Carmen Vivar | Neuroscience | Best Researcher Award

Dr. Carmen Vivar | Neuroscience | Best Researcher Award

 Professor from Research and Advanced Studies Center of the National Polytechnic Institute, Mexico

Dr. Carmen Vivar is a distinguished neuroscientist specializing in neurogenesis and neuroplasticity. She is currently a professor at the Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute in Mexico City. Dr. Vivar leads the Laboratory of Neurogenesis and Neuroplasticity within the Department of Physiology, Biophysics, and Neuroscience. Her research primarily focuses on the effects of physical activity on brain function, particularly how exercise influences neurogenesis and cognitive processes. Dr. Vivar has an extensive publication record, contributing significantly to the understanding of hippocampal function and its role in learning and memory. Her work has been widely cited, reflecting her impact on the field of neuroscience.

Professional Profile

Education

Dr. Vivar earned her Ph.D. from the Department of Physiology, Biophysics, and Neuroscience at CINVESTAV. During her doctoral studies, she focused on the electrophysiological properties of hippocampal neurons and their role in synaptic plasticity. Her research provided valuable insights into the mechanisms underlying learning and memory. This strong foundation in cellular neuroscience has been instrumental in shaping her subsequent research endeavors.

Professional Experience

Following her Ph.D., Dr. Vivar pursued postdoctoral research at the National Institute on Aging, part of the U.S. National Institutes of Health in Baltimore, Maryland. There, she investigated the impact of aging on neurogenesis and cognitive function. She also served as a guest researcher at the Skirball Institute of Biomolecular Medicine’s Kimmel Center for Biology and Medicine at New York University, where she studied the molecular mechanisms of synaptic plasticity. Dr. Vivar’s international experience has enriched her research perspective and collaborations.

Research Interests

Dr. Vivar’s research interests encompass adult neurogenesis, synaptic plasticity, and the effects of physical exercise on brain function. She is particularly interested in how voluntary physical activity enhances hippocampal neurogenesis and improves cognitive functions such as learning and memory. Her studies aim to bridge the gap between animal models and human applications, providing insights into potential therapeutic strategies for neurodegenerative diseases and age-related cognitive decline.

Research Skills

Dr. Vivar possesses expertise in electrophysiology, neurophysiology, and cellular neuroscience. She is skilled in techniques such as in vivo and in vitro electrophysiological recordings, immunohistochemistry, and behavioral assessments related to learning and memory. Her proficiency in these methodologies enables her to investigate the intricate relationships between neuronal activity, synaptic plasticity, and behavior.

Awards and Honors

Throughout her career, Dr. Vivar has received recognition for her contributions to neuroscience. Her research has garnered significant citations, reflecting its impact on the scientific community. Additionally, she has been invited to speak at various international conferences and seminars, highlighting her expertise in the field. Her role as a guest speaker at events such as the Florida Atlantic Neuroscience Seminar Series underscores her standing in the scientific community.

Conclusion

Dr. Carmen Vivar’s dedication to understanding the mechanisms of neurogenesis and neuroplasticity has significantly advanced the field of neuroscience. Her research on the interplay between physical activity and brain function offers promising avenues for therapeutic interventions in neurodegenerative diseases and cognitive aging. Through her extensive experience and expertise, Dr. Vivar continues to contribute to the scientific community’s understanding of the brain’s capacity for adaptation and regeneration.

Publications Top Notes​

  1. Title: Running Reverses Chronic Stress‐Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses
    Authors: Carmen Soto, Lazaro P. Orihuela, Grego Apostol, Carmen Vivar
    Year: 2025

  2. Title: Entorhinal cortex–hippocampal circuit connectivity in health and disease
    Authors: Melissa Hernández-Frausto, Carmen Vivar
    Year: 2024

  3. Title: Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired
    Authors: Carmen Vivar, Benjamin D. Peterson, Alejandro Pinto, Emma Janke, Henriette van Praag
    Year: 2023

  4. Title: Rabies Virus Tracing of Monosynaptic Inputs to Adult-Born Granule Cells
    Author: Carmen Vivar
    Year: 2022

  5. Title: Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination
    Author: Carmen Vivar
    Year: 2021

  6. Title: Exercise and Hippocampal Memory Systems
    Authors: Voss, M.W.; Soto, C.; Yoo, S.; Sodoma, M.; Vivar, C.; van Praag, H.
    Year: 2019

  7. Title: Running changes the brain: The long and the short of it
    Authors: Vivar, C.; Van Praag, H.
    Year: 2017

  8. Title: Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons
    Authors: Sah, N.; Peterson, B.D.; Lubejko, S.T.; Vivar, C.; Van Praag, H.
    Year: 2017

  9. Title: Adult hippocampal neurogenesis, aging and neurodegenerative diseases: Possible strategies to prevent cognitive impairment
    Author: Vivar, C.
    Year: 2015

  10. Title: Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice
    Authors: Stringer, T.P.; Guerrieri, D.; Vivar, C.; Van Praag, H.
    Year: 2015

  11. Title: Running rewires the neuronal network of adult-born dentate granule cells
    Author: Carmen Vivar
    Year: 2015

 


Yashar Sarbaz | Neuroscience | Best Researcher Award

Assoc. Prof. Dr. Yashar Sarbaz | Neuroscience | Best Researcher Award

Full-Time Faculty, ECE department at University of Tabriz, Iran

Dr. Yashar Sarbaz is a distinguished Iranian researcher specializing in biomedical engineering, with a focus on neurodegenerative disease modeling. Born on May 20, 1981, in Tabriz, Iran, he has consistently demonstrated academic excellence and a profound commitment to advancing medical science through interdisciplinary approaches. Dr. Sarbaz’s work integrates bioelectric engineering, control systems, and computational neuroscience, aiming to develop innovative solutions for complex neurological disorders. His extensive research has significantly contributed to the understanding and potential treatment of diseases such as Parkinson’s and Huntington’s.

Professional Profile

Education

Dr. Sarbaz’s academic journey commenced at the University of Tabriz, where he earned his Bachelor of Science in Electronic Engineering in 2002, graduating at the top of his class with a GPA of 17.44/20. He then pursued a Master of Science in Control Engineering at Sharif University of Technology, completing his degree in 2004 with a GPA of 18.19/20 and again ranking first in his class. His master’s thesis focused on modeling Parkinson’s disease and its treatment. In 2011, Dr. Sarbaz obtained his Ph.D. in Bioelectric Engineering from Amirkabir University of Technology. His doctoral research, titled “Modeling Parkinson Disease Using Chaotic Theory,” showcased his ability to apply complex mathematical frameworks to biomedical challenges, reflecting his interdisciplinary expertise.

Professional Experience

Dr. Sarbaz’s professional career began as a teaching assistant in the Department of Electrical Engineering at the University of Tabriz from 1998 to 2002. He continued in this role at Sharif University of Technology between 2002 and 2004, concurrently serving as a research assistant. From 2004 to 2006, he was a member of the academic staff at Sahand University of Technology. In 2005, he contributed as the Vice Scientific Committee Chair for the 12th Iranian Conference on Biomedical Engineering. Following his Ph.D., Dr. Sarbaz held teaching positions at Azad Islamic University and later returned to Sahand University. Since 2012, he has been a faculty member in the Department of Emerging Technologies at the University of Tabriz, where he continues to engage in teaching and research.

Research Interests

Dr. Sarbaz’s research interests are diverse and interdisciplinary, encompassing the modeling and simulation of biological systems, particularly neural diseases. He is proficient in system identification, the design of compensators and controllers, and the development of electronic circuits. His expertise extends to chaos theory, evolutionary and genetic algorithms, neural networks, and optimization techniques. Dr. Sarbaz is also deeply involved in electrophysiology and computational neuroscience, focusing on the design of rehabilitation systems. His work aims to bridge the gap between engineering and medicine, utilizing advanced computational methods to address complex biomedical challenges.

Research Skills

Dr. Sarbaz possesses a robust set of research skills that align with his interdisciplinary interests. He is adept at mathematical modeling and simulation of biological systems, employing system identification techniques to understand and predict system behaviors. His proficiency in designing electronic circuits and control systems is complemented by his application of chaos theory to model complex physiological phenomena. Dr. Sarbaz utilizes evolutionary and genetic algorithms for optimization problems and applies neural network methodologies to interpret complex data patterns. His skills in electrophysiology and computational neuroscience are instrumental in developing innovative rehabilitation systems and advancing the understanding of neural disorders.

Awards and Honors

Throughout his academic and professional career, Dr. Sarbaz has been recognized for his contributions to biomedical engineering and neuroscience. He consistently graduated at the top of his class during his academic pursuits, reflecting his dedication and excellence. His role as Vice Scientific Committee Chair at the 12th Iranian Conference on Biomedical Engineering in 2005 highlights his leadership within the scientific community. While specific awards and honors are not detailed in the provided information, Dr. Sarbaz’s extensive publication record and active participation in academic conferences underscore his respected status in his field.

Conclusion

Dr. Yashar Sarbaz exemplifies a commitment to advancing biomedical engineering through interdisciplinary research and education. His academic excellence, professional experience, and diverse research interests have positioned him as a leading figure in the modeling and treatment of neurodegenerative diseases. Dr. Sarbaz’s work not only contributes to the scientific understanding of complex neurological disorders but also holds promise for developing innovative therapeutic strategies. His dedication to integrating engineering principles with medical research continues to inspire and drive progress in the biomedical field.

Publication Top Notes

  1. A robust method for Parkinson’s disease diagnosis: Combining electroencephalography signal features with reconstructed phase space images

    • Author(s): Farnaz F. Garehdaghi, Yashar Y. Sarbaz
    • Year: 2025
  2. Cortical complexity alterations in motor subtypes of Parkinson’s disease: A surface-based morphometry analysis of fractal dimension

    • Author(s): Yousef Y. Dehghan, Yashar Y. Sarbaz
    • Year: 2024
  3. The influence of mental calculations on brain regions and heart rates

    • Author(s): Morteza M. Jafari Malali, Yashar Y. Sarbaz, Sepideh S. Zolfaghari, Armin A. Khodayarlou
    • Year: 2024
    • Citations: 1
  4. EEG-based classification of Alzheimer’s disease and frontotemporal dementia: a comprehensive analysis of discriminative features

    • Author(s): Mehran M. Rostamikia, Yashar Y. Sarbaz, Somayeh S. Makouei
    • Year: 2024
    • Citations: 2
  5. Extracting brain behavior change in patients with migraine by quantitative analysis of electroencephalogram signal of patients compared to healthy people

    • Author(s): Yashar Y. Sarbaz, Farnaz F. Garehdaghi, Saeed S. Meshgini
    • Year: 2024