Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Associate Professor from Southern University of Science and Technology, China

Gen-Qiang Chen is a distinguished researcher and Professor at the Shenzhen Grubbs Institute, Southern University of Science and Technology. Renowned for his expertise in asymmetric catalysis, ligand design, and total synthesis of complex molecules, he has made substantial contributions to both fundamental research and industrial applications. His work has been published extensively in prestigious journals, including Nature Chemistry, Nature Communications, Journal of the American Chemical Society, Angewandte Chemie, and Science Advances. Chen’s research achievements have directly contributed to significant industrial advancements, such as the asymmetric synthesis of Sacubitril, a drug for heart failure treatment, which has led to the production of over 20 tons of intermediates and generated approximately 40 million yuan in industrial output. Recognized nationally, he has received competitive grants, awards, and honors, including the Guangdong Outstanding Youth Fund and the Shenzhen Natural Science First Prize. His work has been highlighted by the National Natural Science Foundation of China and featured by international research platforms like Synfacts. Chen’s balanced approach, integrating rigorous academic inquiry with practical, scalable applications, positions him as a leader in modern organic chemistry. He is actively engaged in reviewing for top journals, contributing to the scientific community’s advancement and maintaining high research standards.

Professional Profile

Education

Gen-Qiang Chen’s academic journey reflects a continuous pursuit of excellence in organic chemistry. He earned his Bachelor’s degree from Lanzhou University, one of China’s most respected institutions, where he developed a strong foundation in chemical sciences. Driven by a passion for advanced research, he pursued a PhD at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, completing his doctorate in 2012. His doctoral work focused on the development of new catalytic systems and the synthesis of bioactive molecules, setting the stage for his future research trajectory. Following his PhD, Chen undertook postdoctoral research at the prestigious California Institute of Technology (Caltech) in the United States. There, he worked under the mentorship of renowned chemists, expanding his expertise in asymmetric catalysis and gaining exposure to cutting-edge research methodologies and international collaboration. This blend of top-tier Chinese and international education provided Chen with a robust theoretical and experimental foundation, allowing him to bridge Eastern and Western research traditions. His educational path has not only equipped him with deep technical knowledge but also shaped his scientific perspective, enabling him to tackle complex research problems with innovative solutions and to mentor the next generation of scientists.

Professional Experience

Gen-Qiang Chen currently holds a professorship at the Shenzhen Grubbs Institute, Southern University of Science and Technology, where he leads a dynamic research group focused on asymmetric catalysis, ligand design, and total synthesis. Prior to this role, Chen gained valuable international experience during his postdoctoral work at Caltech, where he honed his skills in advanced catalytic methodologies and expanded his professional network. Upon returning to China, Chen took on faculty positions that allowed him to establish his independent research program, attracting competitive funding and assembling a talented team of researchers and students. Over the years, Chen has built strong collaborations with both academic and industrial partners, integrating fundamental research with real-world applications. His group has successfully designed novel chiral ligands, such as O-SDP, which have been adopted in industrial settings for the synthesis of important pharmaceuticals. Chen is also deeply involved in academic service, acting as a reviewer for leading journals and contributing to the organization of scientific conferences and workshops. His professional experience reflects a well-rounded combination of academic leadership, international collaboration, industrial engagement, and community service, marking him as an influential figure in the field of organic chemistry.

Research Interests

Gen-Qiang Chen’s research interests center on the design and development of new catalytic systems, particularly in asymmetric catalysis, which enables the selective production of chiral molecules. His work focuses on creating novel chiral ligands and catalysts that can surpass existing commercial systems in terms of efficiency, selectivity, and scalability. A major area of interest is the application of these catalysts in complex molecule synthesis, including the total synthesis of natural products and pharmaceuticals such as prostaglandins and Sacubitril. Chen is also keenly interested in understanding catalytic mechanisms at a fundamental level, using both experimental and computational tools to uncover the principles driving selectivity and reactivity. His research bridges the gap between fundamental chemistry and industrial application, ensuring that discoveries in the lab can be translated into real-world solutions. Additionally, Chen explores the development of highly selective catalysts for challenging transformations, such as asymmetric hydroformylation, which has broad implications for fine chemical production and material science. His work contributes to the advancement of green chemistry by aiming for more sustainable, efficient, and cost-effective processes, aligning with global efforts to reduce waste and improve chemical manufacturing practices.

Research Skills

Gen-Qiang Chen possesses a comprehensive set of research skills that span synthetic organic chemistry, asymmetric catalysis, ligand design, and mechanistic studies. He is highly skilled in designing and synthesizing chiral ligands and catalysts, demonstrating expertise in optimizing reaction conditions to achieve high selectivity and efficiency. Chen is adept at conducting total synthesis projects, including multi-step syntheses of complex natural products and pharmaceuticals, requiring advanced planning, problem-solving, and analytical techniques. He is proficient in using modern spectroscopic and chromatographic methods, such as NMR, HPLC, and mass spectrometry, to characterize reaction intermediates and products with precision. Additionally, Chen integrates computational chemistry approaches to investigate catalytic mechanisms, allowing his team to understand the molecular-level details that drive reactivity and selectivity. He has strong project management skills, overseeing multiple research projects simultaneously and guiding a team of graduate students and postdoctoral researchers. Chen’s ability to translate laboratory discoveries into industrial applications demonstrates his practical know-how and innovation. His experience in drafting patents and publishing high-impact research further reflects his skill in communicating scientific advances to both academic and industrial audiences, making him a versatile and impactful researcher.

Awards and Honors

Gen-Qiang Chen has received numerous prestigious awards and honors in recognition of his outstanding contributions to organic chemistry and catalysis research. Notably, he has been awarded the Guangdong Outstanding Youth Fund, a highly competitive grant that supports exceptional young scientists in advancing innovative research projects. He has also received the Shenzhen Natural Science First Prize, which acknowledges his groundbreaking work in developing chiral ligands and asymmetric catalytic methods with significant industrial applications. Chen’s research achievements have been repeatedly highlighted by the National Natural Science Foundation of China, underscoring his national prominence. Internationally, his work has been featured multiple times by Synfacts and Organic Chemistry Highlights, reflecting the global relevance and impact of his research. Additionally, Chen holds several patents for novel catalytic systems, further demonstrating the practical significance of his innovations. His role as a frequent reviewer for leading international journals and his participation in high-profile conferences and workshops attest to his strong standing in the scientific community. These recognitions not only celebrate his past achievements but also signal his potential to continue driving innovation and excellence in the field of asymmetric catalysis.

Conclusion

In conclusion, Gen-Qiang Chen exemplifies the qualities of a leading researcher in modern organic chemistry, combining deep scientific insight with practical innovation. His prolific publication record, cutting-edge catalytic systems, and impactful industrial collaborations highlight his ability to translate fundamental discoveries into real-world applications. Chen’s commitment to excellence is evident not only in his research output but also in his mentorship of young scientists, his service to the academic community, and his contribution to advancing chemical manufacturing processes. Recognized nationally and internationally, his achievements have positioned him as a rising star in the field, with the potential to influence the direction of asymmetric catalysis and ligand design for years to come. Chen’s balanced focus on both fundamental science and industrial relevance aligns with global priorities for sustainable and efficient chemical production. As he continues to expand his research portfolio and build international collaborations, his work will undoubtedly play a central role in shaping the future of organic synthesis. Gen-Qiang Chen’s exceptional track record and ongoing innovation make him a highly deserving candidate for the Best Researcher Award, reflecting his significant contributions to science and society.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

 

 

Jindian Duan | Organic Chemistry | Best Researcher Award

Prof. Jindian Duan | Organic Chemistry | Best Researcher Award

Associate Professor from Nanjing Tech University, China

Jindian Duan, born in 1985 in Luoyang, Henan Province, is an accomplished associate professor and Master’s supervisor at the College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University. His research focuses on developing novel processes and materials using microfluidic technology and bio-based chemicals. He has made significant contributions to the scientific community with over 20 publications in high-impact international journals, including Org. Lett., Chem. Commun., and Adv. Synth. Catal. His research achievements have earned him more than 10 Chinese invention patents. Duan’s career reflects both academic excellence and an ongoing commitment to advancing cutting-edge technologies in organic chemistry. With a strong educational background and extensive professional experience, he continues to make valuable contributions to the fields of chemistry and biotechnology.

Professional Profile

Education

Jindian Duan’s educational background includes a Ph.D. in Organic Chemistry from Zhejiang University, completed in 2013. His doctoral research, under the supervision of Prof. Cheng Ma, focused on asymmetric catalytic cascade reactions. Before this, he earned a Master of Engineering in Chemical Engineering from Zhejiang University in 2008, where he worked on the intermediate of the fungicide fludioxonil under the guidance of Prof. Lirong Yang. His academic journey began at Dalian University of Technology, where he obtained a B.Sc. in Chemistry in 2006. These advanced degrees laid the foundation for his current expertise in organic chemistry and chemical engineering, enabling him to contribute significantly to his field.

Professional Experience

Jindian Duan’s professional career spans several prestigious academic institutions. Since May 2017, he has served as an associate professor at Nanjing Tech University, where he also supervises Master’s students. Prior to this, Duan was a postdoctoral researcher at The Hong Kong Polytechnic University from 2015 to 2017, specializing in transition metal-catalyzed coupling reactions. He also worked as an assistant researcher at the Southern University of Science and Technology from 2013 to 2015, where he focused on asymmetric catalytic cascade reactions of organic small molecules. Earlier in his career, Duan worked as a technology transfer engineer and chemical process engineer at Lonza R&D Center in Guangzhou, where he was involved in the scale-up and pilot production of pharmaceutical intermediates.

Research Interests

Jindian Duan’s primary research interests lie in the development of novel processes and materials based on microfluidic technology. His work is focused on advancing bio-based chemicals and creating innovative approaches to organic chemistry. Duan’s research has led to the development of new catalytic processes and materials, with particular emphasis on environmentally friendly and sustainable practices. He is also engaged in the development of transition metal-catalyzed reactions and asymmetric catalytic cascade reactions. His research is highly interdisciplinary, bridging the fields of microfluidics, green chemistry, and biotechnology.

Research Skills

Duan’s research skills are rooted in his deep understanding of organic chemistry and chemical engineering. He is proficient in microfluidic technology and its application to the synthesis of novel materials and bio-based chemicals. His work in asymmetric catalytic reactions has been groundbreaking, and his expertise extends to the development of scalable, sustainable chemical processes. Duan is skilled in various advanced techniques such as transition metal-catalyzed reactions, synthetic organic chemistry, and the design of catalytic systems. He is also experienced in patenting innovative solutions, having filed over 10 Chinese invention patents. His collaborative work in multidisciplinary teams further enhances his research capabilities.

Awards and Honors

Jindian Duan’s research excellence has been recognized through numerous accolades and awards. He has published over 20 high-impact papers in prestigious journals, marking him as a leading figure in his field. Additionally, his contributions to innovative chemical processes and materials have earned him more than 10 Chinese invention patents. Duan’s work on bio-based chemicals and microfluidic technology has not only enriched the scientific community but also contributed to the development of sustainable practices in chemistry. His ongoing commitment to research and innovation continues to be acknowledged by both academic and industrial sectors.

Conclusion

Jindian Duan is a highly accomplished researcher whose work in microfluidic technology and bio-based chemicals has significantly advanced the fields of organic chemistry and biotechnology. His impressive publication record and over 10 granted patents reflect his ability to push the boundaries of scientific research. As an associate professor and supervisor at Nanjing Tech University, Duan also plays a key role in shaping the next generation of researchers. His combination of innovative research, strong academic leadership, and commitment to sustainability makes him a valuable asset to the scientific community. Looking forward, Duan’s continued contributions are expected to have a lasting impact on the fields he specializes in.

Publications Top Notes

Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones
Authors: Luchao Li, Binyan Xu, Chenglong Jia, Jindian Duan, Kai Guo
Journal: Journal of Organic Chemistry
Year: 2025

2. Oxidative Spirolactonisation for Modular Access of γ-Spirolactones via a Radical Tandem Annulation Pathway
Authors: Jindian Duan, Xiaojuan Ding, Pui Ying Choy, Fuk Yee Kwong, Kai Guo
Journal: Chinese Chemical Letters
Year: 2024
Citations: 1

3. Copper(I)-Catalyzed [4+2] Oxidative Annulation of α,β-Unsaturated Ketoxime Acetates with Cyclopropanols toward Functional Pyridines
Authors: Qinghuan Wu, Gaochen Xu, Yuguang Li, Jindian Duan, Kai Guo
Journal: Advanced Synthesis and Catalysis
Year: 2023
Citations: 1

Prasanta Roy | Organic Chemistry | Best Researcher Award

Assist. Prof. Dr. Prasanta Roy | Organic Chemistry | Best Researcher Award

Assistant Professor (International Faculty Member) at School of Chemical Engineering, Yeungnam University, Republic of Korea.

Dr. Prasanta Roy is an accomplished researcher in synthetic organic chemistry, specializing in asymmetric synthesis, catalytic transformations, and bioactive molecule synthesis. With extensive postdoctoral experience across leading institutions in China, India, and South Korea, he has contributed significantly to organic synthesis through innovative methodologies. His expertise spans N-heterocycle synthesis, enantioselective transformations, and transition metal-catalyzed reactions. Currently serving as an Assistant Professor at Yeungnam University, he continues to advance research in transition metal-catalyzed C-H activation and annulation reactions. Dr. Roy’s international research collaborations and academic contributions underscore his commitment to advancing the field of organic chemistry.

Professional Profile

Education

Dr. Prasanta Roy earned his Ph.D. in Synthetic Organic Chemistry from the Indian Institute of Technology (IIT) Guwahati in 2016, where he worked on copper oxide nanoparticle-assisted synthesis of 1,4-triazoles and N-heterocycles under the supervision of Prof. A. T. Khan and Prof. Bhisma Kumar Patel. He completed his M.Sc. in Organic Chemistry from Visva-Bharati University in 2010 and his B.Sc. in Chemistry from the University of Burdwan in 2008. His academic journey reflects a strong foundation in organic synthesis, enabling him to develop expertise in asymmetric catalysis, multicomponent reactions, and medicinal chemistry, which have remained central to his research contributions.

Professional Experience

Dr. Roy has held multiple prestigious research positions globally. He began his postdoctoral research at the Chinese Academy of Sciences (2016-2018), focusing on asymmetric synthesis and kinetic resolution strategies. He later joined Yunnan University (2019-2021), where he worked on bioactive molecule synthesis and medicinal chemistry. At IIT Kanpur (2021-2022), he specialized in dynamic kinetic resolution and asymmetric organic synthesis. From 2022 to early 2024, he contributed to transition metal-catalyzed organic synthesis at Yeungnam University, South Korea. In March 2024, he was appointed as an Assistant Professor at Yeungnam University, continuing his work in catalysis and organic synthesis.

Research Interests

Dr. Roy’s research focuses on synthetic organic chemistry, particularly in asymmetric synthesis, transition metal-catalyzed reactions, and medicinal chemistry. He is particularly interested in developing new methodologies for enantioselective transformations, asymmetric transfer hydrogenation, and C-H bond activation. His work also extends to multicomponent reactions for the synthesis of heterocyclic compounds, with applications in drug discovery and pharmaceutical chemistry. His interdisciplinary approach integrates nanocatalysis and organocatalysis to create sustainable and efficient synthetic routes for complex organic molecules.

Research Skills

Dr. Roy possesses advanced skills in organic synthesis, asymmetric catalysis, transition metal-catalyzed transformations, and kinetic resolution. He is proficient in various chromatographic and spectroscopic techniques, including NMR, HPLC, and mass spectrometry, essential for structural elucidation and reaction optimization. His expertise in computational chemistry and mechanistic studies enables him to design novel catalysts and reaction pathways. Additionally, he has experience in medicinal chemistry, focusing on synthesizing bioactive compounds with potential pharmaceutical applications. His multidisciplinary research approach combines synthetic methodologies with analytical techniques to develop efficient and selective chemical transformations.

Awards and Honors

Dr. Roy’s contributions to organic chemistry have been recognized through various fellowships and research grants. He has received postdoctoral fellowships from the Chinese Academy of Sciences and IIT Kanpur. His work in asymmetric catalysis and bioactive molecule synthesis has been published in reputed international journals. As an emerging leader in organic synthesis, he has actively contributed to academic conferences, presenting his research at international symposiums. His recognition in the field continues to grow, reflecting his impact on synthetic methodologies and catalysis.

Conclusion

Dr. Prasanta Roy is a distinguished researcher in synthetic organic chemistry with a strong international research background. His expertise in asymmetric synthesis, transition metal catalysis, and medicinal chemistry positions him as a leading contributor to modern organic synthesis. With an extensive postdoctoral research portfolio and recent appointment as an Assistant Professor, he continues to advance research in catalysis and sustainable chemical transformations. Strengthening his publication impact, securing independent research grants, and expanding his mentorship activities will further enhance his academic and professional contributions. His dedication to innovative organic synthesis methodologies makes him a strong candidate for research excellence recognition.

Publication Top Notes

  1. Synthesis of tetra-substituted pyrroles, a potential phosphodiesterase 4B inhibitor, through nickel (II) chloride hexahydrate catalyzed one-pot four-component reaction

    • Authors: AT Khan, M Lal, PR Bagdi, RS Basha, P Saravanan, S Patra
    • Journal: Tetrahedron Letters
    • Volume: 53
    • Issue: 32
    • Pages: 4145-4150
    • Year: 2012
    • Citations: 93
  2. Camphorsulfonic acid catalyzed one-pot three-component reaction for the synthesis of fused quinoline and benzoquinoline derivatives

    • Authors: R Gattu, PR Bagdi, RS Basha, AT Khan
    • Journal: The Journal of Organic Chemistry
    • Volume: 82
    • Issue: 23
    • Pages: 12416-12429
    • Year: 2017
    • Citations: 35
  3. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I₂ and TBHP: Access to lead molecules for biomedical applications

    • Authors: K Mahato, N Arora, PR Bagdi, R Gattu, SS Ghosh, AT Khan
    • Journal: Chemical Communications
    • Volume: 54
    • Issue: 12
    • Pages: 1513-1516
    • Year: 2018
    • Citations: 28
  4. Access to enantioenriched compounds bearing challenging tetrasubstituted stereocenters via kinetic resolution of auxiliary adjacent alcohols

    • Authors: S Niu, H Zhang, W Xu, PR Bagdi, G Zhang, J Liu, S Yang, X Fang
    • Journal: Nature Communications
    • Volume: 12
    • Article Number: 3735
    • Year: 2021
    • Citations: 19
  5. Copper oxide nanoparticle mediated ‘click chemistry’ for the synthesis of mono-, bis- and tris-triazole derivatives from 10,10-dipropargyl-9-anthrone as a key building block

    • Authors: PR Bagdi, RS Basha, PK Baruah, AT Khan
    • Journal: RSC Advances
    • Volume: 4
    • Issue: 21
    • Pages: 10652-10659
    • Year: 2014
    • Citations: 17
  6. One-pot three-component regioselective synthesis of C1-functionalised 3-arylbenzo[f]quinoline

    • Authors: R Gattu, RS Basha, PR Bagdi, AT Khan
    • Journal: RSC Advances
    • Volume: 6
    • Issue: 14
    • Pages: 11675-11682
    • Year: 2016
    • Citations: 16
  7. Synthesis of 2-triazolyl-imidazo[1,2-a]pyridine through a one-pot three-component reaction using a nano copper oxide assisted click-catalyst

    • Authors: PR Bagdi, RS Basha, AT Khan
    • Journal: RSC Advances
    • Volume: 5
    • Issue: 75
    • Pages: 61337-61344
    • Year: 2015
    • Citations: 16
  8. Stereodivergent access to enantioenriched epoxy alcohols with three stereogenic centers via ruthenium-catalyzed transfer hydrogenation

    • Authors: Z Zhao, PR Bagdi, S Yang, J Liu, W Xu, X Fang
    • Journal: Organic Letters
    • Volume: 21
    • Issue: 14
    • Pages: 5491-5494
    • Year: 2019
    • Citations: 13
  9. K₂CO₃ catalyzed regioselective synthesis of thieno[2,3-b]thiochromen-4-one oximes: Access to the corresponding amine and nitroso derivatives

    • Authors: K Mahato, PR Bagdi, AT Khan
    • Journal: Organic & Biomolecular Chemistry
    • Volume: 15
    • Issue: 26
    • Pages: 5625-5634
    • Year: 2017

Jing Li | Organic Chemistry | Best Researcher Award

Prof. Jing Li | Organic Chemistry | Best Researcher Award

Dean of Chemistry at Xi’an Jiaotong University, China

Jing Li is a highly regarded chemist and academic researcher, currently serving as a full professor at Xi’an Jiaotong University, China. He has an extensive research career that spans multiple continents, having worked at institutions like Tohoku University in Japan and the University of Vienna in Austria. Jing Li’s research is primarily focused on synthetic chemistry, specifically developing novel catalytic systems and synthetic methodologies. He has published extensively in high-impact journals, contributing significantly to advancements in chemical synthesis, reaction mechanisms, and catalytic processes. His work is highly regarded within the scientific community, evidenced by his numerous collaborations with leading researchers and his recognition as a leader in his field. Jing Li’s academic journey, from a master’s at Zhengzhou University to a full professorship at one of China’s leading institutions, reflects his deep commitment to advancing scientific knowledge and fostering innovation in chemistry. His contributions to the field have been consistently recognized through his publication record and his involvement in international collaborations.

Professional Profile

Education

Jing Li’s educational background is marked by a strong foundation in chemistry and a progression of academic excellence. He completed his bachelor’s degree in chemistry at Northeast Forestry University in China, followed by a master’s degree at Zhengzhou University, where he honed his understanding of chemical principles and laboratory techniques. His pursuit of advanced knowledge led him to Tohoku University in Japan, where he earned a Ph.D. in chemistry, further deepening his expertise in synthetic chemistry and catalysis. His academic journey also took him to the University of Vienna for a postdoctoral research position, where he broadened his experience in chemical synthesis and collaborative international research. Throughout his education, Jing Li demonstrated a consistent passion for advancing scientific knowledge, which propelled him toward key research positions in top-tier institutions. His educational trajectory reflects a blend of rigorous academic training and practical, hands-on research experience, which he continues to apply in his teaching and ongoing research at Xi’an Jiaotong University.

Professional Experience

Jing Li has accumulated significant professional experience over the course of his academic career, contributing to his standing as an expert in synthetic chemistry. He currently holds the position of Full Professor at Xi’an Jiaotong University in China, where he leads research projects and teaches courses in chemistry. Prior to his appointment at Xi’an Jiaotong University, he was an Assistant Professor at Tohoku University in Japan, where he gained international recognition for his work on innovative catalytic methods and organic synthesis. Jing Li also conducted postdoctoral research at the University of Vienna, where he collaborated with esteemed researchers in the field of chemical synthesis, further expanding his research portfolio. His academic career has been marked by a strong commitment to research, mentorship, and the development of new synthetic methodologies. Jing Li’s professional experience reflects a career dedicated to pushing the boundaries of scientific understanding in synthetic chemistry, with a focus on catalysis and organic reaction mechanisms, all while nurturing the next generation of chemists through teaching and mentoring.

Research Interests

Jing Li’s research interests lie primarily in the fields of synthetic chemistry and catalysis, with a focus on developing novel methodologies and reaction mechanisms that can lead to more efficient, sustainable chemical processes. He is particularly interested in the design of new catalytic systems that can facilitate enantioselective reactions and redox-neutral processes. His work explores the development of light-dependent coupling reactions, as well as methods for the synthesis of sterically hindered compounds, such as peptides and amides. A key aspect of his research is the exploration of catalysis as a tool for solving complex synthetic challenges, with an emphasis on sustainable and environmentally friendly approaches. Jing Li’s studies also extend to the development of new synthetic routes for creating compounds of significant interest in materials science and pharmaceuticals. His research has implications for both fundamental chemistry and practical applications in industries such as drug discovery, chemical manufacturing, and materials science. Through his innovative approach to catalysis and chemical synthesis, Jing Li aims to provide groundbreaking solutions that can drive advancements in both academic and industrial chemistry.

Research Skills

Jing Li’s research skills encompass a wide range of techniques in synthetic chemistry and catalysis. He has expertise in the design and development of new catalytic systems, focusing on redox-neutral and enantioselective reactions. His work requires deep knowledge of reaction mechanisms, as well as the ability to create complex molecular structures through innovative synthetic pathways. Jing Li is skilled in applying various reaction techniques such as oxidative amidation, thioacylation, and cross-coupling reactions to synthesize a variety of chemical compounds. He has experience working with a range of catalytic systems, including iron, iodine, and palladium catalysts, and is adept at using modern analytical techniques to characterize reaction products. His expertise also includes the design of stereoselective synthesis methods for complex organic molecules, such as peptides and amides. In addition to his synthetic chemistry skills, Jing Li is proficient in collaborative research, having worked extensively with international researchers and teams. His ability to work across diverse research environments and apply his skills to a wide range of chemical problems makes him an invaluable contributor to the field.

Awards and Honors

While Jing Li’s CV highlights an impressive array of research accomplishments and contributions, the detailed mention of awards and honors is not readily available. However, his significant publication record in high-impact journals such as Nature Communications and JACS suggests recognition within the scientific community. The research contributions he has made, particularly in the development of novel catalytic processes and synthetic methodologies, have garnered international attention and likely earned him academic accolades. His work with esteemed collaborators and his leadership position as a professor further suggest that Jing Li is a respected figure in his field. His expertise in catalysis and synthetic chemistry has positioned him as a leader in the development of innovative methodologies. While more information on specific awards is needed, his continued success and recognition in international journals and collaborations underscore his ongoing influence and the high regard in which he is held by his peers.

Conclusion

Jing Li’s career trajectory as an academic researcher and educator exemplifies the qualities of a leading scientist in the field of synthetic chemistry. With a robust educational background, significant professional experience, and groundbreaking research in catalytic systems and synthetic methods, he has made substantial contributions to the advancement of chemistry. His innovative work, published in top-tier journals, underscores his position as a key player in the academic and scientific community. As a professor at Xi’an Jiaotong University, Jing Li continues to influence the field of chemistry through both his research and his mentorship of the next generation of scientists. His research interests in sustainable and efficient chemical processes, combined with his strong technical expertise, make him a well-rounded candidate for recognition as a best researcher. However, including more information on personal awards and recognitions would further strengthen his candidacy for the award. Overall, Jing Li is a highly accomplished scientist whose work continues to inspire and drive progress in the field of synthetic chemistry

Publication Top Notes

  1. α-Cyclopropanation of Carbonyl Derivatives by Oxidative Umpolung
    Authors: Bauer, A., Di Mauro, G., Li, J., Maulide, N.
    Journal: Angewandte Chemie – International Edition
    Year: 2020
    Citations: 20
  2. A Redox-Neutral Synthesis of Ketones by Coupling of Alkenes and Amides
    Authors: Li, J., Oost, R., Maryasin, B., González, L., Maulide, N.
    Journal: Nature Communications
    Year: 2019
    Citations: 27
  3. α-Arylation of Carbonyl Compounds through Oxidative C−C Bond Activation
    Authors: Li, J., Bauer, A., Di Mauro, G., Maulide, N.
    Journal: Angewandte Chemie – International Edition
    Year: 2019
    Citations: 41
  4. A Chemoselective α-Oxytriflation Enables the Direct Asymmetric Arylation of Amides
    Authors: Li, J., Berger, M., Zawodny, W., Simaan, M., Maulide, N.
    Journal: Chem
    Year: 2019
    Citations: 38
  5. Diastereo- and Enantioselective Access to Stereotriads through a Flexible Coupling of Substituted Aldehydes and Alkenes
    Authors: Li, J., Preinfalk, A., Maulide, N.
    Journal: Angewandte Chemie – International Edition
    Year: 2019
    Citations: 12
  6. Sterically Congested Ester Formation from α-Substituted Malononitrile and Alcohol by an Oxidative Method Using Molecular Oxygen
    Authors: Hayashi, Y., Li, J., Asano, H., Sakamoto, D.
    Journal: European Journal of Organic Chemistry
    Year: 2019
    Citations: 21
  7. Enantioselective Redox-Neutral Coupling of Aldehydes and Alkenes by an Iron-Catalyzed Catch-Release Tethering Approach
    Authors: Li, J., Preinfalk, A., Maulide, N.
    Journal: Journal of the American Chemical Society
    Year: 2019
    Citations: 25
  8. On the Formation of Seven-Membered Rings by Arene-Ynamide Cyclization
    Authors: Brutiu, B.R., Bubeneck, W.A., Cvetkovic, O., Li, J., Maulide, N.
    Journal: Monatshefte für Chemie
    Year: 2019
    Citations: 12
  9. Chemoselective Activation of Diethyl Phosphonates: Modular Synthesis of Biologically Relevant Phosphonylated Scaffolds
    Authors: Adler, P., Pons, A., Li, J., Brutiu, B.R., Maulide, N.
    Journal: Angewandte Chemie – International Edition
    Year: 2018
    Citations: 37
  10. Autoinductive Conversion of α,α-Diiodonitroalkanes to Amides and Esters Catalyzed by Iodine Byproducts under O₂
    Authors: Li, J., Lear, M.J., Hayashi, Y.
    Journal: Chemical Communications
    Year: 2018
    Citations: 7

 

Saikat Chaudhuri | Organic Synthesis | Best Researcher Award

Dr. Saikat Chaudhuri | Organic Synthesis | Best Researcher Award

Scientist at CSIR-Central Leather Research Institute, India

Dr. Saikat Chaudhuri is an Assistant Professor and Scientist at the CSIR-Central Leather Research Institute in Chennai, India, specializing in Organic and Bio-Organic Chemistry. He earned his Ph.D. from IISER Bhopal, focusing on the total synthesis of naturally occurring alkaloids, and has completed postdoctoral research at Kalyani University and Georgetown University. His professional experience includes a Senior Research Scientist position at TCG Lifesciences. Dr. Chaudhuri’s research interests encompass organic synthesis, catalysis, and polymer science. He has published extensively in leading journals such as Chemistry–An Asian Journal and Organic Letters. His work has earned him prestigious awards, including the Dr. DS Kothari Postdoctoral Fellowship and the Best Oral Presentation Award from the Royal Society of Chemistry. He is also actively involved in supervising graduate students and teaching advanced organic chemistry courses at AcSIR. Dr. Chaudhuri has made significant contributions to sustainable materials research using leather waste.

Profile:

Education

Dr. Saikat Chaudhuri is a highly accomplished organic chemist with a strong academic foundation. He earned his Ph.D. in Organic Chemistry from the prestigious Indian Institute of Science Education and Research (IISER), Bhopal, India, between January 2013 and November 2017. Under the supervision of Prof. Alakesh Bisai, his doctoral research focused on the total synthesis of naturally occurring clavine alkaloids. Prior to his Ph.D., Dr. Chaudhuri completed his M.Sc. in Organic Chemistry at Visva Bharati University, West Bengal, from 2010 to 2012, and his B.Sc. in Chemistry (Honours) from Burdwan University, West Bengal, between 2007 and 2010. His educational background is complemented by his in-depth expertise in organic synthesis, catalysis, and heterocyclic chemistry, laying the groundwork for his contributions to academic research and industrial applications. His education has equipped him with the skills to lead advanced research in organic chemistry and develop innovative solutions in his field.

Professional Experiences 

Dr. Saikat Chaudhuri is a dedicated scientist currently serving in the Organic & Bio-Organic Chemistry Division at CSIR-Central Leather Research Institute, Chennai, India, since March 2023. Prior to this, he worked as a Senior Research Scientist at TCG Lifesciences, Chembiotek in Kolkata from January 2022 to January 2023. Dr. Chaudhuri has an extensive background in postdoctoral research, having served at Kalyani University, West Bengal, from April 2019 to December 2021, and Georgetown University, Washington DC, USA, from April 2018 to March 2019. His expertise spans organic chemistry, particularly in the total syntheses of naturally occurring alkaloids, which he explored during his PhD at IISER Bhopal. He has also contributed to advanced organic chemistry and combinatorial chemistry as an instructor at CSIR-CLRI, mentoring several students and publishing significant research in high-impact journals. His professional journey reflects a robust commitment to advancing organic chemistry research.

Research Interests

Dr. Saikat Chaudhuri’s research interests primarily revolve around the fields of organic and bio-organic chemistry, with a focus on the total synthesis of naturally occurring compounds, particularly alkaloids. His work on clavine alkaloids highlights his expertise in catalytic asymmetric synthesis, showcasing advanced methodologies in organic synthesis. Dr. Chaudhuri is also interested in developing green synthetic approaches for medium-sized heterocycles, with applications in pharmaceuticals and biologically active compounds. His research extends to the design of novel spirobenzazepinoindole derivatives and π-conjugated polymers, exploring their properties for potential use in materials science. Additionally, he investigates sustainable practices in chemistry, such as utilizing leather waste in polymer matrices for creating environmentally friendly materials. Dr. Chaudhuri’s multidisciplinary approach reflects his commitment to advancing organic chemistry through innovative and sustainable methods, with an eye toward applications in drug discovery, materials science, and environmental sustainability.

Research Skills

Dr. Saikat Chaudhuri possesses extensive research skills in organic and bio-organic chemistry, with a strong focus on synthetic methodologies and the total synthesis of naturally occurring alkaloids. His expertise encompasses catalytic asymmetric synthesis, green chemistry approaches, and the development of new synthetic routes for complex organic compounds. Dr. Chaudhuri has demonstrated proficiency in utilizing advanced techniques such as organocatalysis and biomimetic strategies, leading to innovative solutions in chemical synthesis. His research is characterized by a commitment to sustainability, as evidenced by his work on utilizing leather waste for polymer applications. With a robust publication record in reputable journals and active involvement in mentoring students, Dr. Chaudhuri effectively bridges theoretical knowledge and practical application. His collaborative approach, combined with a solid foundation in chemical education and research, positions him as a valuable contributor to advancements in the field of chemistry.

Award And Recognition 

Dr. Saikat Chaudhuri is a distinguished researcher in the field of organic and bio-organic chemistry, recognized for his significant contributions to the synthesis of naturally occurring compounds. He has been honored with several prestigious awards, including the Dr. DS Kothari Postdoctoral Award from the UGC, Government of India, which he received for his innovative research from 2019 to 2021. Dr. Chaudhuri also achieved the Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF) from UGC NET, demonstrating his academic excellence from 2013 to 2017. Additionally, he received the Swami Vivekananda Merit cum Means Scholarship from the Government of West Bengal in 2011, highlighting his dedication to education and research. His work has not only been recognized through awards but also through numerous publications in reputed journals, showcasing his commitment to advancing knowledge in chemistry. Dr. Chaudhuri’s accolades reflect his expertise and influence in the scientific community. 🌟🔬📚

Conclusion

Dr. Saikat Chaudhuri is a promising candidate for the Best Researcher Award due to his extensive research background, international experience, and recognized contributions to organic chemistry and sustainability. His mentorship of students and numerous high-quality publications add to his credentials. To further strengthen his candidacy, he could focus on expanding the impact of his work beyond academia, securing more independent research funding, and pursuing interdisciplinary collaborations. Overall, his profile reflects a strong, emerging leader in the field of organic and bio-organic chemistry.

Publication Top Notes
  • Oxidative Dimerization of 2-Oxindoles Promoted by KOtBu-I2: Total Synthesis of (±)-Folicanthine
    Authors: S. Ghosh, S. Chaudhuri, A. Bisai
    Journal: Organic Letters
    Volume: 17
    Issue: 6
    Pages: 1373-1376
    Year: 2015
    Citations: 85
  • Catalytic Enantioselective Decarboxylative Allylations of a Mixture of Allyl Carbonates and Allyl Esters: Total Synthesis of (−)‐and (+)‐Folicanthine
    Authors: S. Ghosh, S. Chaudhuri, A. Bisai
    Journal: Chemistry–A European Journal
    Volume: 21
    Issue: 48
    Pages: 17479-17484
    Year: 2015
    Citations: 54
  • Biomimetic total syntheses of clavine alkaloids
    Authors: S. Chaudhuri, S. Bhunia, A. Roy, M.K. Das, A. Bisai
    Journal: Organic Letters
    Volume: 20
    Issue: 1
    Pages: 288-291
    Year: 2018
    Citations: 35
  • Transition-Metal Free Oxidative Alkynylation of 2-Oxindoles with Ethynylbenziodoxolone (EBX) Reagents
    Authors: A. Roy, M.K. Das, S. Chaudhuri, A. Bisai
    Journal: The Journal of Organic Chemistry
    Volume: 83
    Issue: 1
    Pages: 403-421
    Year: 2018
    Citations: 31
  • Total Syntheses of Pyroclavine, Festuclavine, Lysergol, and Isolysergol via a Catalytic Asymmetric Nitro‐Michael Reaction
    Authors: S. Bhunia, S. Chaudhuri, A. Bisai
    Journal: Chemistry–A European Journal
    Volume: 23
    Issue: 47
    Pages: 11234-11238
    Year: 2017
    Citations: 31
  • The Knoevenagel condensation using quinine as an organocatalyst under solvent-free conditions
    Authors: K. Jain, S. Chaudhuri, K. Pal, K. Das
    Journal: New Journal of Chemistry
    Volume: 43
    Issue: 3
    Pages: 1299-1304
    Year: 2019
    Citations: 30
  • Green synthetic approaches for medium ring–sized heterocycles of biological and pharmaceutical interest
    Authors: S. Chaudhuri, A. Ghosh, S.K. Chattopadhyay
    Book Title: Green Synthetic Approaches for Biologically Relevant Heterocycles
    Pages: 617-653
    Year: 2021
    Citations: 23
  • Catalytic asymmetric formal total syntheses of (+)-and (−)-cycloclavine
    Authors: S. Chaudhuri, S. Ghosh, S. Bhunia, A. Bisai
    Journal: Chemical Communications
    Volume: 54
    Issue: 8
    Pages: 940-943
    Year: 2018
    Citations: 19
  • β-Strand inspired bifacial π-conjugated polymers
    Authors: S. Chaudhuri, M. Mohanan, A.V. Willems, J.A. Bertke, N. Gavvalapalli
    Journal: Chemical Science
    Volume: 10
    Issue: 23
    Pages: 5976-5982
    Year: 2019
    Citations: 15
  • Highly Stereoselective Syntheses of Proline-Derived Vicinal Amino Alcohols through Grignard Addition onto N-Tosylprolinal
    Authors: S. Chaudhuri, A. Parida, S. Ghosh, A. Bisai
    Journal: Synlett
    Volume: 27
    Issue: 02
    Pages: 215-220
    Year: 2016
    Citations: 11

 

Madhukar Hemamalini | Organic Synthesis | Best Researcher Award

Dr. Madhukar Hemamalini | Organic Synthesis | Best Researcher Award

Assistant Professor at Mother Teresa Women’s University, India.

Dr. M. Hemamalini is an Assistant Professor in the Department of Chemistry at Mother Teresa Women’s University, Kodaikanal, with over five and a half years of research experience and 12 years of teaching expertise. She has published 246 international research papers and has guided multiple Ph.D., M.Phil., and M.Sc. students, reflecting her commitment to education and research. Her expertise lies in X-ray crystallography, bioorganic and bioinorganic chemistry, and macromolecular studies, with a focus on protein-ligand interactions and supramolecular frameworks. Dr. Hemamalini’s technical skills include extensive experience with various spectroscopic instruments and molecular biology techniques. She has earned multiple awards, including the Best Researcher Award from Mother Teresa Women’s University and the Research Excellence Award from the Institute of Scholars. With post-doctoral experience from Singapore and Malaysia, Dr. Hemamalini continues to make significant contributions to chemical research, mentoring, and advancing scientific understanding in her field.

Profile

Education

Dr. M. Hemamalini holds a Ph.D. in Chemistry from Bharathidasan University, India, awarded in October 2006. Her doctoral research focused on chemical crystallography, particularly exploring crystal engineering and supramolecular designs under the guidance of Prof. P. Thomas Muthiah. Prior to her Ph.D., she completed her Master of Science (M.Sc.) in Chemistry from Bharathidasan University in August 2000, where she gained in-depth knowledge of various chemical principles and research methodologies. Dr. Hemamalini also earned a Bachelor of Science (B.Sc.) in Chemistry from Holy Cross College, affiliated with Bharathidasan University, in August 1998. Throughout her academic journey, she developed a strong foundation in both theoretical and applied chemistry, which laid the groundwork for her future research endeavors. Her educational background, coupled with her specialized training in crystallography and molecular chemistry, has enabled her to excel in both academia and research, contributing to her success as a scholar and educator.

Professional Experience

Dr. M. Hemamalini is an accomplished Assistant Professor in the Department of Chemistry at Mother Teresa Women’s University, Kodaikanal, where she has been teaching since March 2015. With 12 years of teaching experience, she has mentored numerous students, including 4 Ph.D. scholars, 12 M.Phil students, and 67 M.Sc. graduates. Prior to this, she served as an Associate Professor at Veltech Multitech Engineering College, Chennai, and as an Assistant Professor at R.M.K. Engineering College, Kummidipoondi. Her research experience is equally impressive, with post-doctoral fellowships in crystallography at Universiti Sains Malaysia and structural biology at the Institute of Molecular and Cell Biology (IMCB), Singapore. Dr. Hemamalini’s research expertise lies in X-ray crystallography, bioorganic and bioinorganic chemistry, and protein-ligand interactions. She has published over 246 international papers, highlighting her significant contributions to her field. Her academic and research roles have earned her several prestigious awards, including the Best Researcher Award.

Research Interest

Dr. M. Hemamalini’s research interests are centered around the structural and functional analysis of macromolecules, particularly through the application of X-ray crystallography. She focuses on understanding protein-ligand interactions, nucleic acids, and the biochemical processes involved in macromolecular chemistry. Her work extends to synthesizing bioorganic and bioinorganic molecules, using advanced spectroscopic techniques to analyze their structure and interactions. Dr. Hemamalini is particularly interested in applying her chemical knowledge to study drug-receptor interactions and biomolecular recognition, which has implications for pharmaceutical and biomedical research. She also explores supramolecular chemistry and crystal engineering, investigating hydrogen bonding motifs and non-covalent interactions to design new supramolecular frameworks. Her postdoctoral experience in synthesizing pharmaceutical solids and metal coordination complexes further contributes to her expertise in the field, with a strong emphasis on structural biology and the synthesis of bioorganic derivatives for therapeutic applications.

Research Skills

Dr. M. Hemamalini possesses a wide range of research skills, particularly in the field of X-ray crystallography, where she excels in data collection, structure solution, and refinement using advanced software like SHELXS, CCP4 Suite, and COOT. She has extensive expertise in cloning, protein expression, and purification, with hands-on experience in techniques such as affinity chromatography, gel filtration, and crystallization. Dr. Hemamalini is proficient in the synthesis of bioorganic and bioinorganic molecules, with a focus on supramolecular motifs and metal complexes, contributing to drug-receptor interaction studies. Her knowledge extends to spectroscopic techniques, including IR, NMR, UV, and HPLC, essential for structural analysis and compound characterization. Furthermore, her skills in molecular biology include transformation, protein assays, and diffraction studies, enhancing her ability to work on complex biochemical interactions. Her expertise is supported by post-doctoral work and numerous publications, establishing her as a skilled researcher in both experimental and computational chemistry.

Award and Recognition

Dr. M. Hemamalini has received numerous prestigious awards and recognitions for her contributions to the field of chemistry. She was honored with the SERB-International Research Experience Award (2022-2023) by DST, India, recognizing her research excellence on a global scale. In 2020, she received the Research Excellence Award from the Institute of Scholars, Bangalore, further acknowledging her innovative contributions. Dr. Hemamalini was also awarded Best Poster Award for her work on Nickel (II) complexes at an international seminar in 2019. Her significant achievements in research led to her being recognized as the Best Researcher by Mother Teresa Women’s University (2018-2019) and Grabs Educational Charitable Trust (2019). Additionally, she earned the Senior Research Fellow Award from the Council of Scientific and Industrial Research (CSIR) during 2004-2006, cementing her reputation as an exceptional researcher early in her career.

Conclusion

Dr. M. Hemamalini is a highly qualified candidate for the Research for Best Researcher Award. Her extensive research experience, substantial publication record, significant contributions to teaching and mentorship, and numerous awards make her a strong contender. Addressing areas for improvement, such as fostering interdisciplinary collaborations and enhancing the broader impact of her research, could further solidify her standing as a leading researcher. Overall, Dr. Hemamalini’s profile aligns well with the criteria for the award, reflecting both depth in her research area and a commitment to advancing scientific knowledge.

Publications Top Notes

  • Title: Insights into Oxidovanadium (3,4,5-Trimethoxyphenyl) Porphyrin: A Comprehensive Study of Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Studies
    • Authors: Muzaddadi, I.U., Murugan, A., Hemamalini, M., Mandal, V.K., Ahmed, B.
    • Year: 2024
    • Citations: 1
  • Title: 2-(10-Bromoanthracen-9-yl)-N-phenylaniline
    • Authors: Saravanan, D., Ponraj, C., Khamrang, T., Hemamalini, M., Jerald Maria Antony, G.
    • Year: 2024
  • Title: DFT, Molecular Docking, Energy-Framework, In-Silico ADME Analysis of 2,6-Diamino-4-chloropyrimidine–succinic Acid (2/1)
    • Authors: Chakkarapani, N., Madhukar, H., Venkatachalam, R.
    • Year: 2024
  • Title: 10-Bromo-N,N-diphenylanthracen-9-amine
    • Authors: Sureshkumar, K., Khamrang, T., Hemamalini, M., Saravanan, D., Antony, G.J.M.
    • Year: 2024
  • Title: Shining Light on Chalcone Compounds: A Comprehensive Exploration Through Optical and Thermal Studies
    • Authors: Nehru, J., Subramani, S., Rosli, M.M., Venkatachalam, R., Madhukar, H.
    • Year: 2024
  • Title: Investigation of Oxidative Behaviour and Structural Insights of (3,4,5-Trimethoxyphenyl)Porphyrin Ni(II) Complex: Experimental and Theoretical Study
    • Authors: Muzaddadi, I.U., Murugan, A., Hemamalini, M., Hussain, M.F., Rajkumar, T.
    • Year: 2024
  • Title: In Silico and In Vitro Studies for the Identification of Small Molecular Inhibitors from Euphorbia Hirta Linn for Rheumatoid Arthritis: Targeting TNF-α-Mediated Inflammation
    • Authors: Velmurugan, Y., Natarajan, S.R., Chakkarapani, N., Madhukar, H., Venkatachalam, R.
    • Year: 2024
  • Title: A Novel Cadmium Metal-Organic Framework with Exceptional Nonlinear Optical Properties: Unveiling Anisotropic Charge Transport and Optical Limiting Behavior
    • Authors: Catherine Paul, A., Hemamalini, M., Mustaqim Rosli, M., Alwani Zainuri, D., Abdul Razak, I.
    • Year: 2024
  • Title: 4-Amino-3,5-dichloropyridinium 3-hydroxypicolinate Monohydrate
    • Authors: Ashokan, A., Nehru, J., Chakkarapani, N., Rajakannan, V., Hemamalini, M.
    • Year: 2023
  • Title: (2,4-Dichlorobenzylidene)[2-(1H-indol-3-yl)ethyl]-amine
    • Authors: Murugan, S., Paul, A.C., Khamrang, T., Rajakannan, V., Hemamalini, M.
    • Year: 2023

 

 

Armen Galstyan | Organic Chemistry | Best Researcher Award

Dr. Armen Galstyan | Organic Chemistry | Best Researcher Award

Associate Professor at Yerevan state university, Armenia.

Dr. Armen Galstyan is a highly accomplished chemist with a wealth of experience in both academic and professional spheres. His academic journey includes obtaining a Ph.D. in Chemistry from Yerevan State University, where he later served in various capacities, including as Associate Professor and Deputy Dean. Dr. Galstyan’s research interests span fine organic synthesis, metal-organic complexes, and the chemistry of various organic compounds. Throughout his career, he has demonstrated a strong commitment to interdisciplinary research, project development, and writing scientific publications and research proposals. He has received numerous awards and honors for his contributions to the field, including prestigious prizes for his publications and presentations. Dr. Galstyan’s research skills encompass a wide range of techniques, from synthetic methods to analytical instrumentation, making him a valuable asset to the scientific community.

Professional Profiles:

Education

Dr. Armen Galstyan pursued his academic journey at Yerevan State University, Armenia, where he obtained his Ph.D. in Organic Chemistry in 2007. Prior to that, he completed his Master of Science in Chemistry in 2003 and his Bachelor of Science in Chemistry in 2001, both from the same university. His educational background laid a strong foundation for his subsequent contributions to the field of organic chemistry.

Professional Experience

Dr. Armen Galstyan has a diverse and extensive professional background in the field of chemistry, spanning research, academia, and leadership roles. Currently, he serves as the Head of the “Asymmetric Catalysis” Group at the Scientific Research Center of Chemistry, Yerevan State University, a position he has held since 2020. In addition, Dr. Galstyan holds the title of Associate Professor in the Department of Organic Chemistry at Yerevan State University, a role he has fulfilled since the same year. Prior to this, he served as the Deputy Dean of the Faculty of Chemistry at Yerevan State University starting in 2018. Notably, he also held the position of Senior Researcher at the Faculty of Chemistry from 2022 to 2023. Throughout his career, Dr. Galstyan has been actively involved in teaching and mentoring, supervising diploma works for Bachelor students and serving as a lecturer in various educational institutions. Moreover, he has made significant contributions to international chemistry competitions and olympiads, both as a member of the Chemistry Olympiad Commission in Armenia and as a mentor for delegations representing Armenia in international competitions.

Research Interest

Dr. Armen Galstyan’s research interests revolve around fine organic synthesis, focusing on biologically active compounds and metal-organic complexes. He is particularly interested in exploring the chemistry of oxirans, sulfur-containing organic compounds, and amino alcohols. Additionally, his research delves into understanding the mechanisms of organic reactions. Through his work, Dr. Galstyan aims to contribute to advancements in the synthesis of compounds with potential applications in pharmaceuticals, materials science, and catalysis.

Award and Honors

Dr. Armen Galstyan has been honored with numerous awards and distinctions throughout his career, underscoring his significant contributions to the field of chemistry. These accolades include the prestigious award for best citation for publications in international journals, bestowed upon him by “We demand increased funding for science” and the “Tashir charitable trust” in 2012. Additionally, he received the best paper award from “We demand increased funding for science, AG_GFA-G.Ts.1” in 2011. Notably, Dr. Galstyan was also recognized with the 3rd prize for his presentation at the “Investments of Young Scientists in Biotechnology” conference in 2010. His academic excellence was further acknowledged with the Early Careers Support Program (ECSP) award in 2009. Moreover, he achieved excellence in both his Master’s and Bachelor’s degree diploma defenses, highlighting his exceptional academic performance and dedication to his field. These honors reflect Dr. Galstyan’s commitment to research, innovation, and scholarly achievement in the realm of chemistry.

Research Skills

Dr. Armen Galstyan possesses a wide array of research skills that have been honed through his extensive experience in the field of chemistry. He is adept at various synthetic and separation techniques required for synthesizing desired molecules, including syntheses under controlled atmospheres using glovebox and Schlenk techniques. His expertise extends to matrix isolation techniques and Flash Vacuum Pyrolysis methods, along with vacuum techniques. Dr. Galstyan is highly proficient in utilizing analytical instruments such as Mass spectrometers, NMR, IR, and UV-Visible spectroscopy, enabling him to analyze and characterize chemical compounds with precision. Additionally, he has a strong command of computer software essential for chemical research, including Chemdraw, ISIS Draw, Origin, MestReNova, and ACD Labs. Dr. Galstyan’s proficiency in these research skills underscores his ability to conduct high-quality scientific investigations and contribute significantly to the advancement of knowledge in chemistry.

Publications

  1. Synthesis of carvone-derived 1, 2, 3-triazoles study of their antioxidant properties and interaction with bovine serum albumin
    • Authors: AS Galstyan, AI Martiryan, KR Grigoryan, AG Ghazaryan, MA Samvelyan
    • Journal: Molecules
    • Year: 2018
    • Citations: 24
  2. Syntheses on the basis of 4-(Oxiran-2-ylmethyl) morpholine
    • Authors: EG Mesropyan, AS Galstyan, AA Avetisyan
    • Journal: Russian journal of organic chemistry
    • Year: 2006
    • Citations: 16
  3. Synthesis of Novel Derivatives of 1, 2, 4‐Triazoles
    • Authors: AS Galstyan, TV Ghochikyan, VR Frangyan, RA Tamazyan, AG Ayvazyan
    • Journal: ChemistrySelect
    • Year: 2018
    • Citations: 9
  4. SYNTHESIS OF SOME -DERIVATIVES OF 1,2,4-TRIAZOLES
    • Authors: TV Chochikian, MA Samvelyan, AS Galstyan, SV Grigoryan
    • Journal: Proceedings of the YSU B: Chemical and Biological Sciences
    • Year: 2016
    • Citations: 9
  5. Synthesis, study of the biological activity of new 1, 2, 4‐Triazole derivatives and characteristics of the relationship of the structure and biological activity in a series of …
    • Authors: AS Galstyan, TV Ghochikyan, MA Samvelyan, VR Frangyan, M Sarfraz
    • Journal: ChemistrySelect
    • Year: 2019
    • Citations: 8
  6. Efficient synthesis of triazole-containing spiro dilactones
    • Authors: TV Ghochikyan, VM Muzalevskiy, MA Samvelyan, AS Galstyan
    • Journal: Mendeleev Communications
    • Year: 2016
    • Citations: 7
  7. Synthesis of Alkynylated Dihydrofuran‐2(3H)‐ones as Potent and Selective Inhibitors of Tissue Non‐Specific Alkaline Phosphatase
    • Authors: A Petrosyan, TV Ghochikyan, SA Ejaz, ZZ Mardiyan, SU Khan
    • Journal: ChemistrySelect
    • Year: 2017
    • Citations: 6
  8. New morpholine derivatives
    • Authors: EG Mesropyan, GB Ambartsumyan, AA Avetisyan, AS Galstyan
    • Journal: Chemistry of Heterocyclic Compounds
    • Year: 2005
    • Citations: 5
  9. Synthesis of novel 1, 2, 3-triazole-based hybrids via click reactions
    • Authors: SN Sirakanyan, TV Ghochikyan, D Spinelli, AS Galstyan, A Geronikaki
    • Journal: Arkivoc
    • Year: 2022
    • Citations: 4
  10. Synthesis of γ-hydroxy acid hydrazides of a new structure and study of their antioxidant properties
    • Authors: AI Martiryan, AS Galstyan, LG Tadevosyan, IA Petrosyan
    • Journal: Proceedings of the YSU B: Chemical and Biological Sciences
    • Year: 2020
    • Citations: 4