Pingwei Zheng | Energy | Best Researcher Award

Prof. Dr. Pingwei Zheng | Energy | Best Researcher Award

College teachers at University of South China, China

Prof. Dr. Pingwei Zheng, a distinguished physicist at the University of South China, specializes in RF heating and current drive in magnetic confinement fusion devices, focusing on the Ohkawa mechanism and synergy effects among electron cyclotron, high harmonic fast wave, and lower hybrid current drive methods. With a Ph.D. in Nuclear Fusion and Plasma Physics from USC, he has published extensively in leading journals, including Nuclear Fusion and Physics of Plasmas. His pioneering contributions, such as developing new mechanisms for current drive and synergy effects in plasma, have significantly advanced nuclear fusion research. Dr. Zheng has led multiple research projects funded by the National Natural Science Foundation of China and other provincial initiatives, showcasing his expertise in both theoretical and computational approaches. His technical proficiency, academic leadership, and innovative work position him as a leading figure in the field, contributing meaningfully to the global pursuit of sustainable fusion energy.

Professional Profile

Education

Professor Dr. Pingwei Zheng has a robust academic foundation in physics and nuclear fusion. He earned his Bachelor’s degree in Physics from Hunan Normal University, Changsha, in 2006. Driven by a passion for advanced research, he pursued postgraduate studies at the University of South China (USC), Hengyang, where he completed his Master’s degree in 2011, specializing in nuclear fusion and plasma physics. During this time, he developed a 3D Fokker-Planck code for RF heating and current drive using Fortran, laying the groundwork for his future contributions to fusion research. Building on his expertise, he obtained his Ph.D. in Nuclear Fusion and Plasma Physics from USC in 2019. His doctoral work focused on innovative mechanisms like Ohkawa-current-driven electron cyclotron waves and synergy effects in magnetic confinement fusion. This extensive academic journey reflects Dr. Zheng’s commitment to advancing the field of plasma physics and nuclear fusion technology.

Professional Experience

Prof. Dr. Pingwei Zheng is a distinguished physicist specializing in RF heating and current drive in magnetic confinement fusion devices. Since 2011, he has been a faculty member at the University of South China (USC), where he has led groundbreaking research on the Ohkawa mechanism-dominated current drive (OKCD) of electron cyclotron waves and the synergy effects between OKCD, high harmonic fast wave (HHFW), and lower hybrid current drive (LHCD). Dr. Zheng has successfully managed two projects funded by the National Natural Science Foundation of China and several provincial and ministerial-level research initiatives. His earlier work as a postgraduate included developing a 3D Fokker-Planck code for RF heating and current drive, showcasing his technical expertise in computational physics. Over the years, he has contributed significantly to advancing nuclear fusion research through his innovative studies, impactful publications in top-tier journals, and dedication to advancing fusion energy technologies.

Research Interest

Prof. Dr. Pingwei Zheng’s research is centered on advancing the understanding and development of RF heating and current drive mechanisms in magnetic confinement fusion devices. His work focuses on electron cyclotron current drive (ECCD), high harmonic fast wave (HHFW) current drive, and lower hybrid current drive (LHCD), with particular emphasis on the Ohkawa mechanism-dominated current drive (OKCD) and its synergy effects with other RF techniques. He has conducted innovative studies on the interaction of RF waves with plasma, including the stabilization of neoclassical tearing modes and enhancing current drive efficiency in the pedestal region of high-confinement tokamak plasmas. Prof. Zheng’s contributions extend to developing numerical methods and computational tools to simulate these phenomena, such as 3D Fokker-Planck codes. His research aims to address critical challenges in achieving sustainable fusion energy, positioning his work at the forefront of plasma physics and nuclear fusion technology.

Award and Honor

Prof. Dr. Pingwei Zheng, a distinguished researcher in nuclear fusion and plasma physics, has earned recognition for his groundbreaking contributions to RF heating and current drive in magnetic confinement fusion devices. As a principal investigator, he has successfully led multiple prestigious projects funded by the National Natural Science Foundation of China and provincial and ministerial-level bodies. His innovative research on the Ohkawa mechanism-dominated current drive (OKCD) and the synergy effects between RF current drive methods has been widely acclaimed. Dr. Zheng’s prolific academic output includes publications in high-impact journals such as Nuclear Fusion and Physics of Plasmas, showcasing his expertise and influence in the field. As a professor at the University of South China, he has become a leading voice in advancing theoretical and applied research in fusion technology, earning accolades for his commitment to scientific innovation and his contributions to the global energy research community.

Conclusion

Prof. Dr. Pingwei Zheng is a distinguished researcher whose work in nuclear fusion and plasma physics demonstrates significant innovation and technical mastery. His specialized research on RF heating and current drive mechanisms, particularly the Ohkawa mechanism and synergy effects, has made valuable contributions to the advancement of magnetic confinement fusion technology. With a strong academic background, numerous publications in high-impact journals, and leadership in nationally funded projects, Dr. Zheng has established himself as a leader in his field. His expertise in computational modeling and numerical methods further enhances the practical and theoretical depth of his research. While expanding his global collaborations and highlighting broader community engagement could strengthen his profile further, Dr. Zheng’s achievements clearly reflect his dedication to addressing critical challenges in fusion energy. His contributions make him a deserving and competitive candidate for the Best Researcher Award.

Publications Top Noted

  1. Numerical investigation of electron cyclotron and electron Bernstein wave current drive in EXL-50U spherical torus
  2. Numerical study of minority ion heating scenarios in CN-H1 stellarator plasma
  3. Numerical Studies on Electron Cyclotron Resonance Heating and Optimization in the CN-H1 Stellarator
  4. Impact of hot plasma effects on electron cyclotron current drive in tokamak plasmas
  5. A full wave solver integrated with a Fokker–Planck code for optimizing ion heating with ICRF waves for the ITER deuterium–tritium plasma
  6. Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario
  7. Integrated simulation analysis of the HL-2M high-parameter hybrid scenario
  8. Separate calculations of the two currents driven by electron cyclotron waves
  9. Electron cyclotron current drive under neutral beam injection on HL-2M
  10. Numerical study of m = 2/n = 1 neoclassical tearing mode stabilized by the Ohkawa-mechanism-dominated current drive of electron cyclotron waves
  11. Numerical investigation of ECCD under the CFETR concept design parameters
  12. Effective current drive in the pedestal region of high-confinement tokamak plasma using electron cyclotron waves
  13. New synergy effects of the lower hybrid wave and the high harmonic fast wave current drive
  14. Simulation of plasma scenarios for CFETR phase II based on engineering design parameters
  15. Numerical investigation of a new ICRF heating scenario in D-T plasma on CFETR
  16. Simulation of the Ohkawa-mechanism- dominated current drive of electron cyclotron waves using linear and quasi-linear models

 

Young Il Kim | Energy | Best Researcher Award

Prof. Young Il Kim | Energy | Best Researcher Award

Professor of School of Architecture at Professor of School of Architecture, China.

Professor Young Il Kim is a distinguished academic and researcher in the fields of mechanical engineering and architecture, currently serving as a Professor at the School of Architecture, Seoul National University of Science and Technology. With a career spanning over three decades, he has made significant contributions to HVAC systems, indoor air quality, and building energy simulation. Known for his expertise in sustainable and smart building systems, Professor Kim holds numerous leadership positions in professional societies dedicated to air-conditioning, energy, and smart building innovations. His research has helped advance eco-friendly and energy-efficient technologies in building design. He is currently the Dean of the Graduate School of Housing and Urban Studies, where he is pioneering research on smart urban living. His technical skills and commitment to the integration of environmental considerations into urban design make him a leading figure in sustainable building technologies in Korea and beyond.

Professional Profile

Education

Professor Kim holds a robust academic background in mechanical engineering, with both B.S. and M.S. degrees from Seoul National University, completed in 1984 and 1986, respectively. He further pursued his studies abroad, obtaining a Ph.D. from the University of Michigan in 1993. This blend of education from top institutions in South Korea and the United States provided him with a broad, international perspective and a rigorous foundation in engineering principles, particularly in thermal systems and environmental control. His academic background underpins his research into complex energy systems and building sustainability. The education he received at these esteemed institutions has been instrumental in shaping his approach to urban sustainability and innovative building systems, and continues to support his contributions to academic and professional communities in Korea and internationally.

Professional Experience

Professor Kim has an extensive career that blends academic research with practical applications in building systems and mechanical engineering. Beginning as a researcher at the Korea Advanced Institute of Science and Technology, he further honed his expertise as a student researcher at Ford Motor Company and a post-doctoral fellow at the University of Michigan. His career progressed with his role as Center Head at the Korea Institute of Science and Technology, where he was involved in leading critical projects in environmental and building systems research. Since 2005, he has been a Professor at Seoul National University of Science and Technology, actively contributing to both research and education in sustainable architecture. Currently, he serves as Dean of the Graduate School of Housing and Urban Studies, a role in which he oversees research into eco-friendly and smart housing solutions, further cementing his leadership in the academic field.

Research Interests

Professor Kim’s research interests lie primarily in thermal and environmental control within building systems, focusing on innovations in HVAC systems, indoor air quality management, and energy-efficient building design. He is particularly interested in the development of sustainable technologies that reduce energy consumption and improve air quality in buildings. In recent years, his research has expanded to include the “smartification” of urban spaces, exploring how advanced technologies can create more eco-friendly and resilient cities. He is dedicated to addressing the environmental challenges posed by urban growth through smart building systems that prioritize resource efficiency and sustainable design. His research aligns with the global movement toward greener architecture and reflects his commitment to creating healthy, energy-efficient indoor environments.

Research Skills

Professor Kim is skilled in various research techniques integral to sustainable building and HVAC systems. He has expertise in building energy simulation, allowing him to model and analyze energy flows within buildings to optimize their efficiency. His technical skills extend to indoor air quality assessments, a crucial factor in developing healthier indoor environments. He is also proficient in managing complex research projects, having led teams in various national and international collaborative studies. Furthermore, his role as a professional engineer in air-conditioning and building mechanical systems enables him to apply his research findings to practical implementations. Professor Kim’s combination of simulation, analytical, and project management skills makes him a highly capable researcher in the fields of smart building and sustainable urban design.

Awards and Honors

Throughout his career, Professor Kim has been recognized for his contributions to engineering and sustainable building practices. He has held prestigious roles such as President of the South Korea Chapter of ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) and the Korean Society for Geothermal and Hydrothermal Energy. Additionally, he served as President of the Korea Intelligent Smart Building Association, a position that highlights his influence on the development of smart and energy-efficient building technologies in Korea. These leadership positions, along with various professional recognitions, underscore his commitment to advancing engineering practices in air-conditioning and building energy efficiency. Professor Kim’s accolades reflect his dedication to fostering eco-friendly practices in urban development and his influence as a respected leader in the field of sustainable architecture.

Conclusion

Professor Young Il Kim is a highly accomplished researcher whose work in thermal and environmental control, building energy simulation, and sustainable urban planning is well-aligned with the aims of the Best Researcher Award. His leadership in professional organizations, technical expertise, and dedication to eco-friendly solutions make him a strong candidate for this award. Enhancing his application with more evidence of mentorship, recent research publications, and global collaboration would provide additional support to his already impressive profile. Overall, he is a commendable candidate for the Best Researcher Award.

Publication Top  Notes

  1. “Analysis of in situ performance of rooftop PV system in Seoul, South Korea”
    Authors: Singh, R., Nam, A.Y., Park, J.J., Kim, Y.I.
    Year: 2023
    Journal: International Journal of Air-Conditioning and Refrigeration, 31(1), 10
    Citations: 3
  2. “Model Selection and Verification Approach for Green Remodeling of Non-residential Buildings Using Building Management Information and Energy Simulation”
    Authors: Ji, M.-H., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(11), pp. 169–178
    Citations: 0
  3. “Economic Evaluation of Small Public Office Buildings with Class 1 of Zero Energy Building (ZEB) in Korea by Reflecting Life Cycle Assessment (LCA)”
    Authors: Lee, D., Kim, J., Kim, Y.I.
    Year: 2023
    Journal: Buildings, 13(7), 1693
    Citations: 0
  4. “A Proposal for Improvement of Zero Energy Building Certification System through Energy, Environmental and Economic Evaluation of Small-Sized Public Office”
    Authors: Lee, D.H., Kim, Y.I., Kim, J.M.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(3), pp. 201–212
    Citations: 1
  5. “Review of Machine Learning for Building Energy Prediction”
    Authors: Kwon, O.I., Kim, Y.I.
    Year: 2023
    Journal: Journal of the Architectural Institute of Korea, 39(5), pp. 133–140
    Citations: 1
  6. “Indoor Air Quality Diagnosis Program for School Multi-Purpose Activity and Office Spaces”
    Authors: Lee, Y.-K., Kim, Y.I., Kim, G.-H.
    Year: 2022
    Journal: Energies, 15(21), 8134
    Citations: 1
  7. “Selection of Energy Improvement Factors and Economic Analysis of Standard MDU Complexes in Korean Metropolitan Regions”
    Authors: Lee, K.-W., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 4042
    Citations: 1
  8. “Cooling Performance Enhancement of a 20 RT (70 kW) Two-Evaporator Heat Pump with a Vapor–Liquid Separator”
    Authors: Yang, W.-S., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(11), 3849
    Citations: 0
  9. “Development of CO2 Concentration Prediction Tool for Improving Office Indoor Air Quality Considering Economic Cost”
    Authors: Lee, Y.-K., Kim, Y.I., Lee, W.-S.
    Year: 2022
    Journal: Energies, 15(9), 3232
    Citations: 5
  10. “Analysis of indoor air pollutants and guidelines for space and physical activities in multi‐purpose activity space of elementary schools”
    Authors: Lee, Y.-K., Kim, Y.I.
    Year: 2022
    Journal: Energies, 15(1), 220
    Citations: 15

Saeed Shahrokhian | Energy | Best Researcher Award

Prof Dr. Saeed Shahrokhian | Energy | Best Researcher Award

Academic Staff, Sharif University of Technology, Iran

Dr. Saeed Shahrokhian is a highly accomplished professor in the Department of Chemistry at Sharif University of Technology (SUT), Tehran, Iran. With a distinguished academic background including a Ph.D. from Isfahan University, he has been a key figure at SUT since 2000, progressing from Assistant to Full Professor. His research focuses on the design and application of chemically modified electrodes, nanostructured materials, electrochemical energy storage devices, and biosensors for cancer biomarker detection. Dr. Shahrokhian has received numerous accolades, including the Superior Educational Master and Distinguished Researcher awards from SUT, as well as recognition from Iran’s Ministry of Science. His research excellence is reflected in his impressive H-index of 62 and inclusion among the top 1% of highly cited international scientists. With a vast body of published work and ongoing contributions to cutting-edge electrochemical research, Dr. Shahrokhian stands out as a strong candidate for the Research for Best Researcher Award.

Profile

Education

Dr. Saeed Shahrokhian has an impressive educational background that has greatly shaped his career in chemistry. He earned his B.Sc. in Chemistry from Isfahan University in 1990, followed by his M.Sc. from the same institution in 1994. Dr. Shahrokhian completed his Ph.D. at Isfahan University in 1999, where his research laid the foundation for his future contributions to analytical chemistry. His academic journey was marked by rigorous study and a focus on developing innovative approaches to chemical sensors and electrochemical energy conversion. His deep understanding of chemistry, combined with his commitment to research excellence, has contributed significantly to his esteemed career as a professor at Sharif University of Technology. This robust academic background provided Dr. Shahrokhian with the tools and knowledge to become a leading expert in his field, contributing to advancements in nanostructured materials, biosensors, and electrochemical systems.

Professional Experience

Dr. Saeed Shahrokhian is a Full Professor in the Department of Chemistry at Sharif University of Technology, where he has held positions since 2000. His professional journey began as an Assistant Professor from 2000 to 2004, followed by an Associate Professor role until 2008. Since June 2008, he has served as a Full Professor, reflecting his sustained excellence in academic research and teaching. Dr. Shahrokhian’s expertise spans electrochemistry, with a focus on the design, construction, and application of chemically modified electrodes, nano-structured materials, and electrochemical energy conversion devices. He has made significant contributions to capacitive deionization and the development of electrochemical biosensors for cancer biomarkers and pathogenic bacteria. His work is recognized globally, as evidenced by his numerous awards, including being named a highly cited researcher by ISI and Scopus. His professional experience highlights his leadership in advancing scientific knowledge and innovation in the field of chemistry.

Research Interests

Dr. Saeed Shahrokhian’s research interests lie at the intersection of electrochemistry, materials science, and biosensors. His work primarily focuses on the design, construction, and application of chemically modified electrodes (CMEs), with an emphasis on leveraging nano-structured materials to enhance electrode performance. He is particularly interested in electrochemical energy conversion and storage devices, capacitive deionization, and the development of aptamer-based electrochemical biosensors for detecting cancer biomarkers and pathogenic bacteria. Additionally, Dr. Shahrokhian explores the application of nanocomposite materials for surface modification of electrodes, especially in electrocatalytic water splitting, and carrier-based potentiometric ion sensors. His research contributes significantly to the advancement of analytical techniques, fostering innovations that have broad implications in environmental monitoring, healthcare, and energy storage systems. Dr. Shahrokhian’s diverse research portfolio reflects his commitment to addressing both fundamental scientific questions and practical challenges through interdisciplinary approaches.

Research Skills

Dr. Saeed Shahrokhian, a highly accomplished researcher at the Department of Chemistry, Sharif University of Technology, exhibits exceptional research skills in the realm of electrochemical sciences. His expertise lies in the design and development of chemically modified electrodes (CMEs), with a focus on applying nanostructured materials to enhance electrochemical energy conversion and storage devices. His proficiency in capacitive deionization, coupled with his innovative work in aptamer-based electrochemical biosensors for cancer biomarkers and pathogenic bacteria detection, showcases his interdisciplinary approach. Additionally, Dr. Shahrokhian’s skill in the development of nanocomposite materials for surface modification of electrodes in electrocatalytic water splitting further highlights his contributions to sustainable energy solutions. His extensive knowledge in potentiometric ion sensors and his ability to integrate cutting-edge technologies into practical applications reinforce his status as a leading researcher. These advanced research skills make him a strong candidate for the Research for Best Researcher Award.

Awards and Honors

Dr. Saeed Shahrokhian, a highly accomplished researcher from the Department of Chemistry at Sharif University of Technology, has earned numerous prestigious awards and honors throughout his career. He has been recognized as the Distinguished Researcher of the Chemistry Department multiple times, including in 2004, 2008, 2014, and 2020. In addition, Dr. Shahrokhian was named Superior Educational Master for various academic years, such as 2003-2004, 2010-2011, and 2014-2015. His significant contributions to science have also been acknowledged at the national level, as he was named Distinguished Researcher in Basic Science by the Ministry of Science, Research, and Technology in 2012. Notably, he is a 1% Highly Cited International Scientist (ISI Web of Knowledge, 2012-2024) and a 2% Highly Cited Scientist (Scopus, 2021-2024). His extensive research and influence in the field have led him to be a Highly Cited Researcher at Sharif University in both 2017 and 2022.

Ali OUBELKACEM | Energy | Best Researcher Award

Prof. Ali OUBELKACEM | Energy | Best Researcher Award

Professor at FS/UMI, Morocco

Prof. Ali Oubelkacem is a distinguished academic in the Department of Computer Science at Université Moulay Ismail, Meknès, Morocco. He holds a Doctorate in Computer Science and a Master’s degree from INSA Lyon, specializing in Information Systems and Networks. With a career spanning over two decades, he has contributed significantly to research in material physics, magnetism, numerical scientific computing, and deep learning, particularly in energy applications. His involvement in various national and international research projects, including studies on nanostructured systems and the impact of technology on environmental issues, underscores his commitment to advancing scientific knowledge. Prof. Oubelakcem has presented at numerous international conferences and has published extensively in peer-reviewed journals, showcasing his expertise in perovskite solar cells and magnetic materials. His academic leadership is complemented by his role in training future scientists and his active participation in educational technology initiatives.

Professional Profile

Education

Prof. Ali Oubelkacem holds a robust academic background in the fields of computer science and physics. He earned his Doctorate in Science with a focus on Computer Physics from Université Moulay Ismail in 2004, achieving the distinction of Très honorable. Prior to this, he completed a Master’s Degree in Specialized Computer Science at INSA Lyon in collaboration with the École Nationale de l’Industrie Minérale in Rabat in 2005, where he specialized in Information Systems and Networks, graduating with A.Bien. His foundational education includes a Diploma in Advanced Studies in Mechanics, Energy, and Thermodynamics from Université Abdelmalek Essaâdi in Tétouan in 2000, and a Master’s Degree in Specialized Science in Mechanics from Université Cadi Ayyad in 1998, both with A.Bien. Prof. Oubelkacem’s extensive education has provided him with a solid foundation for his research and teaching career in computer science and materials physics.

Professional Experience

Prof. Ali Oubelkacem is a distinguished academic and researcher at the Département d’Informatique, Faculté des Sciences, Université Moulay Ismail in Meknès, Morocco. He has held the position of Professor of Higher Education since 2010, contributing significantly to the field of computer science. With a robust academic background, including a Doctorate in Computational Physics and a Specialized Master’s in Computer Science, he specializes in materials physics, magnetism, and deep learning applied to energy systems. His professional journey includes various roles, such as a trainer at the Institut Spécialisé Industriel de Mohammedia, where he taught modules related to information systems and networks. Prof. Oubelkacem is also an active member of several research teams and has participated in numerous national and international research projects. His involvement in organizing conferences and publishing research papers highlights his commitment to advancing knowledge in his field.

Research Interests

Prof. Ali Oubelkacem specializes in various fields of research, including the physics of materials and magnetism, scientific numerical calculations, and deep learning applications in energy domains. His work focuses on the modeling of nanostructured systems, emphasizing the magnetic properties and behavior of innovative materials. He has been actively involved in numerous national and international research projects, including the use of information and communication technologies (ICT) for the analysis and modeling of marine acidification. Prof. Oubelkacem has also explored the application of machine learning techniques to optimize photovoltaic parameters, contributing to advancements in renewable energy technologies. His extensive publication record in international journals highlights his commitment to advancing scientific knowledge in materials science, particularly in the development of perovskite solar cells and magnetic materials. Through his research, he aims to bridge theoretical concepts with practical applications, fostering innovation in both academia and industry.

Awards and Honors

Prof. Ali Oubelkacem has garnered recognition for his significant contributions to the field of computer science and material physics. He has been awarded multiple grants for his research projects, including funding for his participation in international collaborations such as the “I-WALAMAR” project with German research institutions. His dedication to academic excellence is further demonstrated through his active involvement in numerous international conferences, where he has not only presented his findings but also contributed to the advancement of knowledge in his areas of expertise. In addition to his research accomplishments, Prof. Oubelkacem is known for his commitment to teaching and mentoring students, inspiring the next generation of scientists and researchers. His work has been acknowledged through various publication accolades in reputable journals, highlighting his innovative approach in areas such as deep learning and material magnetism. These achievements underscore Prof. Oubelkacem’s stature as a leading researcher in his field.

Conclusion

Pr. Ali Oubelkacem demonstrates a robust profile as a researcher with significant contributions to the fields of material physics and informatics. His strengths in academic qualifications, professional experience, research contributions, publications, and conference engagement position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, particularly in enhancing the societal impact of his research and expanding his collaborative efforts, he could further amplify his contributions to the scientific community. His commitment to ongoing professional development and involvement in national and international projects underscores his potential to continue making valuable contributions to his field.

Publication Top Note

  1. Effects of moringa (Moringa oleifera) leaf powder supplementation on growth performance, haematobiochemical parameters and gene expression profile of stinging catfish, Heteropneustes fossilis
    • Authors: Sharker, M.R., Hasan, K.R., Alam, M.A., Islam, M.M., Haque, S.A.
    • Year: 2024
    • Journal: Aquaculture Reports
    • Volume/Page: 39, 102388
    • Citations: 0
  2. Diversity pattern of ichthyofaunal assemblage in South-central coastal region of Bangladesh
    • Authors: Sharker, M.R., Kabir, M.A., Choi, S.D., Rahman, M.M., Shamuel, T.A.
    • Year: 2024
    • Journal: European Zoological Journal
    • Volume/Issue/Page: 91(2), pp. 830–841
    • Citations: 0
  3. Nutritional composition of available freshwater fish species from homestead ponds of Patuakhali, Bangladesh
    • Authors: Sumi, K.R., Sharker, M.R., Rubel, M., Islam, M.S.
    • Year: 2023
    • Journal: Food Chemistry Advances
    • Volume/Page: 3, 100454
    • Citations: 2
  4. Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh
    • Authors: Ullah, M.R., Rahman, M.A., Haque, M.N., Islam, M.M., Alam, M.A.
    • Year: 2022
    • Journal: Heliyon
    • Volume/Issue/Page: 8(10), e10825
    • Citations: 8
  5. Non-Financial and Financial Factors Influencing the Mode of Life of the Gher Farmers from the Western Coastal Areas of Bangladesh
    • Authors: Roy, P., Choi, S.D., Nadia, Z.M., Kamrujjaman, M., Sharker, M.R.
    • Year: 2022
    • Journal: Egyptian Journal of Aquatic Biology and Fisheries
    • Volume/Issue/Page: 26(2), pp. 555–576
    • Citations: 0
  6. Twoblotch ponyfish Nuchequula blochii (Valenciennes, 1835) in the Sundarban Reserve Forest habitat of Bangladesh: Second record and establishment probability
    • Authors: Hanif, M.A., Hossen, S., Sharker, M.R., Siddik, M.A.B.
    • Year: 2021
    • Journal: Lakes and Reservoirs: Science, Policy and Management for Sustainable Use
    • Volume/Issue/Page: 26(3), e12368
    • Citations: 0
  7. Construction of a Genetic Linkage Map Based on SNP Markers, QTL Mapping and Detection of Candidate Genes of Growth-Related Traits in Pacific Abalone Using Genotyping-by-Sequencing
    • Authors: Kho, K.H., Sukhan, Z.P., Hossen, S., Jung, H.-J., Nou, I.-S.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 713783
    • Citations: 8
  8. Effective accumulative temperature affects gonadal maturation by controlling expression of GnRH, GnRH receptor, serotonin receptor and APGWamide gene in Pacific abalone, Haliotis discus hannai during broodstock conditioning in hatcheries
    • Authors: Sukhan, Z.P., Cho, Y., Sharker, M.R., Rha, S.-J., Kho, K.H.
    • Year: 2021
    • Journal: Journal of Thermal Biology
    • Volume/Page: 100, 103037
    • Citations: 11
  9. Thermal Stress Affects Gonadal Maturation by Regulating GnRH, GnRH Receptor, APGWamide, and Serotonin Receptor Gene Expression in Male Pacific Abalone, Haliotis discus hannai During Breeding Season
    • Authors: Sukhan, Z.P., Sharker, M.R., Cho, Y., Choi, K.S., Kho, K.H.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 664426
    • Citations: 10
  10. First record of whitespot sandsmelt, Parapercis alboguttata (Günther, 1872) from the southeast coast of Bangladesh
    • Authors: Hanif, M.A., Siddik, M.A.B., Sharker, M.R.
    • Year: 2021
    • Journal: Indian Journal of Geo-Marine Sciences
    • Volume/Issue/Page: 50(6), pp. 498–501
    • Citations: 0