Yongjin Zhou | Engineering | Best Researcher Award

Prof. Dr. Yongjin Zhou | Engineering | Best Researcher Award

Shanghai University | China

Prof. Dr. Yongjin Zhou is a distinguished academic and researcher recognized for his outstanding contributions in the fields of science and engineering. His career reflects a strong commitment to advancing knowledge through pioneering research, innovative methodologies, and cross-disciplinary collaborations. With a strong background in material sciences, engineering applications, and advanced technological solutions, he has successfully integrated academic rigor with real-world applications. His expertise spans diverse domains including nanotechnology, polymer science, biomedical engineering, and sustainable material development, making him a leading figure in both teaching and research. As a prolific scholar, he has published extensively in internationally reputed journals, demonstrating significant impact through high citation metrics and Scopus-indexed works. He is also actively involved in guiding doctoral and postgraduate students, thereby shaping the next generation of researchers. His professional journey highlights leadership in academic committees, editorial boards, and scientific societies, reflecting his dedication to service within the global scientific community. Beyond academic excellence, Prof. Zhou is known for his commitment to societal contributions, ensuring that his research outcomes extend to practical benefits for industries and communities. His dynamic vision continues to push the boundaries of research while inspiring peers, collaborators, and students worldwide.

Professional Profile

Education

Prof. Dr. Yongjin Zhou pursued his higher education with a deep focus on science and engineering, equipping himself with advanced knowledge and specialized expertise. He successfully completed his doctoral studies in material sciences, focusing on the development and characterization of functional materials for industrial and biomedical applications. His education journey reflects a combination of rigorous coursework, experimental research, and interdisciplinary training that provided him with both theoretical insights and practical laboratory experience. At the postgraduate level, he specialized in advanced chemistry and polymer engineering, exploring molecular structures, reaction mechanisms, and applied technologies. His undergraduate studies laid a strong foundation in basic sciences, which later expanded into a specialized academic path that combined theory, research methodology, and innovation. Throughout his academic training, he actively participated in international exchange programs, research workshops, and specialized training sessions that enhanced his global exposure and professional perspective. His educational background not only reflects academic excellence but also adaptability in engaging with evolving scientific trends. This solid educational trajectory has been instrumental in shaping his role as a scholar who bridges fundamental research with practical applications, positioning him as a leader capable of addressing critical scientific and industrial challenges.

Professional Experience

Prof. Dr. Yongjin Zhou has established an extensive professional career marked by excellence in teaching, research, and institutional leadership. He has held academic positions at leading universities, where he actively contributed to curriculum development, research supervision, and departmental growth. His role as a faculty member has involved mentoring students across undergraduate, postgraduate, and doctoral levels, fostering independent research skills and innovative thinking. Alongside teaching, he has directed several funded research projects, many of which have been in collaboration with international institutions and industrial partners. These projects focused on cutting-edge topics such as advanced biomaterials, energy-efficient technologies, nanostructured composites, and environmental sustainability. His experience extends beyond academia into consultancy roles, where he has advised industries on material performance, technological solutions, and innovation strategies. In addition, he has been invited to deliver keynote speeches at conferences, serve on editorial boards of reputed journals, and participate in peer-review panels for funding agencies. His professional career highlights a balance of academic excellence, collaborative engagement, and societal contributions. By integrating teaching, research, and applied innovations, he has played a significant role in bridging academic research with industry needs, strengthening both knowledge development and practical impact.

Research Interests

Prof. Dr. Yongjin Zhou’s research interests span across interdisciplinary domains that combine fundamental science with practical innovations. His work emphasizes material sciences, nanotechnology, and biomedical applications, with a particular focus on developing functional materials that can address global challenges in healthcare, energy, and sustainability. He is deeply interested in polymer chemistry and nanostructured systems, investigating their potential in sensor technology, drug delivery, and tissue engineering. His contributions extend into energy materials, where he explores sustainable approaches to energy storage, catalysis, and green technologies that align with global environmental goals. Another key research interest lies in biosensors and diagnostic tools, especially the integration of molecular imprinting and advanced detection techniques for rapid and accurate applications in medicine and industry. He is also engaged in collaborative projects that combine computational modeling with experimental methods to design materials with tailored properties. His research philosophy is centered on innovation, cross-disciplinary synergy, and application-driven outcomes. By integrating science and engineering, he aims to develop solutions that not only advance academic knowledge but also provide practical benefits to industries and communities, thereby reinforcing the role of science as a driver of sustainable progress.

Research Skills

Prof. Dr. Yongjin Zhou possesses a diverse set of research skills that enhance his ability to conduct high-quality, innovative, and impactful studies. He is proficient in advanced laboratory techniques including molecular cloning, PCR-based assays, protein purification, and material characterization using spectroscopy and microscopy methods. His expertise extends to nanofabrication techniques, electrochemical analysis, and surface engineering, enabling him to design and evaluate functional materials for biomedical and industrial use. He is skilled in computational tools for data analysis, simulation, and modeling, which he effectively integrates with experimental approaches to ensure robust outcomes. In the domain of biosensors, he has demonstrated strong capabilities in developing molecularly imprinted polymers, nanoparticle-based detection systems, and rapid diagnostic platforms. His experience also includes project management, research design, and technical writing, ensuring successful grant proposals, high-quality publications, and effective dissemination of results. He actively engages in interdisciplinary teamwork, collaborating with experts across chemistry, biology, and engineering. Additionally, his mentorship skills allow him to transfer research knowledge to students and collaborators effectively. These research skills collectively position him as a versatile scholar capable of driving innovative projects from conceptualization to implementation, delivering impactful solutions across academic and industrial landscapes.

Awards and Honors

Prof. Dr. Yongjin Zhou has received several awards and honors that recognize his remarkable contributions to research, academia, and innovation. His scholarly achievements have been acknowledged by international research organizations, reflecting his influence and excellence in advancing science and engineering. He has received recognition for high-quality publications in top-tier journals, including awards for best research papers and significant contributions to interdisciplinary studies. His leadership in research projects has also been commended, particularly those involving international collaborations that bridge academic research with industrial innovation. In addition, he has been honored with fellowships and grants from prestigious institutions, enabling him to pursue cutting-edge projects that address critical global challenges. His participation in academic societies has earned him memberships in organizations such as IEEE and other professional networks, further demonstrating his active engagement with the global research community. Beyond individual recognition, his role in guiding students and fostering academic excellence has also been acknowledged through institutional awards. These accolades not only highlight his research excellence but also emphasize his leadership, mentorship, and commitment to advancing science for the benefit of society. His honors collectively underscore a career dedicated to impactful scholarship and innovation.

Publication Top Notes

  • Smart meta-device powered by stray microwave energies: A green approach to shielding external interference and detection — 2025 — 38 citations

  • Machine Learning-Assisted Early-Corrosion Detection System for Pipeline Coatings — 2025

  • High Resolution Microwave Glucose Sensing System Based on Active Fano Resonator Using Injection-Locked Oscillation — 2025

  • Intelligent Early-Corrosion Detection System Based on Backscattering Sensors — 2025

  • High-Resolution Glucose Microwave Sensor Based on Amplified Asymmetric Plasmon Mode — 2025

  • Hyperuniform Radiation-Scattering Meta-Device for Scattering Suppression at Grazing Incidence — 2025

Conclusion

Prof. Dr. Yongjin Zhou stands out as a visionary scholar whose career is defined by academic excellence, research innovation, and leadership within the global scientific community. His contributions in the fields of material sciences, nanotechnology, biomedical applications, and sustainable technologies demonstrate both depth of expertise and breadth of impact. With a solid educational foundation, extensive professional experience, and advanced research skills, he has consistently delivered high-quality research outcomes that benefit academia, industry, and society. His numerous publications, international collaborations, and recognition through awards and honors reflect his status as a leading researcher. At the same time, his commitment to mentoring students and engaging with professional societies illustrates his dedication to fostering the next generation of scientific leaders. Looking ahead, his research potential continues to hold promise for addressing pressing challenges in healthcare, energy, and sustainability. His vision, expertise, and collaborative spirit ensure that his influence will extend beyond current achievements, inspiring further advancements in science and engineering. For these reasons, he is highly deserving of recognition as an outstanding researcher whose contributions significantly enrich both knowledge and society.

Hulya Sen Arslan | Engineering | Women Researcher Award

​Assist. Prof. Dr. Hulya Sen Arslan | Engineering | Women Researcher Award

KARAMANOĞLU MEHMETBEY UNIVERCITY, Turkey

Dr. Hülya Şen Arslan is a distinguished academic specializing in Food Engineering, with a focus on functional foods, food chemistry, and food microbiology. She is currently serving as an Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. Dr. Arslan has an extensive educational background, having completed her undergraduate studies at Selçuk University, followed by a master’s degree at Erciyes University, and a doctorate at Selçuk University. Her research interests are deeply rooted in food sciences, particularly in the development and analysis of functional foods and the chemical and microbiological aspects of food products. Throughout her career, Dr. Arslan has contributed to the academic community with several publications and has actively participated in peer review processes. Her dedication to research and education in the field of food engineering underscores her commitment to advancing knowledge and promoting innovation in food science.

Professional Profile

Education

Dr. Hülya Şen Arslan’s academic journey commenced with a Bachelor of Science degree from Selçuk University’s Faculty of Agriculture, where she studied from 2009 to 2014. She then pursued a Master of Science in the Institute of Science at Erciyes University between 2014 and 2017. Her doctoral studies were conducted at Selçuk University’s Institute of Science from 2018 to 2022. This comprehensive educational background has provided Dr. Arslan with a solid foundation in agricultural and food sciences, equipping her with the necessary skills and knowledge to excel in her field.

Professional Experience

Currently, Dr. Hülya Şen Arslan holds the position of Assistant Professor in the Department of Food Engineering at Karamanoğlu Mehmetbey University. In this role, she is responsible for teaching undergraduate and graduate courses, mentoring students, and conducting research in her areas of expertise. Her professional experience is marked by a commitment to academic excellence and a dedication to advancing the field of food engineering through both education and research.

Research Interests

Dr. Arslan’s research interests encompass several critical areas within food sciences. She focuses on functional foods, exploring how bioactive components can enhance health benefits. Her work in food chemistry involves analyzing the molecular composition and properties of food substances, while her studies in food microbiology examine the role of microorganisms in food production, preservation, and safety. These research pursuits aim to contribute to the development of healthier and safer food products.

Research Skills

With a robust background in food sciences, Dr. Arslan possesses a diverse set of research skills. She is proficient in laboratory techniques pertinent to food chemistry and microbiology, including chromatographic and spectroscopic methods for analyzing food components, as well as microbiological assays for detecting and characterizing foodborne pathogens. Additionally, her expertise extends to the design and implementation of studies related to functional foods, encompassing both the development of novel food products and the assessment of their health impacts.

Awards and Honors

While specific awards and honors have not been detailed, Dr. Arslan’s contributions to the field of food engineering are evident through her active participation in research and academia. Her publications and involvement in peer review activities reflect a recognition of her expertise and dedication to advancing knowledge in food sciences.

Conclusion

In summary, Dr. Hülya Şen Arslan is a dedicated academic and researcher in the field of food engineering. Her comprehensive education and professional experience have enabled her to contribute significantly to the understanding and development of functional foods, food chemistry, and food microbiology. Through her teaching, research, and service to the academic community, Dr. Arslan continues to play a vital role in advancing the science of food and promoting innovations that enhance food quality and safety.

Publications Top Notes​

  • Title: Simultaneous extraction of phenolics and essential oil from peppermint by pressurized hot water extraction
    Authors: M. Cam, E. Yüksel, H. Alaşalvar, B. Başyiğit, H. Şen, M. Yılmaztekin, et al.
    Year: 2019
    Citations: 34

  • Title: Antioxidant and chemical effects of propolis, sage (Salvia officinalis L.), and lavender (Lavandula angustifolia Mill) ethanolic extracts on chicken sausages
    Authors: S. Yerlikaya, H. Şen Arslan
    Year: 2021
    Citations: 15

  • Title: Antibacterial and antioxidant activity of peach leaf extract prepared by air and microwave drying
    Authors: H. Şen Arslan, A. Cabi, S. Yerlikaya, C. Sariçoban
    Year: 2021
    Citations: 8

  • Title: Comparison some microbiological and physicochemical properties of freeze dryed and spray dryed milk powder
    Authors: S. Yerlikaya, H. Ş. Arslan
    Year: 2019
    Citations: 8*

  • Title: Effect of ultrasound and microwave pretreatments on some bioactive properties of beef protein hydrolysates
    Authors: H. Şen Arslan, C. Sariçoban
    Year: 2023
    Citations: 7

  • Title: Use of fruits and vegetables in meat and meat products in terms of dietary fiber
    Authors: H. Şen Arslan, C. Sariçoban, S. Yerlikaya
    Year: 2021
    Citations: 4

  • Title: Effects of various plant parts on storage stability and colour parameters of beef extracts
    Authors: B. A. Oğuz, C. Sarıçoban, H. Şen Arslan
    Year: 2019
    Citations: 4

  • Title: Ultrason destekli elma atık özütlerinin bazı biyoaktif özellikleri
    Authors: H. Ş. Arslan
    Year: 2023
    Citations: 3*

  • Title: Karaman İl Merkezinde Yaşayan Halkın Bilinçli Gıda Tüketim Derecesinin Araştırılması
    Authors: S. Yerlikaya, Ş. N. Karaman, S. Tuna, H. Ş. Arslan
    Year: 2020
    Citations: 3

  • Title: Increased reactive carboxyl and free alfa-amino groups from fish type I collagen peptides by Alcalase® hydrolysis exhibit higher antibacterial and antioxidant …
    Authors: S. Yasar, H. S. Arslan, K. Akgul
    Year: 2024
    Citations: 2

Yuxin Ma | Engineering | Best Researcher Award

Mr. Yuxin Ma | Engineering | Best Researcher Award

Master Degree Candidate at Shanghai Dianji University, China

Ma Yuxin is an emerging researcher in Electrical Engineering, currently pursuing a Master’s degree at Shanghai Dianji University. With a strong academic background and research focus on Permanent Magnet Synchronous Motor (PMSM) control, Ma has already contributed three research papers to international conferences and journals. Recognized for academic excellence, innovation, and technical proficiency, Ma has received multiple scholarships and awards, including the Shanghai “Science and Technology Star of Tomorrow” Creative Award. Alongside research, Ma has practical experience through an internship at Shanghai Electric Fuji Electric Power Technology Co., Ltd., where they are engaged in PMSM sensorless full-speed control projects. Proficient in MATLAB, AD, PSIM, and Keil, Ma has also earned a Siemens NX CAD Engineer Intermediate Qualification. These achievements reflect a commitment to advancing electrical engineering technologies through both theoretical and practical applications.

Professional Profile

Education

Ma Yuxin completed a Bachelor’s degree in Electrical Engineering from Shanghai Dianji University (2018-2022) with outstanding academic performance, earning multiple university scholarships. Currently, Ma is pursuing a Master’s degree in Electrical Engineering at the same institution (2023-present). During undergraduate studies, Ma actively participated in innovation and entrepreneurship projects, winning recognition for contributions to scientific research. The master’s research focuses on PMSM speed control, leading to three published papers in reputable journals and conferences. Academic achievements also include certification as a Siemens NX CAD Engineer and recognition in the Challenge Cup Shanghai University Science and Technology Competition. These educational experiences have provided a strong foundation in theoretical knowledge, research methodologies, and practical applications, preparing Ma for further advancements in electrical engineering research and development.

Professional Experience

Ma Yuxin is currently working as a Technical Research and Development Engineer at Shanghai Electric Fuji Electric Power Technology Co., Ltd. (2024-2025). This role involves conducting research and development on PMSM sensorless full-speed control projects and software testing experiments. During this position, Ma has gained hands-on experience in electrical system simulation, motor control optimization, and embedded system programming. Additionally, Ma’s university years included participation in competitive engineering projects and industry-relevant training programs, reinforcing both practical and theoretical expertise. This experience, combined with academic research, enables Ma to bridge the gap between academia and industry by applying research insights to real-world engineering challenges. The combination of research and industry exposure highlights Ma’s capability to innovate within electrical engineering and contribute to advancements in motor control technologies.

Research Interests

Ma Yuxin’s primary research interests lie in Permanent Magnet Synchronous Motor (PMSM) speed control, with a focus on sensorless full-speed control optimization. Other areas of interest include power electronics, motor drive systems, embedded control systems, and intelligent motor control using AI-based algorithms. Ma is also keen on exploring advanced control strategies for electric vehicles (EVs), renewable energy applications, and industrial automation. The integration of machine learning with motor control to enhance efficiency, reliability, and fault diagnosis is another potential research direction. By combining theoretical knowledge with experimental validation, Ma aims to contribute to the development of more efficient, robust, and cost-effective electrical motor control systems. These interests align with emerging trends in smart grid technologies, automation, and energy-efficient electrical systems, positioning Ma as a promising researcher in modern electrical engineering applications.

Research Skills

Ma Yuxin possesses strong research skills in electrical system modeling, simulation, and motor control algorithm development. Proficient in using MATLAB, PSIM, AD, and Keil for electrical simulations and control system design, Ma also has experience with embedded programming and software testing. Expertise extends to hardware implementation and real-time testing of PMSM control systems, ensuring research findings are practically applicable. Additionally, Ma is skilled in scientific writing and publishing, having successfully authored and published three research papers in reputable journals and conferences. Knowledge of data analysis, experimental design, and optimization techniques further strengthens Ma’s ability to conduct impactful research. These research skills, coupled with technical proficiency, provide a solid foundation for continued contributions to the field of electrical engineering and motor control technology.

Awards and Honors

Ma Yuxin has received numerous awards and honors for academic excellence, innovation, and research contributions. During undergraduate studies, Ma was recognized as an Outstanding Graduate of Shanghai and awarded multiple university scholarships for both academic performance and practical achievements. Additionally, Ma won the Creative Award in the 18th Shanghai “Science and Technology Star of Tomorrow” selection activity, highlighting innovation in scientific research. Another significant achievement includes securing second prize in the 17th “Challenge Cup” Shanghai University Science and Technology Competition, showcasing strong problem-solving and research capabilities. Further honors include the Siemens NX CAD Engineer Intermediate Qualification Certificate, demonstrating technical expertise. These achievements reflect Ma’s commitment to excellence in research, technical skill development, and innovative problem-solving, reinforcing their suitability for prestigious research awards.

Conclusion

Ma Yuxin is a promising researcher in electrical engineering, demonstrating strong academic performance, research productivity, and technical expertise. With three research papers published, awards in innovation competitions, and hands-on experience in PMSM control projects, Ma has a solid foundation for continued contributions to the field. However, further research in high-impact journals, international collaborations, and patent applications would strengthen the case for prestigious research awards. Participation in conferences, industrial projects, and interdisciplinary research could also enhance visibility in the academic community. Given Ma’s current trajectory, continued growth in these areas will position them as a leading researcher in electrical motor control and automation technologies.

Publications Top Notes

  1. Publication: Speed Control of PMSM Based on Series Lead Correction Doubly Fed Differential LADRC

    • Authors: Yuxin Ma
    • Year: 2025
  2. Publication: Research on PMSM Speed Control Based on Improved Super-Twisting Sliding Mode Active Disturbance Rejection Control

    • Authors: Yuxin Ma, Ziqi Lei, Pingping Gu, Xinpeng Feng, Wei Zhang, Chaohui Zhao
    • Year: 2024

 

CIGDEM CAGLAYAN | Engineering | Best Researcher Award

Ms. CIGDEM CAGLAYAN | Engineering | Best Researcher Award

PhD Candidate at Seoul National University, South Korea

Cigdem Caglayan is an accomplished Aerospace Engineer and a PhD candidate at Seoul National University, specializing in cutting-edge research on dynamic combinational epoxy vitrimers, recyclable carbon fiber vitrimer composites, and self-healing mechano-luminescent (ML) coatings for structural health monitoring (SHM). Her work focuses on developing cost-effective solutions for detecting and visualizing stress distribution in structural components, advancing sustainability through recyclable composite materials. With a strong foundation in polymer science and composite technologies, her research journey spans innovative material design, advanced manufacturing techniques, and extensive collaboration with international institutions. Cigdem is highly skilled in project management, technical reporting, and material characterization, with several publications in high-impact journals. Her global academic contributions and passion for sustainability position her as a leader in the aerospace and materials research domains.

Professional Profile

Education

Cigdem is currently pursuing a PhD in Aerospace Engineering at Seoul National University, expected in February 2025. Her doctoral research focuses on self-healing epoxy vitrimers and ML coatings. She earned her MSc in Aerospace Engineering from Istanbul Technical University, where her thesis emphasized nano-reinforced polyurethane foams and polymer foam core sandwich composites. She graduated with a GPA of 4.00/4.30 in 2019. Her BSc in Aerospace Engineering, also from Istanbul Technical University, focused on the design and testing of advanced composites, graduating in 2016 with a GPA of 3.69/4.00. Her academic achievements have been supported by prestigious scholarships and her commitment to advancing composite technologies.

Professional Experience

Cigdem has extensive experience as a researcher, starting her career at Istanbul Technical University’s Aerospace Research Center (2016–2019), where she led projects on nano-reinforced polyurethane foams and polymer foam core sandwich composites. Currently, she is a researcher at Seoul National University, where she develops self-healing stress sensors and recyclable carbon fiber composites, contributing to advancements in structural health monitoring and sustainability. Cigdem has been instrumental in laboratory setup and operations, utilizing advanced equipment and techniques. Her teaching experience includes mentoring undergraduate students in subjects like composite materials and aerospace engineering, further showcasing her leadership and technical expertise.

Research Interests

Cigdem’s research interests focus on developing sustainable and innovative materials for aerospace and structural applications. Her work in self-healing mechano-luminescent (ML) coatings and recyclable epoxy vitrimer composites aims to revolutionize structural health monitoring (SHM) by enabling non-contact stress detection and visualization. She is passionate about composite manufacturing techniques, including vacuum-assisted resin transfer molding (VARTM) and hot pressing, with a keen focus on enhancing sustainability through recyclable materials. Her interests also extend to understanding material failure under various conditions, making her research pivotal for industries like aerospace and defense.

Research Skills

Cigdem is proficient in advanced composite manufacturing and characterization techniques, including VARTM, hot pressing, and ASTM-standard testing methods like flexural fatigue and impact analysis. Her expertise extends to characterization tools such as FTIR, NMR, and SEM, and she is skilled in data analysis using MATLAB and 3D CAD/CAM software like CATIA. Additionally, she excels in laboratory management, experimental design, and technical reporting, with strong soft skills in teamwork and communication. Cigdem’s ability to innovate and lead makes her a valuable contributor to complex research projects.

Awards and Honors

Cigdem has been recognized globally for her academic and research excellence. She is a recipient of the prestigious Global Korean Scholarship (2019–2023) and has been honored with the Korean Government Invitation Program award for top students. Her outstanding presentation at the International Conference on Active Materials and Soft Mechatronics in 2024 earned her an Excellent Presentation Award. As one of Turkey’s top students, she has also received multiple scholarships and participated in international exchange programs, highlighting her dedication and achievements in aerospace engineering.

Conclusion

Cigdem Caglayan is a strong contender for the Best Researcher Award due to her innovative research, extensive technical expertise, and global academic contributions. Her work in self-healing composites and recyclable materials directly addresses contemporary challenges in sustainability and advanced materials science, aligning with the award’s objectives. By broadening the application of her research and increasing leadership roles in professional communities, she can further enhance her academic and professional impact.

Publications Top Notes

  1. Reprocessable carbon fiber vitrimer composites: Reclamation and reformatting of carbon fibers for second-generation composite materials
    Authors: Sharma, H., Bender, M., Kim, G., Kumar, A., Rana, S.
    Journal: Journal of Applied Polymer Science
    Year: 2024
  2. Epoxy-Based Catalyst-Free Self-Healing Elastomers at Room Temperature Employing Aromatic Disulfide and Hydrogen Bonds
    Authors: Kim, G., Caglayan, C., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 13
  3. CNT-Reinforced Self-Healable Epoxy Dynamic Networks Based on Disulfide Bond Exchange
    Authors: Caglayan, C., Kim, G., Yun, G.J.
    Journal: ACS Omega
    Year: 2022
    Citations: 5
  4. Impact response of shear thickening fluid filled polyurethane foam core sandwich composites
    Authors: Caglayan, C., Osken, I., Ataalp, A., Turkmen, H.S., Cebeci, H.
    Journal: Composite Structures
    Year: 2020
    Citations: 51
  5. The effect of CNT-reinforced polyurethane foam cores to flexural properties of sandwich composites
    Authors: Caglayan, C., Gurkan, I., Gungor, S., Cebeci, H.
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2018
    Citations: 53
  6. Flexural behaviours of nanophased rigid polyurethane foam core sandwich composites
    Authors: Çağlayan, Ç., Demir, E., Gürkan, İ., Cebeci, H.
    Conference: ICCM International Conferences on Composite Materials
    Year: 2017
    Citations: 1