Ding Yuan | Materials Science | Best Researcher Award

Prof. Ding Yuan | Materials Science | Best Researcher Award

Professor, at University of Shanghai for Science and Technology, China.

Dr. Ding Yuan is a distinguished researcher specializing in ultrathin two-dimensional (2D) materials for energy storage and conversion. She earned her Ph.D. from Griffith University in 2021 under the mentorship of Prof. Shanqing Zhang and Prof. Huijun Zhao. Following her doctorate, she conducted postdoctoral research at Griffith University and the University of Wollongong before joining the Shanghai University of Science and Technology in 2023 as a Specially Appointed Professor. Her research focuses on defect chemistry in ultrathin 2D materials, pioneering methods to enhance lithium/sodium-ion battery performance and electrocatalysis. She has published over 40 papers in high-impact journals, receiving more than 1,500 citations. Dr. Yuan has secured multiple national and provincial-level research grants, including the National Natural Science Foundation of China (NSFC) and Shanghai Leading Talent Award. Her contributions have been widely recognized, earning prestigious awards and extensive media coverage.

Professional Profile

🎓 Education

Dr. Ding Yuan has a strong academic foundation in chemistry and materials science. She earned her Bachelor’s (2014) and Master’s (2017) degrees in Chemical Engineering from Jiangsu University, where she researched photocatalytic degradation of pollutants. She pursued her Ph.D. (2018-2021) at Griffith University, Australia, focusing on atomic-level ultrathin materials for next-generation rechargeable batteries. Under the supervision of Prof. Shanqing Zhang and Prof. Huijun Zhao, she developed innovative synthesis methods for ultrathin transition metal oxides and chalcogenides, significantly enhancing their electrochemical performance. Her doctoral work laid the groundwork for her pioneering research on defect chemistry. She later expanded her expertise through postdoctoral research at Griffith University and the University of Wollongong, exploring electronic structure modulation of 2D materials for energy applications. In 2023, she joined Shanghai University of Science and Technology as a faculty member, furthering her research in energy storage and conversion.

💼 Experience

Dr. Ding Yuan’s career spans academia and research leadership. She is currently a Specially Appointed Professor at Shanghai University of Science and Technology, leading projects on ultrathin 2D energy materials. Before this, she held postdoctoral research positions at the University of Wollongong (2021-2023) and Griffith University (2021), focusing on electronic structure modulation of ultrathin materials for electrocatalysis and energy storage. Throughout her career, Dr. Yuan has spearheaded multiple research initiatives, collaborating with leading scholars such as Academicians Shi Dou and Huakun Liu. Her expertise in soft-template synthesis, self-assembly, and defect engineering has led to significant advancements in battery technology and electrocatalysis. She has also actively participated in national and international research collaborations, contributing to several high-impact research projects funded by organizations like the Australian Research Council and the National Natural Science Foundation of China.

🔬 Research Interests

Dr. Ding Yuan’s research focuses on the controlled synthesis and defect engineering of ultrathin 2D materials for energy applications. She explores atomic-level strategies, such as vacancy engineering, heterostructure construction, and element doping, to enhance the performance of materials in lithium/sodium-ion batteries, electrocatalysis, and hydrogen production. Her work aims to improve the energy density and power output of rechargeable batteries while optimizing catalytic activity and stability. She employs advanced techniques like self-assembly, soft-template methods, and topological transformations to fabricate high-performance materials. Dr. Yuan’s interdisciplinary approach integrates materials science, electrochemistry, and nanotechnology, driving innovations in renewable energy storage and conversion. Her research has gained significant recognition, contributing to the development of next-generation energy technologies with real-world applications in sustainable energy systems.

🏆 Awards

Dr. Ding Yuan has received numerous prestigious awards for her contributions to energy materials research. Notably, she was selected for the Young Talent Support Program by the China Association for Science and Technology (2023-2026), a highly competitive national-level recognition. She has also been awarded the National Natural Science Foundation Youth Grant (2025-2027) and the Shanghai Leading Talent (Overseas) Award (2023-2026), highlighting her impact in the field of materials science. Additionally, she received the Hujiang Leading Talent Award (2023-2026) from Shanghai University of Science and Technology. Her academic excellence has been recognized through university-level honors, including the Outstanding Union Activist Award (2024) and the Excellence in Teaching Assistant Award (2023). These accolades underscore her leadership in advancing nanomaterials for energy applications.

📖 Top Noted Publications

Dr. Ding Yuan has published over 40 peer-reviewed articles in top-tier journals, with more than 1,500 citations. Some of her most notable publications include:

  • Yuan, D., et al. (2023). “Defect Engineering in Ultrathin 2D Materials for Energy Storage.” Chemical Reviews. DOI | Cited by: 200+ articles.
  • Yuan, D., et al. (2022). “Heterostructure Engineering of Transition Metal Chalcogenides for High-Performance Batteries.” Advanced Materials. DOI | Cited by: 180+ articles.
  • Yuan, D., et al. (2021). “Atomically Thin 2D Transition Metal Oxides for Water Splitting.” Angewandte Chemie International Edition. DOI | Cited by: 160+ articles.
  • Yuan, D., et al. (2021). “Boosting Pseudocapacitive Behavior in Sodium-Ion Batteries with Vacancy-Engineered 2D Materials.” Cell Reports Physical Science. DOI | Cited by: 140+ articles.
  • Yuan, D., et al. (2020). “Soft-Template Synthesis of Ultrathin Layered Double Hydroxides for High-Performance Supercapacitors.” Chemical Engineering Journal. DOI | Cited by: 120+ articles.

Conclusion

Dr. Yuan Ding is highly suitable for the “Best Researcher Award.” Her strong research impact, prestigious funding, international collaborations, and leadership in 2D materials for energy applications make her a strong candidate. With continued industry collaboration and further leadership in global scientific communities, she has the potential to become a top-tier scientist in the energy materials field.

 

Yuhai Dou | Materials Science | Best Researcher Award

Prof. Dr. Yuhai Dou | Materials Science | Best Researcher Award

Vice President, at University of Shanghai for Science and Technology, China.

Dr. Yu Hai Dou is a Professor at Shanghai University of Science and Technology (USST), where he serves as the Executive Vice Dean of the Department of Hydrogen Energy and Fuel Cells. He is an expert in atomic-level ultra-thin two-dimensional new energy materials, focusing on hydrogen energy and fuel cells. With extensive experience in advanced materials science and nanotechnology, Dr. Dou has worked as a researcher and collaborator with renowned institutions like Griffith University and the University of Wollongong. His leadership and expertise have garnered numerous national and international awards, solidifying his place as a key figure in materials science research. He has contributed significantly to hydrogen production and energy storage solutions, aiming for sustainable energy advancements.

Professional Profile

Education 🎓

Dr. Dou completed his undergraduate and master’s studies in Materials Science and Engineering at Central South University, China, specializing in powder metallurgy. He then pursued his Ph.D. at the University of Wollongong, Australia, under the supervision of Academician Shih and Professor Ziqi Sun, where he focused on atomic-level ultra-thin two-dimensional materials for lithium/sodium-ion batteries and electrocatalysis for oxygen evolution. His academic journey continued with significant postdoctoral work at Griffith University, collaborating with Professor Huijun Zhao on innovative catalysts for hydrogen production and advanced energy storage technologies. His educational background has equipped him with a comprehensive understanding of energy materials and catalysis at the atomic scale.

Experience 💼

Dr. Dou’s professional career spans several prestigious institutions and research roles. As a Professor at USST, he is a driving force in the development of hydrogen energy and fuel cell technology. He has also been involved in cutting-edge research projects at Griffith University and the University of Wollongong, where he led pioneering work on atomic-level catalysts and energy-efficient materials. In addition, Dr. Dou has contributed to the development of several high-impact projects, including national and international collaborations on hydrogen energy and fuel cell advancements. His roles have also included serving as the Chair of the Materials Science Research Center and the Academic Committee at Shandong Advanced Technology Institute, China.

Research Interests 🔬

Dr. Dou’s research is centered on atomic-level ultra-thin two-dimensional materials, particularly in the areas of hydrogen energy, fuel cells, and energy storage. His work includes the development of efficient electrocatalysts for water splitting, hydrogen production, and advanced energy storage systems like sodium-ion batteries. Additionally, he is interested in designing innovative materials for renewable energy applications, including those used in fuel cells and energy conversion technologies. His pioneering work on single-atom catalysts and defect engineering has significantly advanced the field of materials science, making strides toward more sustainable energy solutions.

Awards 🏆

Dr. Dou’s career has been marked by numerous prestigious awards. He received the “Overseas Postdoctoral Talent Introduction Project” from the Ministry of Human Resources and Social Security in China, as well as several national-level recognitions such as the “Excellent Young Scientist” award from Australia and the “Taishan Scholar” award from Shandong Province. In 2020, his paper won the China Top Cited Paper Award, and he was also nominated for the World Advanced Materials Association Youth Scientist Gold Award. His accolades reflect his impact on both national and international levels, particularly in the field of materials science and energy research.

Top Noted Publications 📝

Dr. Dou has published extensively in high-impact journals on materials science, catalysis, and energy storage. His work includes groundbreaking research on atomic-level catalysts and ultra-thin two-dimensional materials. His publications have been cited in numerous international articles, showcasing his contributions to the advancement of hydrogen energy and catalysis. Some of his key papers include:

  • “Single-Atom Catalysts on Atomically Thin Nanomaterials for H₂O₂ Production” (2021, Nature Communications).
  • “Atomically Thin 3d Transition Metal Electrocatalysts for Water Splitting” (2020, Advanced Materials).
    For further exploration of his work, his published articles can be accessed via the journal links.

Conclusion

Dr. Yu Hai Dou exemplifies the qualities of a leading researcher in the realm of energy materials and sustainable technologies. His impressive list of awards, significant research funding, and collaborative work in high-impact projects make him an outstanding candidate for the Best Researcher Award. His contributions to hydrogen energy research and electrocatalysis are critical to advancing renewable energy technologies. With continued expansion into industry applications and fostering young talent, Dr. Dou can further amplify his already substantial impact on the scientific community and beyond.

Parveen Saini | Materials Science | Best Researcher Award

Dr. Parveen Saini | Materials Science | Best Researcher Award 

Sr. Principal Scientist and Professor AcSIR, at CSIR National Physical Laboratory New Delhi, India.

Dr. Parveen Saini is a Sr. Principal Scientist at the CSIR-National Physical Laboratory in New Delhi, India. He leads the Conjugated Polymers, Graphene Technology, and Waste Management Lab within the Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division. With a strong academic background in polymer science and material science, Dr. Saini has developed innovative research in areas including conductive polymers, graphene technology, and sustainable waste management solutions ♻️. His contributions have earned him recognition in engineering sciences, particularly for developing advanced materials with applications in EMI shielding, sustainable coatings, and nanotechnology. His work reflects a commitment to both industrial innovation and environmental sustainability 🌍, and he continues to guide research at CSIR-NPL, with his findings being highly influential in both scientific and industrial domains.

Profile

Education 🎓

Dr. Saini began his academic journey at Delhi College of Engineering, University of Delhi, where he earned his B.Tech. in Polymer Science and Chemical Technology in 2002. Driven by his interest in materials science, he went on to complete his Ph.D. at the Indian Institute of Technology (IIT), Delhi, in 2012, specializing in conducting polymers. His Ph.D. research provided critical insights into material properties that have since informed his subsequent work in advanced polymeric and graphene-based technologies. This robust educational foundation equipped Dr. Saini with the knowledge and skills to lead cutting-edge research in material science, establishing him as a prominent figure in both the academic and industrial fields of polymer and nanotechnology.

Experience 💼

Dr. Saini’s professional journey began as a Graduate Engineer Trainee at Shriram Institute for Industrial Research, where he worked in the Rubber, Plastics, and Textile Lab. In 2004, he joined the CSIR-National Physical Laboratory, where he quickly advanced through various roles, starting as a Junior Scientist in the Polymeric & Soft Materials Section, then progressing to Scientist and Senior Scientist in the Materials Physics and Engineering Division. Since 2021, he has served as Sr. Principal Scientist, overseeing the Advanced Materials and Devices Metrology Division. Over his extensive career, Dr. Saini has been at the forefront of research in materials science, pioneering techniques in polymer development, waste management, and graphene technology for enhanced industrial applications.

Research Interests 🔍

Dr. Saini’s research is centered on the development of advanced materials, particularly in the realms of conjugated polymers, graphene technology, and waste management. His interests span the synthesis and application of conductive polymers for electromagnetic interference (EMI) shielding, sustainable coatings for corrosion resistance, and recycling methods for waste solar modules. Dr. Saini also explores innovative uses of graphene for energy storage and environmental sustainability, aiming to create materials that address industrial needs while promoting eco-friendly practices. His work on nanocomposites and sustainable materials highlights a commitment to improving material resilience and reducing environmental impact, making significant contributions to both industrial technology and green innovation 🌱.

Awards 🏆

In 2013, Dr. Parveen Saini received the prestigious CSIR Young Scientist Award in the area of Engineering Sciences, recognizing his pioneering contributions to material sciences. This honor reflects his influential work in developing novel conductive polymers and graphene-based materials with applications in EMI shielding and sustainable coatings. Dr. Saini’s award-winning research is known for its practical industrial applications, particularly in enhancing material durability and eco-friendliness. His accomplishments in the field have positioned him as a leading figure in advanced materials science, with his innovative approaches influencing the direction of polymer research and development in India and globally.

Publications 📚

Dr. Saini has authored numerous influential papers in high-impact scientific journals. Here are some of his notable publications:

    • Enhanced Anticorrosive Behavior of Waste Tea Bags Derived Nanocrystalline Cellulose Incorporated Polyaniline for Protection of Mild Steel Under Aggressive Saline Environment
      • Journal: Transactions of the Indian Institute of Metals
      • Year: 2024
      • Citations: 0
      • Summary: This study investigates the anticorrosive properties of polyaniline (PANI) composites incorporating nanocrystalline cellulose (NCC) derived from waste tea bags. The material demonstrates significant potential for protecting mild steel in saline conditions.
    • Extraction and Analysis of Back-Sheet Layer from Waste Silicon Solar Modules
      • Journal: Chemical Reports
      • Year: 2022
      • Citations: 1
      • Summary: This paper focuses on the extraction and analysis of back-sheet layers from waste silicon solar modules, addressing waste management and material recovery in photovoltaic industries.
    • Fe3O4/Graphene-Oxide/Chitosan Hybrid Aerogel Based High-Performance Supercapacitor: Effect of Aqueous Electrolytes on Storage Capacity & Cell Stability
      • Journal: Journal of Energy Storage
      • Year: 2022
      • Citations: 28
      • Summary: This research explores a Fe3O4/graphene oxide/chitosan hybrid aerogel for use in supercapacitors, emphasizing how aqueous electrolytes impact storage capacity and cell stability.
    • Historical Review of Advanced Materials for Electromagnetic Interference (EMI) Shielding: Conjugated Polymers, Carbon Nanotubes, Graphene-Based Composites
      • Journal: Indian Journal of Pure and Applied Physics
      • Year: 2019
      • Citations: 19
      • Summary: A comprehensive review of materials used in electromagnetic interference (EMI) shielding, particularly focusing on conjugated polymers, carbon nanotubes, and graphene composites.
    • Excellent Electromagnetic Interference Shielding and Mechanical Properties of High-Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder
      • Journal: Carbon
      • Year: 2015
      • Citations: 192
      • Summary: This study presents a high-performance EMI shielding material developed using carbon nanotube/polymer composites. The twin-screw extruder technique enhances both mechanical properties and shielding effectiveness.

Conclusion

Dr. Parveen Saini is a highly accomplished scientist with substantial contributions in materials science and engineering, particularly in the fields of conjugated polymers, graphene, and waste management technologies. His portfolio of publications, patents, and professional achievements makes him an excellent candidate for the Best Researcher Award. His innovative work and societal impact through SSR initiatives reflect his commitment not only to scientific excellence but also to addressing critical societal needs. Expanding international collaborations and exploring further sustainable materials applications could enhance his already impressive career trajectory.