti | Mechanical Engineering | Best Researcher Award

Dr. Ritwik Maiti is an accomplished researcher and Assistant Professor in the Department of Mechanical Engineering at Birla Institute of Technology, Mesra, India. With a focus on fluid dynamics and granular flow, he has built a robust academic and research profile over the years. Dr. Maiti has conducted significant research at renowned institutions such as the National University of Singapore and the University of Sheffield. His work emphasizes experimental fluid dynamics, fluid-structure interactions, and the behavior of granular materials under various conditions. A prolific contributor to scientific literature, Dr. Maiti has published numerous articles in high-impact international journals and presented at various prestigious conferences. His expertise and innovative approaches to complex engineering challenges position him as a leading figure in his field, contributing to advancements in both theoretical and applied research.

Professional Profile

Education

Dr. Ritwik Maiti earned his Ph.D. from the Indian Institute of Technology Kharagpur, where his thesis focused on dense granular flow through silos, channels, and other mediums. His educational journey began with a Bachelor of Technology in Mechanical Engineering from Kalyani Government Engineering College, followed by a Master of Engineering degree in Heat Power Engineering from Jadavpur University, Kolkata. These foundational degrees equipped him with a comprehensive understanding of mechanical engineering principles and the necessary analytical skills to tackle complex research problems. His academic training has been instrumental in shaping his research interests and methodologies, allowing him to contribute effectively to the fields of fluid dynamics and granular flow mechanics.

Professional Experience

Dr. Maiti’s professional journey encompasses significant roles that reflect his expertise in fluid mechanics and geotechnical engineering. He served as a Research Fellow in the Fluid Mechanics Research Group at the National University of Singapore, where he engaged in groundbreaking projects such as wind-tree interaction and minimizing segregation in granular mixtures. Following this, he was a Research Associate at the University of Sheffield’s Geotechnical Engineering Research Group, focusing on modeling flow through porous granular media. His current role as an Assistant Professor at the Birla Institute of Technology involves teaching and mentoring students while continuing to advance his research in fluid dynamics and granular flow. Dr. Maiti’s diverse professional experience enhances his teaching and research capabilities, making him a valuable asset to his institution and the broader academic community.

Research Interests

Dr. Ritwik Maiti’s research interests encompass a broad range of topics within fluid mechanics and granular flow. His primary areas of focus include experimental fluid dynamics, geophysical flows, granular avalanche dynamics, and fluid-structure interaction. He is particularly interested in understanding granular mixing and segregation, impact craters, and underground cavity collapse. Dr. Maiti employs advanced methodologies such as the Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD), often integrating these approaches to explore multiphase flows and complex flow phenomena. His research aims to deepen the understanding of how granular materials behave under various conditions, which has important implications for industries ranging from civil engineering to environmental science. By addressing these complex challenges, Dr. Maiti contributes significantly to the advancement of knowledge in his field.

Research Skills

Dr. Ritwik Maiti possesses a diverse set of research skills that enhance his capabilities as a researcher and educator. His technical expertise includes the design and development of experimental facilities for fluid flow studies, high-speed photography, and image processing. He is proficient in employing Discrete Element Method (DEM) simulations and Computational Fluid Dynamics (CFD) to model and analyze complex fluid behaviors. His familiarity with advanced software tools such as MATLAB, AutoCAD, and LIGGGHTS further supports his research endeavors. Additionally, Dr. Maiti has extensive experience handling specialized equipment like high-speed cameras, data acquisition systems, and particle image velocimetry, which are essential for conducting high-quality experimental research. These skills enable him to conduct innovative research and mentor students effectively in their academic pursuits.

Awards and Honors

Dr. Ritwik Maiti has received recognition for his contributions to research and academia. His work has been published in numerous high-impact journals, underscoring his commitment to advancing knowledge in fluid mechanics and granular flow. He has also been actively involved in international conferences, presenting his research findings and engaging with the global scientific community. His contributions have not only enriched his institution but have also contributed to the broader field of mechanical engineering. While specific awards may vary, Dr. Maiti’s consistent publication record and active participation in conferences reflect his dedication to excellence in research. These achievements position him as a respected figure in his field, with the potential for further accolades as his career progresses.

Conclusion

Dr. Ritwik Maiti is a highly qualified candidate for the Best Researcher Award, with a strong foundation in research and numerous contributions to the field of mechanical engineering. His strengths in research experience, academic credentials, and technical expertise position him as a valuable asset to the scientific community. By addressing the areas for improvement, particularly in funding acquisition and community engagement, Dr. Maiti can further enhance his research impact. His commitment to advancing knowledge in fluid mechanics and granular flow makes him an excellent choice for this award.

Publications Top Notes

  • Experiments on eccentric granular discharge from a quasi-two-dimensional silo
    Authors: R. Maiti, G. Das, P.K. Das
    Year: 2016
    Citations: 35
  • Granular drainage from a quasi-2D rectangular silo through two orifices symmetrically and asymmetrically placed at the bottom
    Authors: R. Maiti, G. Das, P.K. Das
    Year: 2017
    Citations: 25
  • Flow field during eccentric discharge from quasi‐two‐dimensional silos–extension of the kinematic model with validation
    Authors: R. Maiti, S. Meena, P.K. Das, G. Das
    Year: 2016
    Citations: 19
  • Cracking of tar by steam reforming and hydrogenation: an equilibrium model development
    Authors: R. Maiti, S. Ghosh, S. De
    Year: 2013
    Citations: 6
  • Self organization of granular flow by basal friction variation: Natural jump, moving bore, and flying avalanche
    Authors: R. Maiti, G. Das, P.K. Das
    Year: 2023
    Citations: 2
  • Discrete element model of low-velocity projectile penetration and impact crater on granular bed
    Authors: R. Maiti, A.K. Roy
    Year: 2024
    Citations: N/A
  • DEM Simulation of Projectile Impact on a Granular Bed
    Authors: R. Maiti, S. Chakraborty
    Year: 2023
    Citations: N/A
  • General Feasibility of Physical Models of Tree Branches
    Authors: D.S. Tan, R. Maiti, Y.W. Tan, B.Z.J. Wong, Y. Liew, J.H. Tan, D.T.T. Lee, …
    Year: 2022
    Citations: N/A
  • Effect of particle insertion rate and angle of insertion on segregation in gravity-driven chute flow
    Authors: R. Maiti, D.S. Tan
    Year: 2020
    Citations: N/A
  • Minimization of granular segregation by volumetric particle addition during gravity driven chute flow at different inclinations and different base roughnesses
    Authors: R. Maiti, D.S. Tan
    Year: 2019
    Citations: N/A

SUDHANSU SEKHAR MISHRA | MECHANICAL ENGINEERING | Best Researcher Award

Dr. SUDHANSU SEKHAR MISHRA | MECHANICAL ENGINEERING | Best Researcher Award

ASSISTANT PROFESSOR at GOVERNMENT COLLEGE OF ENGINEERING KEONJHAR ODISHA INDIA, India.

Dr. Sudhansu Sekhar Mishra is an Assistant Professor in the Mechanical Engineering Department at the Government College of Engineering in Keonjhar, Odisha, India. He holds a Ph.D. in Bio-fuel from C V Raman Global University, Bhubaneswar, and has a strong background in mechanical engineering, with expertise in areas such as bio-fuels, heat exchangers, optimization, and multiphase flow. Dr. Mishra has a robust academic profile, including a Master’s degree from the National Institute of Foundry & Forge Technology and a Bachelor’s degree from Seemanta Engineering College. Throughout his career, he has gained valuable experience through teaching and research positions at various institutions. His research interests and skills encompass experimental techniques, computational modeling, data analysis, and optimization. Dr. Mishra’s dedication to advancing knowledge in mechanical engineering is evident through his active involvement in research and academic activities.

Professional Profiles:

Education:

Dr. Mishra’s academic journey includes a Ph.D. in Bio-fuel from C V Raman Global University, Bhubaneswar, awarded in 2023. Prior to his doctoral studies, he obtained an M.Tech. in FFT (Foundry & Forge Technology) from the National Institute of Foundry & Forge Technology, Ranchi, in 2013, achieving a commendable CGPA of 7.83/10. His undergraduate education comprised a B.Tech. in Mechanical Engineering from Seemanta Engineering College, Mayurbhanj, Odisha, in 2006, where he attained a solid academic performance with a score of 72%. Dr. Mishra initiated his academic journey with a Diploma in Science from SCTE&VT, Odisha, in 2001, and completed his secondary education with distinction under the Board of Secondary Education, Odisha, in 1998.

Work Experience:

Dr. Sudhansu Sekhar Mishra has accumulated significant professional experience in academia, contributing his expertise to various educational institutions. Currently serving as an Assistant Professor at the Government College of Engineering, Keonjhar, since October 21, 2016, he plays a crucial role in guiding and mentoring students. Prior to this role, Dr. Mishra worked as an Assistant Professor at GIFT, Bhubaneswar, from July 1, 2013, to October 20, 2016, where he made substantial contributions to the academic and research environment. He began his career as a Lecturer at BCET, Balasore, on July 9, 2007, and served until July 31, 2011, laying the foundation for his teaching career. Throughout his tenure in academia, Dr. Mishra has demonstrated dedication to education, fostering learning, and nurturing the next generation of engineers.

Research Interest:

Dr. Sudhansu Sekhar Mishra’s research interests span several critical areas within mechanical engineering. His primary focus lies in bio-fuels, where he explores innovative approaches to enhance fuel efficiency and sustainability. Additionally, Dr. Mishra is deeply engaged in research related to three-fluid heat exchangers, aiming to optimize their design and performance for various applications. His expertise extends to areas such as natural convection and multiphase flow, where he investigates phenomena essential for understanding and improving heat transfer processes. Furthermore, Dr. Mishra is involved in research on conjugate heat transfer, seeking to elucidate the complex interactions between fluid flow and heat transfer in different systems. Through his diverse research interests, Dr. Mishra contributes to advancing knowledge and addressing critical challenges in mechanical engineering.

Award and Honors:

Dr. Sudhansu Sekhar Mishra’s dedication to academic excellence and research has earned him recognition and accolades throughout his career. His notable achievements include receiving prestigious awards and honors in the field of mechanical engineering. Dr. Mishra has been commended for his outstanding contributions to research and innovation, reflecting his commitment to advancing knowledge and addressing critical challenges in his field. These awards serve as a testament to Dr. Mishra’s expertise and leadership in mechanical engineering and underscore his significant impact on the academic and scientific community.

Research Skills:

Dr. Sudhansu Sekhar Mishra possesses a diverse set of research skills that enable him to conduct cutting-edge studies and contribute to the advancement of knowledge in mechanical engineering. His expertise includes proficiency in experimental techniques, data analysis, and computational modeling. Dr. Mishra is skilled in conducting literature reviews, designing experiments, and collecting and analyzing data using various statistical methods and software tools. Additionally, he has experience in numerical simulations, finite element analysis, and computational fluid dynamics. Dr. Mishra’s research skills also extend to the development and optimization of engineering systems, as well as the interpretation and dissemination of research findings through publications and presentations. His comprehensive skill set allows him to tackle complex research problems and generate impactful insights that contribute to the field of mechanical engineering.

Publications:

  1. Thermo-hydraulic performance augmentation in residential heating applications using a novel multi-fluid heat exchanger with helical coil tube insertion
    • Authors: Almasri, B., Mishra, S.S., Mohapatra, T.
    • Citations: 1
    • Year: 2024
  2. Experimental investigation and performance optimization of thermo-hydraulic and exergetic characteristics of a novel multi-fluid heat exchanger
    • Authors: Almasri, B., Mohapatra, T., Mishra, S.S.
    • Citations: 0
    • Year: 2023
  3. Performance, emissions, and economic evaluation of a VCR CI engine using a bio-ethanol and diesel fuel combination with Al2O3 nanoparticles
    • Authors: Mohapatra, T., Mishra, S.S., Sahoo, S.S., Albani, A., Awad, M.M.
    • Citations: 2
    • Year: 2023
  4. Determination of the sustainability index along with energy-exergy-emission-economic analysis of a VCR diesel engine fuelled with diesel-bioethanol-Al2O3 nanoparticles
    • Authors: Mohapatra, T., Mishra, S.S., Sahoo, S.S.
    • Citations: 2
    • Year: 2023
  5. Experimentation and Performance Parametric Optimization of Soybean-Based Biodiesel Fired Variable Compression Ratio CI Engine Using Taguchi Method
    • Authors: Mishra, P., Mahapatra, T., Padhi, B.N., Sahoo, S.S., Mishra, S.S.
    • Citations: 1
    • Year: 2023
  6. Functional Investigation, Multiple Response Optimization, and Economic Analysis of a VCR CI Engine Fired with Diesel, Calophyllum Inophyllum Oil, and Waste Biomass-Derived Producer Gas in Multi-fuel Mode
    • Authors: Mishra, S.S., Mohapatra, T., Sahoo, S.S.
    • Citations: 2
    • Year: 2023
  7. Multi-response optimization of energy, exergy, emission, economic characteristics of a variable compression ratio diesel engine fuelled with diesel–bioethanol–Al2O3 nanoparticle blend using Taguchi–Grey approach
    • Authors: Mishra, S.S., Mohapatra, T.
    • Citations: 0
    • Year: 2023
  8. Taguchi and ANN-based optimization method for predicting maximum performance and minimum emission of a VCR diesel engine powered by diesel, biodiesel, and producer gas
    • Authors: Mohapatra, T., Mishra, S.S., Bathre, M., Sahoo, S.S.
    • Citations: 41
    • Year: 2023
  9. Energy-exergy-emission-economic performance and multi-response optimisation of a VCR CI engine using bio ethanol blended diesel fuel with Al2O3 nanoparticles
    • Authors: Mishra, S.S., Mohapatra, T.
    • Citations: 4
    • Year: 2023
  10. Parametric optimization of a VCR diesel engine run on diesel-bioethanol-Al2O3 nanoparticles blend using Taguchi-Grey and RSM method: a comparative study
    • Authors: Mohapatra, T., Mishra, S.S.
    • Citations: 2
    • Year: 2023