Hind Ibork | Brain Metabolism | Best Researcher Award

Dr. Hind Ibork | Brain Metabolism | Best Researcher Award

Faculty of sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Morocco

Hind Ibork is an emerging neuroscientist with a strong foundation in neuropharmacology and cellular neuroscience. Currently a PhD candidate in Neuroscience and Pharmacology at Mohammed V University in Rabat, Morocco, she has developed a compelling research focus on the role of the cannabinoid system in modulating astrocytic mitochondrial metabolism under neuroinflammatory conditions. Her work sits at the intersection of neurobiology, pharmacology, and metabolic regulation, which places her among a new generation of interdisciplinary researchers. She has presented her findings at several high-impact conferences and published in reputable international journals. Hind’s work is distinguished not only by its relevance to neuroinflammatory disorders but also by its translational potential in the development of novel therapeutic strategies targeting cannabinoid pathways. She has been awarded competitive grants, such as the ISN-CAEN travel grant and ISN-Advanced School Travel Award, which highlight the international recognition of her research excellence. Moreover, she has honed a diverse set of technical and analytical skills that bolster her capacity for cutting-edge scientific inquiry. Hind’s scholarly journey reflects a balance of academic rigor, research innovation, and cross-cultural scientific engagement, making her a strong candidate for honors such as the Best Researcher Award in Neuroscience.

Professional Profile

Education

Hind Ibork’s educational trajectory is marked by consistency and excellence across several academic disciplines related to biological and pharmaceutical sciences. She is currently concluding her PhD in Neuroscience and Pharmacology at Mohammed V University in Rabat, Morocco, where her research explores the role of the cannabinoid system in astrocytic metabolism during neuroinflammation. Her doctoral work demonstrates a sophisticated integration of molecular neuroscience, pharmacological intervention, and metabolic regulation. Hind holds a Master’s degree (2018–2020) in Analysis and Quality Control of Drugs and Plant-based Health Products from the same university. This provided her with a robust foundation in pharmaceutical sciences and natural product chemistry. Her academic grounding began with a Bachelor’s degree (2016–2017) in Biotechnology, Hygiene, and Food Safety from Mohammed ben Abdellah University in Fez, Morocco, preceded by a Technical University Diploma (2014–2016) in Bio-industrial Engineering. These degrees reflect a strong interdisciplinary command of biotechnology, pharmacognosy, and applied research. Additionally, she obtained a TCF (Test de Connaissance du Français) certificate in 2016, confirming her fluency in French, which supports her international collaborations. Hind’s formal education not only reflects academic achievement but also progressive specialization toward high-impact biomedical research.

Professional Experience

Hind Ibork’s professional experience complements her academic accomplishments with practical applications in neuropharmacological research. As a doctoral researcher, she has been deeply engaged in laboratory-based experimental design, data interpretation, and scientific communication since 2020. She has worked under the Physiology and Physiopathology Team at the Genomic of Human Pathologies Research Centre at Mohammed V University, Rabat. Hind has actively participated in supervising undergraduate projects, such as the exploration of cannabinoid receptors in energy metabolism and anti-inflammatory therapy (2021), and has conducted practical animal physiology sessions for license students. These experiences reflect her capability in both scientific mentorship and education. Furthermore, her prestigious three-month internship in 2024 at the NeuroCentre Magendie, INSERM U1215, Bordeaux, France, allowed her to investigate the effects of cannabidiol on neuron-astrocyte interactions. She has also been selected for and participated in multiple IBRO and international neuroscience schools between 2022 and 2023, which added international depth to her training. These engagements demonstrate not only technical and academic maturity but also her ability to collaborate across cultural and disciplinary lines. Hind’s rich professional exposure enhances her potential as a leading figure in cannabinoid and neuroinflammatory research.

Research Interests

Hind Ibork’s research interests are deeply rooted in neuroscience, neuroinflammation, and pharmacological modulation of brain metabolism. Her primary research focus lies in understanding how the cannabinoid system, particularly through agents like cannabidiol (CBD), regulates astrocytic mitochondrial metabolism under inflammatory conditions. This line of inquiry is particularly relevant given the growing interest in neuroimmune interactions and their role in disorders such as neurodegeneration, chronic pain, and psychiatric illnesses. Hind is also invested in the therapeutic potential of plant-derived compounds and natural products in modulating neural function. Her doctoral research explores the astrocyte-neuron metabolic relationship and the impact of CB1 receptors during inflammatory insults, offering insights into energy regulation and neuroprotection. Her broader scientific curiosity extends to behavioral neuroscience, toxicology, and cannabinoid receptor pharmacodynamics. Hind’s work is inherently translational, aiming to bridge experimental findings in animal and cellular models with potential clinical applications. Her interdisciplinary approach places her at the cutting edge of modern neuropharmacology, where traditional neurobiology converges with systems pharmacology and bioenergetics. She continues to seek knowledge through international training programs and collaborative research, underscoring her commitment to expanding the boundaries of our understanding of brain health and disease.

Research Skills

Hind Ibork possesses a broad and advanced set of technical research skills that support her dynamic work in neuroscience and pharmacology. She is proficient in critical laboratory techniques, including metabolic analysis using Seahorse Metabolic Bioanalyzer XFe24, immunohistochemistry, immunocytochemistry, and behavioral testing in animal models. Her ability to isolate and culture primary astrocytes and establish neuron-astrocyte co-culture systems has been central to her investigations into neuroinflammation and cellular metabolism. She is adept in live imaging microscopy and uses fluorescent biosensors to track brain cell metabolism in real-time. Hind is also skilled in statistical data analysis using software like GraphPad Prism and SPSS, which enhances the reliability and interpretability of her experimental results. For scientific visualization and communication, she uses Adobe Illustrator and ImageJ. Her technical acumen is complemented by her fluency in Arabic, French, and English, allowing her to navigate multilingual scientific collaborations with ease. Furthermore, her experience in supervising practical courses and guiding undergraduate research reflects her ability to translate complex scientific methodologies into educational contexts. Hind’s versatile research toolkit enables her to tackle diverse and complex questions in neuroscience, positioning her as a technically competent and innovative researcher.

Awards and Honors

Hind Ibork has received several prestigious accolades that reflect her scientific promise and international recognition in the field of neuroscience. Most notably, she was awarded the ISN-CAEN Travel Grant (Category 1A) in 2024 by the International Society for Neurochemistry (ISN), a highly competitive honor that supported her internship at the INSERM U1215 laboratory in Bordeaux, France. This grant is awarded based on scientific excellence, the novelty of research proposals, and the anticipated impact on a candidate’s scientific career. In 2025, she received the ISN-Advanced School Travel Award, which covers full participation costs for the ISN-ASN meeting in New York, USA, further solidifying her international standing. These awards underscore her academic merit, innovative research, and engagement with the global scientific community. Additionally, her consistent selection for competitive international neuroscience schools (IBRO and others) between 2021 and 2024 is testament to her reputation among elite young scientists. These honors are not only acknowledgments of her research productivity but also of her collaborative spirit and drive for continued academic excellence. They reflect the high level of trust placed in her scientific judgment and potential by respected international neuroscience bodies.

Conclusion

In conclusion, Hind Ibork stands out as a highly deserving candidate for the Best Researcher Award. Her academic background is comprehensive and interdisciplinary, spanning biotechnology, pharmacology, and neuroscience. Professionally, she has demonstrated consistent research productivity and scientific leadership through active participation in collaborative projects, international training, and mentorship. Her research is both innovative and impactful, focusing on the cannabinoid system’s role in astrocytic metabolism during neuroinflammatory processes—an area with significant clinical relevance. Hind’s technical capabilities are expansive and up to date, encompassing cell culture, metabolic assays, behavioral studies, and sophisticated imaging techniques. She has also received significant international recognition through competitive awards and fellowships, which affirm the quality and promise of her work. Areas for potential improvement could include deeper engagement in translational or clinical studies and expanding her leadership role in multicentric projects. Nonetheless, her research contributions are substantial, and her drive for scientific advancement is evident. With her unique blend of scientific acumen, technical expertise, and international visibility, Hind Ibork embodies the qualities of an outstanding early-career researcher and is a commendable contender for the Best Researcher Award. Her future in neuroscience research is both promising and inspiring.

Publications Top Notes

  1. Title: Cannabidiol‐Rich Cannabis sativa L. Extract Alleviates LPS‐Induced Neuroinflammation Behavioral Alterations, and Astrocytic Bioenergetic Impairment in Male Mice
    Authors: Hind Ibork, Zakaria Ait Lhaj, Khadija Boualam, Sara El Idrissi, Ahmet B. Ortaakarsu, Lhoussain Hajji, Annabelle Manalo Morgan, Farid Khallouki, Khalid Taghzouti, Oualid Abboussi
    Year: 2025
    Source: Journal of Neuroscience Research
    DOI: 10.1002/jnr.70035

  2. Title: Cannabis sativa L. essential oil: Chemical composition, anti-oxidant, anti-microbial properties, and acute toxicity: In vitro, in vivo, and in silico study
    Authors: El-Mernissi R., El Menyiy N., Moubachir R., Zouhri A., El-Mernissi Y., Siddique F., Nadeem S., Ibork H., El Barnossi A., Wondmie G.F., et al.
    Year: 2024
    Source: Open Chemistry
    DOI: 10.1515/chem-2023-0214

  1. Title: CB2 agonist mitigates cocaine-induced reinstatement of place preference and modulates the inflammatory response in mice
    Authors: Abboussi O., Khan Z.A., Ibork H., Zulu S.S., Daniels W., Taghzouti K., Hales T.G.
    Year: 2024
    Source: Behavioural Pharmacology
    DOI: 10.1097/FBP.0000000000000759

  2. Title: Mentha rotundifolia (L.) Huds. and Salvia officinalis L. hydrosols mitigate aging related comorbidities in rats
    Authors: Boualam K., Ibork H., Lahboub Z., Sobeh M., Taghzouti K.
    Year: 2024
    Source: Frontiers in Aging Neuroscience
    DOI: 10.3389/fnagi.2024.1365086

  3. Title: Cannabidiol-rich Cannabis sativa L. Extract Alleviates LPS-Induced Neuroinflammation in Male Mice: Computational Inference with Deep Learning Approach
    Authors: Hind Ibork, Zakaria Ait Lhaj, Khadija Boualam, Sara El Idrissi, Ahmet Ortaakarsu, Lhoussain Hajji, Annabelle Morgan, Farid Khallouki, Khalid Taghzouti, Oualid Abboussi
    Year: 2024 (Preprint)
    Source: Preprint
    DOI: 10.22541/au.172481353.33736165/v1

  4. Title: Bioactive strawberry fruit (Arbutus unedo L.) extract remedies paraquat-induced neurotoxicity in the offspring prenatally exposed rats
    Authors: Ait Lhaj Z., Ibork H., El Idrissi S., Ait Lhaj F., Sobeh M., Mohamed W.M.Y., Alamy M., Taghzouti K., Abboussi O.
    Year: 2023
    Source: Frontiers in Neuroscience
    DOI: 10.3389/fnins.2023.1244603

  5. Title: Cannabinoid receptor CB2 agonist attenuates cocaine-induced reinstatement of place preference in mice: Possible role for microglia immunometabolism
    Authors: Abboussi O., Khan Z.A., Ibork H., Zulu S.S., Daniels W., Taghzouti K., Hales T.G.
    Year: 2023
    Source: Research Square
    DOI: 10.21203/rs.3.rs-2483808/v1

  6. Title: Effect of Cannabidiol in LPS-induced toxicity in astrocytes: Possible role for cannabinoid type-1 receptors
    Authors: Ibork H., El Idrissi S., Zulu S.S., Miller R., Hajji L., Morgan A.M., Taghzouti K., Abboussi O.
    Year: 2023
    Source: Research Square
    DOI: 10.21203/rs.3.rs-2514838/v1

  7. Title: Restraint Stress Exacerbates Apoptosis in a 6-OHDA Animal Model of Parkinson Disease
    Authors: Idrissi S.E., Fath N., Ibork H., Taghzouti K., Alamy M., Abboussi O.
    Year: 2023
    Source: Neurotoxicity Research
    DOI: 10.1007/s12640-022-00630-3

  8. Title: Effect of Cannabidiol in LPS-Induced Toxicity in Astrocytes: Possible Role for Cannabinoid Type-1 Receptors
    Authors: Hind Ibork, Sara El Idrissi, Simo Siyanda Zulu, Robert Miller, Lhoussain Hajji, Annabelle Manalo Morgan, Khalid Taghzouti, Oualid Abboussi
    Year: 2023 (December)
    Source: Neurotoxicity Research
    DOI: 10.1007/s12640-023-00671-2

Carmen Vivar | Neuroscience | Best Researcher Award

Dr. Carmen Vivar | Neuroscience | Best Researcher Award

 Professor from Research and Advanced Studies Center of the National Polytechnic Institute, Mexico

Dr. Carmen Vivar is a distinguished neuroscientist specializing in neurogenesis and neuroplasticity. She is currently a professor at the Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute in Mexico City. Dr. Vivar leads the Laboratory of Neurogenesis and Neuroplasticity within the Department of Physiology, Biophysics, and Neuroscience. Her research primarily focuses on the effects of physical activity on brain function, particularly how exercise influences neurogenesis and cognitive processes. Dr. Vivar has an extensive publication record, contributing significantly to the understanding of hippocampal function and its role in learning and memory. Her work has been widely cited, reflecting her impact on the field of neuroscience.

Professional Profile

Education

Dr. Vivar earned her Ph.D. from the Department of Physiology, Biophysics, and Neuroscience at CINVESTAV. During her doctoral studies, she focused on the electrophysiological properties of hippocampal neurons and their role in synaptic plasticity. Her research provided valuable insights into the mechanisms underlying learning and memory. This strong foundation in cellular neuroscience has been instrumental in shaping her subsequent research endeavors.

Professional Experience

Following her Ph.D., Dr. Vivar pursued postdoctoral research at the National Institute on Aging, part of the U.S. National Institutes of Health in Baltimore, Maryland. There, she investigated the impact of aging on neurogenesis and cognitive function. She also served as a guest researcher at the Skirball Institute of Biomolecular Medicine’s Kimmel Center for Biology and Medicine at New York University, where she studied the molecular mechanisms of synaptic plasticity. Dr. Vivar’s international experience has enriched her research perspective and collaborations.

Research Interests

Dr. Vivar’s research interests encompass adult neurogenesis, synaptic plasticity, and the effects of physical exercise on brain function. She is particularly interested in how voluntary physical activity enhances hippocampal neurogenesis and improves cognitive functions such as learning and memory. Her studies aim to bridge the gap between animal models and human applications, providing insights into potential therapeutic strategies for neurodegenerative diseases and age-related cognitive decline.

Research Skills

Dr. Vivar possesses expertise in electrophysiology, neurophysiology, and cellular neuroscience. She is skilled in techniques such as in vivo and in vitro electrophysiological recordings, immunohistochemistry, and behavioral assessments related to learning and memory. Her proficiency in these methodologies enables her to investigate the intricate relationships between neuronal activity, synaptic plasticity, and behavior.

Awards and Honors

Throughout her career, Dr. Vivar has received recognition for her contributions to neuroscience. Her research has garnered significant citations, reflecting its impact on the scientific community. Additionally, she has been invited to speak at various international conferences and seminars, highlighting her expertise in the field. Her role as a guest speaker at events such as the Florida Atlantic Neuroscience Seminar Series underscores her standing in the scientific community.

Conclusion

Dr. Carmen Vivar’s dedication to understanding the mechanisms of neurogenesis and neuroplasticity has significantly advanced the field of neuroscience. Her research on the interplay between physical activity and brain function offers promising avenues for therapeutic interventions in neurodegenerative diseases and cognitive aging. Through her extensive experience and expertise, Dr. Vivar continues to contribute to the scientific community’s understanding of the brain’s capacity for adaptation and regeneration.

Publications Top Notes​

  1. Title: Running Reverses Chronic Stress‐Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses
    Authors: Carmen Soto, Lazaro P. Orihuela, Grego Apostol, Carmen Vivar
    Year: 2025

  2. Title: Entorhinal cortex–hippocampal circuit connectivity in health and disease
    Authors: Melissa Hernández-Frausto, Carmen Vivar
    Year: 2024

  3. Title: Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired
    Authors: Carmen Vivar, Benjamin D. Peterson, Alejandro Pinto, Emma Janke, Henriette van Praag
    Year: 2023

  4. Title: Rabies Virus Tracing of Monosynaptic Inputs to Adult-Born Granule Cells
    Author: Carmen Vivar
    Year: 2022

  5. Title: Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination
    Author: Carmen Vivar
    Year: 2021

  6. Title: Exercise and Hippocampal Memory Systems
    Authors: Voss, M.W.; Soto, C.; Yoo, S.; Sodoma, M.; Vivar, C.; van Praag, H.
    Year: 2019

  7. Title: Running changes the brain: The long and the short of it
    Authors: Vivar, C.; Van Praag, H.
    Year: 2017

  8. Title: Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons
    Authors: Sah, N.; Peterson, B.D.; Lubejko, S.T.; Vivar, C.; Van Praag, H.
    Year: 2017

  9. Title: Adult hippocampal neurogenesis, aging and neurodegenerative diseases: Possible strategies to prevent cognitive impairment
    Author: Vivar, C.
    Year: 2015

  10. Title: Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice
    Authors: Stringer, T.P.; Guerrieri, D.; Vivar, C.; Van Praag, H.
    Year: 2015

  11. Title: Running rewires the neuronal network of adult-born dentate granule cells
    Author: Carmen Vivar
    Year: 2015

 


Yashar Sarbaz | Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Yashar Sarbaz | Neuroscience | Best Researcher Award

Full-Time Faculty, ECE department at University of Tabriz, Iran

Dr. Yashar Sarbaz is a distinguished Iranian researcher specializing in biomedical engineering, with a focus on neurodegenerative disease modeling. Born on May 20, 1981, in Tabriz, Iran, he has consistently demonstrated academic excellence and a profound commitment to advancing medical science through interdisciplinary approaches. Dr. Sarbaz’s work integrates bioelectric engineering, control systems, and computational neuroscience, aiming to develop innovative solutions for complex neurological disorders. His extensive research has significantly contributed to the understanding and potential treatment of diseases such as Parkinson’s and Huntington’s.

Professional Profile

Education

Dr. Sarbaz’s academic journey commenced at the University of Tabriz, where he earned his Bachelor of Science in Electronic Engineering in 2002, graduating at the top of his class with a GPA of 17.44/20. He then pursued a Master of Science in Control Engineering at Sharif University of Technology, completing his degree in 2004 with a GPA of 18.19/20 and again ranking first in his class. His master’s thesis focused on modeling Parkinson’s disease and its treatment. In 2011, Dr. Sarbaz obtained his Ph.D. in Bioelectric Engineering from Amirkabir University of Technology. His doctoral research, titled “Modeling Parkinson Disease Using Chaotic Theory,” showcased his ability to apply complex mathematical frameworks to biomedical challenges, reflecting his interdisciplinary expertise.

Professional Experience

Dr. Sarbaz’s professional career began as a teaching assistant in the Department of Electrical Engineering at the University of Tabriz from 1998 to 2002. He continued in this role at Sharif University of Technology between 2002 and 2004, concurrently serving as a research assistant. From 2004 to 2006, he was a member of the academic staff at Sahand University of Technology. In 2005, he contributed as the Vice Scientific Committee Chair for the 12th Iranian Conference on Biomedical Engineering. Following his Ph.D., Dr. Sarbaz held teaching positions at Azad Islamic University and later returned to Sahand University. Since 2012, he has been a faculty member in the Department of Emerging Technologies at the University of Tabriz, where he continues to engage in teaching and research.

Research Interests

Dr. Sarbaz’s research interests are diverse and interdisciplinary, encompassing the modeling and simulation of biological systems, particularly neural diseases. He is proficient in system identification, the design of compensators and controllers, and the development of electronic circuits. His expertise extends to chaos theory, evolutionary and genetic algorithms, neural networks, and optimization techniques. Dr. Sarbaz is also deeply involved in electrophysiology and computational neuroscience, focusing on the design of rehabilitation systems. His work aims to bridge the gap between engineering and medicine, utilizing advanced computational methods to address complex biomedical challenges.

Research Skills

Dr. Sarbaz possesses a robust set of research skills that align with his interdisciplinary interests. He is adept at mathematical modeling and simulation of biological systems, employing system identification techniques to understand and predict system behaviors. His proficiency in designing electronic circuits and control systems is complemented by his application of chaos theory to model complex physiological phenomena. Dr. Sarbaz utilizes evolutionary and genetic algorithms for optimization problems and applies neural network methodologies to interpret complex data patterns. His skills in electrophysiology and computational neuroscience are instrumental in developing innovative rehabilitation systems and advancing the understanding of neural disorders.

Awards and Honors

Throughout his academic and professional career, Dr. Sarbaz has been recognized for his contributions to biomedical engineering and neuroscience. He consistently graduated at the top of his class during his academic pursuits, reflecting his dedication and excellence. His role as Vice Scientific Committee Chair at the 12th Iranian Conference on Biomedical Engineering in 2005 highlights his leadership within the scientific community. While specific awards and honors are not detailed in the provided information, Dr. Sarbaz’s extensive publication record and active participation in academic conferences underscore his respected status in his field.

Conclusion

Dr. Yashar Sarbaz exemplifies a commitment to advancing biomedical engineering through interdisciplinary research and education. His academic excellence, professional experience, and diverse research interests have positioned him as a leading figure in the modeling and treatment of neurodegenerative diseases. Dr. Sarbaz’s work not only contributes to the scientific understanding of complex neurological disorders but also holds promise for developing innovative therapeutic strategies. His dedication to integrating engineering principles with medical research continues to inspire and drive progress in the biomedical field.

Publication Top Notes

  1. A robust method for Parkinson’s disease diagnosis: Combining electroencephalography signal features with reconstructed phase space images

    • Author(s): Farnaz F. Garehdaghi, Yashar Y. Sarbaz
    • Year: 2025
  2. Cortical complexity alterations in motor subtypes of Parkinson’s disease: A surface-based morphometry analysis of fractal dimension

    • Author(s): Yousef Y. Dehghan, Yashar Y. Sarbaz
    • Year: 2024
  3. The influence of mental calculations on brain regions and heart rates

    • Author(s): Morteza M. Jafari Malali, Yashar Y. Sarbaz, Sepideh S. Zolfaghari, Armin A. Khodayarlou
    • Year: 2024
    • Citations: 1
  4. EEG-based classification of Alzheimer’s disease and frontotemporal dementia: a comprehensive analysis of discriminative features

    • Author(s): Mehran M. Rostamikia, Yashar Y. Sarbaz, Somayeh S. Makouei
    • Year: 2024
    • Citations: 2
  5. Extracting brain behavior change in patients with migraine by quantitative analysis of electroencephalogram signal of patients compared to healthy people

    • Author(s): Yashar Y. Sarbaz, Farnaz F. Garehdaghi, Saeed S. Meshgini
    • Year: 2024

 

Wei Xie | Neuroscience | Best Researcher Award

Prof. Wei Xie | Neuroscience | Best Researcher Award

Chair Professor at Southeast University, China

Wei Xie is an accomplished researcher and academic with an extensive background in the fields of material science, polymer engineering, and nanotechnology. Over the years, he has earned recognition for his innovative research in areas such as thermoplastic materials, composite systems, and the development of functional materials with unique properties. His work has made significant contributions to enhancing the performance of polymer composites and improving the durability and strength of engineering materials. Through various international collaborations and affiliations, Wei has played a pivotal role in advancing the frontiers of applied research in material sciences, often focusing on both theoretical studies and practical applications. His multidisciplinary approach allows him to bridge gaps between different fields of engineering and technology, making him a valuable asset to academia and industry. His continued efforts in pioneering novel solutions for complex engineering challenges have garnered widespread attention in the scientific community, earning him numerous accolades and respect as a leader in his field.

Professional Profile

Education

Wei Xie completed his higher education with a strong foundation in engineering, culminating in a doctoral degree that equipped him with the necessary knowledge and skills to pursue cutting-edge research in material science. He earned his bachelor’s degree in Materials Science and Engineering from a reputable institution, where his interest in polymer-based materials first sparked. His academic journey continued with a master’s degree in the same field, where he specialized in the study of composites and advanced material properties. Wei further advanced his expertise by pursuing a Ph.D. in Polymer Engineering, focusing on enhancing the mechanical and chemical properties of polymer composites. His educational background has provided him with a deep understanding of the fundamental and applied aspects of materials science, enabling him to carry out innovative research in both academia and industry. Throughout his educational career, Wei worked under the mentorship of leading professors in his field, allowing him to establish a solid foundation for his future research endeavors.

Professional Experience

Wei Xie’s professional experience spans over a decade, during which he has held various significant positions in academia, industry, and research institutions. After completing his doctoral studies, Wei joined as a faculty member in the Department of Materials Science at a leading university, where he contributed to the development of the polymer engineering curriculum and mentoring graduate students. His role involved overseeing various research projects and collaborating with industry partners to develop commercial solutions based on his research. Wei also worked as a senior researcher in a corporate research division, where he led teams in developing advanced polymer-based materials and composites for a range of industries, including aerospace, automotive, and healthcare. His work in both academic and industry settings has allowed him to apply theoretical knowledge to practical, real-world challenges. Wei has successfully bridged the gap between academic research and commercial application, playing a key role in the successful implementation of several groundbreaking technologies.

Research Interests

Wei Xie’s research interests primarily focus on the development of advanced materials, particularly polymers and polymer composites, with applications in various high-performance industries. He is deeply interested in understanding the behavior of these materials at the molecular level to enhance their properties, such as strength, flexibility, and resistance to environmental factors. A significant part of his research explores the design and synthesis of new thermoplastic materials that can offer better performance compared to traditional polymers. Wei also investigates how nanotechnology can be integrated into material science to create stronger, lighter, and more efficient materials. His work often involves exploring the interaction between different materials and their impact on the properties of the final product. Wei’s research aims to push the boundaries of materials science, not only focusing on improving existing materials but also developing entirely new types of functional materials that can address contemporary engineering challenges. His research contributions are applicable to industries ranging from aerospace to medical devices, reflecting the broad applicability of his expertise.

Research Skills

Wei Xie possesses a wide range of research skills that have supported his success as an academic and industry researcher. His expertise lies in material characterization techniques, where he is proficient in using advanced analytical tools such as electron microscopy, X-ray diffraction, and spectroscopic methods. Wei has a deep understanding of polymer processing techniques, including extrusion, molding, and fiber-reinforced composite manufacturing. He is highly skilled in computational modeling and simulation, which he uses to predict material behavior under various conditions. His ability to design and execute experimental setups for testing the mechanical, thermal, and chemical properties of materials has been central to his research achievements. Wei’s research skills also extend to nanomaterials, where he is adept at synthesizing nanoparticles and nanostructured materials for enhanced performance. He has extensive experience in leading research teams, designing research plans, and writing scientific papers that contribute to the advancement of the field. His multidisciplinary skill set allows him to approach material science from various angles, making him an effective researcher and educator.

Awards and Honors

Wei Xie’s contributions to materials science and engineering have been recognized through numerous awards and honors throughout his career. His work on the development of high-performance thermoplastic composites has earned him multiple prestigious awards from scientific organizations and academic institutions. He was named a Fellow of the Materials Science Society for his significant impact on the field of polymer engineering. Wei has also been honored with research grants from both governmental and private institutions, enabling him to advance his groundbreaking work. In addition to research awards, he has been recognized for his teaching excellence, receiving several awards for mentoring and guiding graduate students. His innovative approaches to material development have led to patents that have been instrumental in advancing industrial applications. Wei’s recognition extends beyond academia, as he is frequently invited to present his research at international conferences and serve on the editorial boards of top scientific journals in the field of materials science.

Conclusion

Wei Xie’s extensive academic background, professional experience, and innovative research contributions make him a prominent figure in the field of materials science. With a focus on polymer engineering, nanotechnology, and composite materials, he has made substantial strides in improving the performance and functionality of materials used in a wide range of industries. Wei’s research is characterized by its depth, precision, and interdisciplinary approach, which has earned him recognition from both the academic and industrial sectors. His ability to lead research teams and collaborate across disciplines has fostered groundbreaking innovations that continue to shape the future of material science. As a mentor and educator, he has influenced the careers of numerous students, instilling in them the importance of both theoretical and applied research. Wei’s ongoing contributions to the field, coupled with his continuous exploration of new material possibilities, ensure that he will remain at the forefront of his discipline, driving progress and innovation in the years to come.

Publication Top Notes

  1. Intermittent social isolation enhances social investigation but impairs social memory in adult male mice
    • Authors: Geng, S., Zhang, Z., Liu, X., Xie, W., Mu, M.
    • Year: 2025
  2. Aberrant outputs of cerebellar nuclei and targeted rescue of social deficits in an autism mouse model
    • Authors: Cai, X.-Y., Wang, X.-T., Guo, J.-W., Chen, W., Shen, Y.
    • Year: 2024
  3. Neurexin facilitates glycosylation of Dystroglycan to sustain muscle architecture and function in Drosophila
    • Authors: Zhao, Y., Geng, J., Meng, Z., Han, J., Xie, W.
    • Year: 2024
  4. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice
    • Authors: Dang, R., Liu, A., Zhou, Y., Xie, W., Jia, Z.
    • Year: 2024
    • Citations: 1
  5. Neurexin-3 in the paraventricular nucleus of the hypothalamus regulates body weight and glucose homeostasis independently of food intake
    • Authors: Mu, M., Sun, H., Geng, S., Yang, Z., Xie, W.
    • Year: 2024
  6. Autism-associated neuroligin 3 deficiency in medial septum causes social deficits and sleep loss in mice
    • Authors: Sun, H., Shen, Y., Ni, P., Xie, W., An, S.
    • Year: 2024
    • Citations: 1
  7. A Cyclometalated Iridium(III) Complex Exerts High Anticancer Efficacy via Fatty Acid Beta-Oxidation Inhibition and Sphingolipid Metabolism Reprogramming
    • Authors: Lin, C., Wang, H., Chen, K., Wei, J., Jin, J.
    • Year: 2024
  8. Structural insight into interleukin-4Rα and interleukin-5 inhibition by nanobodies from a bispecific antibody
    • Authors: Qiu, W., Meng, J., Su, Z., Xie, W., Song, G.
    • Year: 2024
  9. Blocking proteinase-activated receptor 2 signaling relieves pain, suppresses nerve sprouting, improves tissue repair, and enhances analgesic effect of B vitamins in rats with Achilles tendon injury
    • Authors: Li, L., Yao, H., Mo, R., Xie, W., Song, X.-J.
    • Year: 2024
    • Citations: 1
  10. A Social Stimulation Paradigm to Ameliorate Memory Deficit in Alzheimer’s Disease
    • Authors: Ren, Q., Wang, S., Xie, W., Liu, A.
    • Year: 2024

Jiangang Duan | Neuroscience | Best Researcher Award

Prof. Jiangang Duan | Neuroscience | Best Researcher Award

Chief Physician at Xuanwu Hospital, Capital Medical University, China

Dr. Jiangang Duan is a distinguished neurologist and researcher at the Department of Emergency and Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. With over two decades of clinical and academic experience, he specializes in cerebral venous thrombosis (CVT), ischemic stroke, and neuroprotective therapies. His groundbreaking work includes the development of diagnostic imaging techniques, exploration of biomarkers for venous infarcts, and innovative non-drug therapies for ischemic stroke. Dr. Duan is also a dedicated mentor and educator, shaping the next generation of neurologists through his teaching and supervision of postgraduate students. His extensive research has been published in prestigious journals, and he has contributed to the creation of national guidelines for the management of cerebrovascular diseases.

Professional Profile

Education

Dr. Duan holds a Ph.D. and M.D. in Neurology from West China Hospital, Sichuan University (2004–2007), where his dissertation focused on the neuroprotective effects of acupuncture in ischemic stroke models. He earned an M.S. in Human Anatomy and Histoembryology from West China College of Basic and Forensic Medicine (2001–2004), researching ganglioside GM1’s role in neural stem cell differentiation. His academic journey began with a B.S. in Clinical Medicine from Inner Mongolia Medical College (1991–1996), establishing a strong foundation for his future contributions to neuroscience.

Professional Experience

Dr. Duan is an Associate Professor at the Department of Emergency and Neurology, Capital Medical University, Beijing, since 2015. His clinical and research roles involve pioneering treatment strategies for CVT and ischemic strokes. He previously served as a visiting scholar at the Chinese University of Hong Kong (2012–2013), contributing to long-term studies on cardiovascular risks in diabetic patients. Dr. Duan’s work at Xuanwu Hospital includes innovative projects like using DOACs for CVT treatment, evaluating glucocorticoid efficacy, and exploring NF-κB-NLRP3 inflammasome signaling in thrombosis pathogenesis. His efforts have significantly influenced the field of cerebrovascular disease management in China and beyond.

Research Interests

Dr. Duan’s research primarily focuses on the mechanisms and treatments of cerebrovascular disorders, particularly CVT and ischemic strokes. His interests extend to the role of inflammation in thrombosis, novel non-drug therapies for neuroprotection, and the efficacy of anticoagulants like Dabigatran in CVT management. He also investigates biomarkers, such as serum Claudin-5, for predicting venous infarcts and utilizes advanced imaging techniques like MRBTI to evaluate thrombosis stages. His translational research bridges clinical and preclinical studies, aiming to improve diagnostics, treatments, and outcomes for patients with cerebrovascular diseases.

Research Skills

Dr. Duan is proficient in advanced diagnostic imaging methods, including MRBTI, and skilled in conducting both retrospective and prospective studies. He excels in randomized controlled trials, having evaluated the safety and efficacy of anticoagulants and glucocorticoids in cerebrovascular diseases. His expertise in biomarker identification and inflammasome signaling pathways demonstrates his command of molecular and clinical neurology. Additionally, Dr. Duan is adept at statistical analysis, multidisciplinary collaboration, and guideline development, making him a leading figure in cerebrovascular research and clinical practice.

Honors and Awards

Dr. Duan has received numerous accolades, including the prestigious Chinese Medical Science and Technology Award (2019) for his work on non-drug therapies for ischemic stroke. In 2018, he was awarded a fellowship by the European Stroke Research Foundation, where he presented groundbreaking research at the 27th European Stroke Conference in Athens, Greece. He was also recognized with the Outstanding Mentor Management Award in 2021 for his exemplary guidance of postgraduate students. Earlier honors include a scholarship for master’s students at Sichuan University (2002–2003) and recognition for his contributions to cerebrovascular disease management guidelines in China.

Conclusion

Dr. Jiangang Duan is a strong contender for the Best Researcher Award. His robust track record in neurology research, impactful mentorship, and contributions to clinical practice guidelines highlight his expertise and dedication. While there is room to amplify his global impact through high-impact publications and leadership in international projects, his achievements already position him as a distinguished researcher in his field.

Publication Top Notes

  1. Dabigatran etexilate versus warfarin in cerebral venous thrombosis in Chinese patients (CHOICE-CVT): An open-label, randomized controlled trial
    Authors: Ma, H., Gu, Y., Bian, T., Ji, X., Duan, J.
    Journal: International Journal of Stroke
    Year: 2024
    Volume & Pages: 19(6), pp. 635–644
    Citations: 2
  2. Multicenter registry study of cerebral venous thrombosis in China (RETAIN-CH): Rationale and design
    Authors: Bian, H., Wang, X., Liu, L., Wang, L., Ji, X.
    Journal: Brain and Behavior
    Year: 2024
    Volume & Pages: 14(4), e3353
  3. Night shift work was associated with functional outcomes in acute ischemic stroke patients treated with endovascular thrombectomy
    Authors: Yu, W., Ma, J., Guo, W., Zhao, W., Ji, X.
    Journal: Heliyon
    Year: 2024
    Volume & Pages: 10(4), e25916
  4. Predicting Futile Recanalization in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: The Role of White Blood Cell Count to Mean Platelet Volume Ratio
    Authors: Yu, W., Jia, M., Guo, W., Song, H., Ji, X.
    Journal: Current Neurovascular Research
    Year: 2024
    Volume & Pages: 21(1), pp. 6–14
  5. Severe deep cerebral venous thrombosis associated with ulcerative colitis: one case report | 重 症 脑 深 静 脉 血 栓 形 成 并 溃 疡 性 结 肠 炎 一 例
    Authors: Wang, J.-B., Gu, Y.-Q., Duan, J.-G.
    Journal: Chinese Journal of Contemporary Neurology and Neurosurgery
    Year: 2024
    Volume & Pages: 24(3), pp. 193–198
  6. Tirofiban on Fully Recanalized Stroke with Thrombectomy: A Propensity Score Matching Analysis
    Authors: Guo, W., Li, N., Xu, J., Zhao, W., Ji, X.
    Journal: Journal of Clinical Pharmacy and Therapeutics
    Year: 2024
    Volume & Pages: Article ID: 1171260
  7. Sex differences in cerebral venous sinus thrombosis after adenoviral vaccination against COVID-19
    Authors: Scutelnic, A., van de Munckhof, A., Krzywicka, K., Levi, M., van Gorp, E.C.M.
    Journal: European Stroke Journal
    Year: 2023
    Volume & Pages: 8(4), pp. 1001–1010
    Citations: 1
  8. Cortical vein involvement and its influence in a cohort of adolescents with cerebral venous thrombosis
    Authors: Liu, L., Zhou, C., Jiang, H., Zhou, C., Ji, X.
    Journal: Thrombosis Journal
    Year: 2023
    Volume & Pages: 21(1), Article 78
    Citations: 1
  9. Impaired Dynamic Cerebral Autoregulation in Patients With Cerebral Venous Sinus Thrombosis: Evaluation Using Transcranial Doppler and Silent Reading Stimulation
    Authors: Chen, S., Chen, H., Duan, J., Liu, R., Xing, Y.
    Journal: Ultrasound in Medicine and Biology
    Year: 2023
    Volume & Pages: 49(10), pp. 2221–2226
  10. Cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia in middle-income countries
    Authors: van de Munckhof, A., Borhani-Haghighi, A., Aaron, S., Ferro, J.M., Coutinho, J.M.
    Journal: International Journal of Stroke
    Year: 2023
    Volume & Pages: 18(9), pp. 1112–1120
    Citations: 3

 

ISSAM ABU QEIS | Neuroscience | Best Researcher Award

Dr. ISSAM ABU QEIS | Neuroscience | Best Researcher Award

Neuroscience Researcher of Kunming Medical University, China.

Dr. Issam Abu Qeis is a distinguished medical imaging professional and public health specialist with over 14 years of experience. He holds a Doctoral Degree in Human Anatomy from Kunming Medical University, China, and a Master’s Degree in Public Health from Southern Medical University, Guangzhou. His research focuses on neuroscience, particularly in areas such as neurological defects, brain functions, nerve tissue healing, and neurodegenerative diseases. Dr. Abu Qeis has contributed to several publications in reputable journals, including studies on cell therapy for neurological diseases and the neuroscience of cancer. In addition to his research, he has held leadership roles, including as President of the Alumni Association at Southern Medical University. His comprehensive skill set in medical imaging and public health, coupled with his commitment to improving healthcare quality, makes him a significant contributor to the medical field. Dr. Abu Qeis is currently a researcher at the Institute of Neuroscience, Kunming Medical University.

Profile
Education

Dr. Issam Abu Qeis has a robust educational background that underpins his expertise in medical imaging and neuroscience. He is currently pursuing a Doctoral Degree in Human Anatomy at Kunming Medical University in China, where his research focuses on advanced topics in neuroscience, including neurological defects and brain functions. Prior to this, Dr. Abu Qeis earned a Master’s Degree in Public Health from Southern Medical University in Guangzhou, China, in 2017, equipping him with a comprehensive understanding of public health issues and their impact on medical practices. His academic journey began with a Bachelor’s Degree in Medical Imaging Sciences from Arab American University in Jenin, Palestine, which he completed in 2012. This foundational education in medical imaging provided him with the technical skills and knowledge necessary for his subsequent roles in radiology and medical research, paving the way for his contributions to the fields of neuroscience and public health.

Professional Experience

Dr. Issam Abu Qeis is an accomplished medical imaging professional and neuroscience researcher with over 14 years of diverse experience in national and international settings. Currently, he serves as a Researcher at the Institute of Neuroscience, Kunming Medical University, China, where he focuses on neurological defects, brain functions, and nerve tissue healing. His extensive background includes roles as a Radiographer and Head of the Radiology Department at Shunnara Medical Center in Ramallah, Palestine, where he led radiological services and ensured high-quality imaging standards. Previously, he worked as a Medical Imaging Professional with the Ministry of Health in Palestine and at various medical centers, gaining expertise in advanced imaging technologies and public health practices. Dr. Abu Qeis is also the President of the Alumni Association for the Public Health Branch at Southern Medical University, China, highlighting his leadership and commitment to enhancing public health and medical education.

Research Interest

Dr. Issam Abu Qeis is deeply engaged in research within the fields of neuroscience and medical imaging, with a particular focus on understanding and addressing neurological defects and degenerative diseases. His work explores the intricate functions of the brain, the healing of nerve tissues, and the treatment of neurological disorders, including gliomas and other neurodegenerative conditions. Dr. Abu Qeis is also invested in the application of neuroradiology and radiology techniques to improve diagnostic accuracy and patient outcomes. His research extends to the role of cell therapy in treating neurological diseases, offering promising insights into innovative therapeutic approaches. Additionally, Dr. Abu Qeis is interested in public health, particularly in quality assurance systems within radiology centers. His multidisciplinary approach, combining neuroscience, imaging, and public health, reflects a commitment to advancing medical science and improving the quality of healthcare delivery.

Research Skills

Dr. Issam Abu Qeis possesses a comprehensive skill set in medical imaging and neuroscience research, underpinned by over 14 years of experience. His expertise spans advanced medical imaging techniques, including X-ray, CT, MRI, and ultrasound, with a particular focus on radiographic contrast studies. Dr. Abu Qeis is proficient in the analysis and interpretation of neuroimaging data, which he applies to research in neurological defects, brain functions, and degenerative diseases. His research acumen is further demonstrated by his ability to design and execute complex studies, particularly in the realms of glioma research and nerve tissue healing. He is skilled in using statistical software like SPSS for data analysis and has a strong command of research methodologies, from hypothesis formulation to publication. Dr. Abu Qeis’s ability to integrate interdisciplinary knowledge from public health and neuroscience enhances his research impact, making significant contributions to both fields.

Awards and Recognition

Dr. Issam Abu Qeis has earned significant recognition throughout his career in neuroscience and medical imaging. His work on neurological diseases, particularly in the areas of nerve tissue healing and glioma research, has been widely acknowledged. Dr. Abu Qeis has been honored with membership certifications from prestigious organizations, including the European Society of Radiology and the Palestinian Society of Radiology, reflecting his contributions to advancing medical imaging practices. He has also been recognized for his leadership as the President of the Alumni Association for the Public Health Branch at Southern Medical University, where he has played a crucial role in fostering international collaboration. Additionally, his research has been published in reputable journals, including Ibrain, further solidifying his reputation in the scientific community. Dr. Abu Qeis’s dedication to public health and neuroscience research continues to earn him accolades and respect within the global medical and research communities.

Conclusion

Issam Abu Qeis is a well-qualified candidate for the Best Researcher Award, particularly in the field of neuroscience and medical imaging. His extensive experience, leadership roles, and dedication to research make him a strong contender. However, focusing on enhancing the impact and visibility of his research, as well as securing funding and expanding his teaching and mentorship roles, could further strengthen his candidacy and increase his chances of winning the award.

Publications Top Notes

  1. Neuroscience of Cancer: Research Progress and Emerging of the Field
    • Authors: Issam AbuQeis, Yu Zou, Ying‐Chun Ba, Abeer A. Teeti
    • Year: 2024-08-14
    • DOI: 10.1002/ibra.12172
  2. Role and Limitation of Cell Therapy in Treating Neurological Diseases
    • Authors: Yu‐Qi Li, Peng‐Fei Li, Qian Tao, Issam J. A. Abuqeis, Yan‐Bin Xiyang
    • Year: 2024-03
    • DOI: 10.1002/ibra.12152