Jindian Duan | Organic Chemistry | Best Researcher Award

Prof. Jindian Duan | Organic Chemistry | Best Researcher Award

Associate Professor from Nanjing Tech University, China

Jindian Duan, born in 1985 in Luoyang, Henan Province, is an accomplished associate professor and Master’s supervisor at the College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University. His research focuses on developing novel processes and materials using microfluidic technology and bio-based chemicals. He has made significant contributions to the scientific community with over 20 publications in high-impact international journals, including Org. Lett., Chem. Commun., and Adv. Synth. Catal. His research achievements have earned him more than 10 Chinese invention patents. Duan’s career reflects both academic excellence and an ongoing commitment to advancing cutting-edge technologies in organic chemistry. With a strong educational background and extensive professional experience, he continues to make valuable contributions to the fields of chemistry and biotechnology.

Professional Profile

Education

Jindian Duan’s educational background includes a Ph.D. in Organic Chemistry from Zhejiang University, completed in 2013. His doctoral research, under the supervision of Prof. Cheng Ma, focused on asymmetric catalytic cascade reactions. Before this, he earned a Master of Engineering in Chemical Engineering from Zhejiang University in 2008, where he worked on the intermediate of the fungicide fludioxonil under the guidance of Prof. Lirong Yang. His academic journey began at Dalian University of Technology, where he obtained a B.Sc. in Chemistry in 2006. These advanced degrees laid the foundation for his current expertise in organic chemistry and chemical engineering, enabling him to contribute significantly to his field.

Professional Experience

Jindian Duan’s professional career spans several prestigious academic institutions. Since May 2017, he has served as an associate professor at Nanjing Tech University, where he also supervises Master’s students. Prior to this, Duan was a postdoctoral researcher at The Hong Kong Polytechnic University from 2015 to 2017, specializing in transition metal-catalyzed coupling reactions. He also worked as an assistant researcher at the Southern University of Science and Technology from 2013 to 2015, where he focused on asymmetric catalytic cascade reactions of organic small molecules. Earlier in his career, Duan worked as a technology transfer engineer and chemical process engineer at Lonza R&D Center in Guangzhou, where he was involved in the scale-up and pilot production of pharmaceutical intermediates.

Research Interests

Jindian Duan’s primary research interests lie in the development of novel processes and materials based on microfluidic technology. His work is focused on advancing bio-based chemicals and creating innovative approaches to organic chemistry. Duan’s research has led to the development of new catalytic processes and materials, with particular emphasis on environmentally friendly and sustainable practices. He is also engaged in the development of transition metal-catalyzed reactions and asymmetric catalytic cascade reactions. His research is highly interdisciplinary, bridging the fields of microfluidics, green chemistry, and biotechnology.

Research Skills

Duan’s research skills are rooted in his deep understanding of organic chemistry and chemical engineering. He is proficient in microfluidic technology and its application to the synthesis of novel materials and bio-based chemicals. His work in asymmetric catalytic reactions has been groundbreaking, and his expertise extends to the development of scalable, sustainable chemical processes. Duan is skilled in various advanced techniques such as transition metal-catalyzed reactions, synthetic organic chemistry, and the design of catalytic systems. He is also experienced in patenting innovative solutions, having filed over 10 Chinese invention patents. His collaborative work in multidisciplinary teams further enhances his research capabilities.

Awards and Honors

Jindian Duan’s research excellence has been recognized through numerous accolades and awards. He has published over 20 high-impact papers in prestigious journals, marking him as a leading figure in his field. Additionally, his contributions to innovative chemical processes and materials have earned him more than 10 Chinese invention patents. Duan’s work on bio-based chemicals and microfluidic technology has not only enriched the scientific community but also contributed to the development of sustainable practices in chemistry. His ongoing commitment to research and innovation continues to be acknowledged by both academic and industrial sectors.

Conclusion

Jindian Duan is a highly accomplished researcher whose work in microfluidic technology and bio-based chemicals has significantly advanced the fields of organic chemistry and biotechnology. His impressive publication record and over 10 granted patents reflect his ability to push the boundaries of scientific research. As an associate professor and supervisor at Nanjing Tech University, Duan also plays a key role in shaping the next generation of researchers. His combination of innovative research, strong academic leadership, and commitment to sustainability makes him a valuable asset to the scientific community. Looking forward, Duan’s continued contributions are expected to have a lasting impact on the fields he specializes in.

Publications Top Notes

Electrochemical Reductive Bimolecular Cycloaddition of 2-Arylideneindane-1,3-diones for the Synthesis of Spirocyclopentanole Indane-1,3-diones
Authors: Luchao Li, Binyan Xu, Chenglong Jia, Jindian Duan, Kai Guo
Journal: Journal of Organic Chemistry
Year: 2025

2. Oxidative Spirolactonisation for Modular Access of γ-Spirolactones via a Radical Tandem Annulation Pathway
Authors: Jindian Duan, Xiaojuan Ding, Pui Ying Choy, Fuk Yee Kwong, Kai Guo
Journal: Chinese Chemical Letters
Year: 2024
Citations: 1

3. Copper(I)-Catalyzed [4+2] Oxidative Annulation of α,β-Unsaturated Ketoxime Acetates with Cyclopropanols toward Functional Pyridines
Authors: Qinghuan Wu, Gaochen Xu, Yuguang Li, Jindian Duan, Kai Guo
Journal: Advanced Synthesis and Catalysis
Year: 2023
Citations: 1

Madhukar Hemamalini | Organic Synthesis | Best Researcher Award

Dr. Madhukar Hemamalini | Organic Synthesis | Best Researcher Award

Assistant Professor at Mother Teresa Women’s University, India.

Dr. M. Hemamalini is an Assistant Professor in the Department of Chemistry at Mother Teresa Women’s University, Kodaikanal, with over five and a half years of research experience and 12 years of teaching expertise. She has published 246 international research papers and has guided multiple Ph.D., M.Phil., and M.Sc. students, reflecting her commitment to education and research. Her expertise lies in X-ray crystallography, bioorganic and bioinorganic chemistry, and macromolecular studies, with a focus on protein-ligand interactions and supramolecular frameworks. Dr. Hemamalini’s technical skills include extensive experience with various spectroscopic instruments and molecular biology techniques. She has earned multiple awards, including the Best Researcher Award from Mother Teresa Women’s University and the Research Excellence Award from the Institute of Scholars. With post-doctoral experience from Singapore and Malaysia, Dr. Hemamalini continues to make significant contributions to chemical research, mentoring, and advancing scientific understanding in her field.

Profile

Education

Dr. M. Hemamalini holds a Ph.D. in Chemistry from Bharathidasan University, India, awarded in October 2006. Her doctoral research focused on chemical crystallography, particularly exploring crystal engineering and supramolecular designs under the guidance of Prof. P. Thomas Muthiah. Prior to her Ph.D., she completed her Master of Science (M.Sc.) in Chemistry from Bharathidasan University in August 2000, where she gained in-depth knowledge of various chemical principles and research methodologies. Dr. Hemamalini also earned a Bachelor of Science (B.Sc.) in Chemistry from Holy Cross College, affiliated with Bharathidasan University, in August 1998. Throughout her academic journey, she developed a strong foundation in both theoretical and applied chemistry, which laid the groundwork for her future research endeavors. Her educational background, coupled with her specialized training in crystallography and molecular chemistry, has enabled her to excel in both academia and research, contributing to her success as a scholar and educator.

Professional Experience

Dr. M. Hemamalini is an accomplished Assistant Professor in the Department of Chemistry at Mother Teresa Women’s University, Kodaikanal, where she has been teaching since March 2015. With 12 years of teaching experience, she has mentored numerous students, including 4 Ph.D. scholars, 12 M.Phil students, and 67 M.Sc. graduates. Prior to this, she served as an Associate Professor at Veltech Multitech Engineering College, Chennai, and as an Assistant Professor at R.M.K. Engineering College, Kummidipoondi. Her research experience is equally impressive, with post-doctoral fellowships in crystallography at Universiti Sains Malaysia and structural biology at the Institute of Molecular and Cell Biology (IMCB), Singapore. Dr. Hemamalini’s research expertise lies in X-ray crystallography, bioorganic and bioinorganic chemistry, and protein-ligand interactions. She has published over 246 international papers, highlighting her significant contributions to her field. Her academic and research roles have earned her several prestigious awards, including the Best Researcher Award.

Research Interest

Dr. M. Hemamalini’s research interests are centered around the structural and functional analysis of macromolecules, particularly through the application of X-ray crystallography. She focuses on understanding protein-ligand interactions, nucleic acids, and the biochemical processes involved in macromolecular chemistry. Her work extends to synthesizing bioorganic and bioinorganic molecules, using advanced spectroscopic techniques to analyze their structure and interactions. Dr. Hemamalini is particularly interested in applying her chemical knowledge to study drug-receptor interactions and biomolecular recognition, which has implications for pharmaceutical and biomedical research. She also explores supramolecular chemistry and crystal engineering, investigating hydrogen bonding motifs and non-covalent interactions to design new supramolecular frameworks. Her postdoctoral experience in synthesizing pharmaceutical solids and metal coordination complexes further contributes to her expertise in the field, with a strong emphasis on structural biology and the synthesis of bioorganic derivatives for therapeutic applications.

Research Skills

Dr. M. Hemamalini possesses a wide range of research skills, particularly in the field of X-ray crystallography, where she excels in data collection, structure solution, and refinement using advanced software like SHELXS, CCP4 Suite, and COOT. She has extensive expertise in cloning, protein expression, and purification, with hands-on experience in techniques such as affinity chromatography, gel filtration, and crystallization. Dr. Hemamalini is proficient in the synthesis of bioorganic and bioinorganic molecules, with a focus on supramolecular motifs and metal complexes, contributing to drug-receptor interaction studies. Her knowledge extends to spectroscopic techniques, including IR, NMR, UV, and HPLC, essential for structural analysis and compound characterization. Furthermore, her skills in molecular biology include transformation, protein assays, and diffraction studies, enhancing her ability to work on complex biochemical interactions. Her expertise is supported by post-doctoral work and numerous publications, establishing her as a skilled researcher in both experimental and computational chemistry.

Award and Recognition

Dr. M. Hemamalini has received numerous prestigious awards and recognitions for her contributions to the field of chemistry. She was honored with the SERB-International Research Experience Award (2022-2023) by DST, India, recognizing her research excellence on a global scale. In 2020, she received the Research Excellence Award from the Institute of Scholars, Bangalore, further acknowledging her innovative contributions. Dr. Hemamalini was also awarded Best Poster Award for her work on Nickel (II) complexes at an international seminar in 2019. Her significant achievements in research led to her being recognized as the Best Researcher by Mother Teresa Women’s University (2018-2019) and Grabs Educational Charitable Trust (2019). Additionally, she earned the Senior Research Fellow Award from the Council of Scientific and Industrial Research (CSIR) during 2004-2006, cementing her reputation as an exceptional researcher early in her career.

Conclusion

Dr. M. Hemamalini is a highly qualified candidate for the Research for Best Researcher Award. Her extensive research experience, substantial publication record, significant contributions to teaching and mentorship, and numerous awards make her a strong contender. Addressing areas for improvement, such as fostering interdisciplinary collaborations and enhancing the broader impact of her research, could further solidify her standing as a leading researcher. Overall, Dr. Hemamalini’s profile aligns well with the criteria for the award, reflecting both depth in her research area and a commitment to advancing scientific knowledge.

Publications Top Notes

  • Title: Insights into Oxidovanadium (3,4,5-Trimethoxyphenyl) Porphyrin: A Comprehensive Study of Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Studies
    • Authors: Muzaddadi, I.U., Murugan, A., Hemamalini, M., Mandal, V.K., Ahmed, B.
    • Year: 2024
    • Citations: 1
  • Title: 2-(10-Bromoanthracen-9-yl)-N-phenylaniline
    • Authors: Saravanan, D., Ponraj, C., Khamrang, T., Hemamalini, M., Jerald Maria Antony, G.
    • Year: 2024
  • Title: DFT, Molecular Docking, Energy-Framework, In-Silico ADME Analysis of 2,6-Diamino-4-chloropyrimidine–succinic Acid (2/1)
    • Authors: Chakkarapani, N., Madhukar, H., Venkatachalam, R.
    • Year: 2024
  • Title: 10-Bromo-N,N-diphenylanthracen-9-amine
    • Authors: Sureshkumar, K., Khamrang, T., Hemamalini, M., Saravanan, D., Antony, G.J.M.
    • Year: 2024
  • Title: Shining Light on Chalcone Compounds: A Comprehensive Exploration Through Optical and Thermal Studies
    • Authors: Nehru, J., Subramani, S., Rosli, M.M., Venkatachalam, R., Madhukar, H.
    • Year: 2024
  • Title: Investigation of Oxidative Behaviour and Structural Insights of (3,4,5-Trimethoxyphenyl)Porphyrin Ni(II) Complex: Experimental and Theoretical Study
    • Authors: Muzaddadi, I.U., Murugan, A., Hemamalini, M., Hussain, M.F., Rajkumar, T.
    • Year: 2024
  • Title: In Silico and In Vitro Studies for the Identification of Small Molecular Inhibitors from Euphorbia Hirta Linn for Rheumatoid Arthritis: Targeting TNF-α-Mediated Inflammation
    • Authors: Velmurugan, Y., Natarajan, S.R., Chakkarapani, N., Madhukar, H., Venkatachalam, R.
    • Year: 2024
  • Title: A Novel Cadmium Metal-Organic Framework with Exceptional Nonlinear Optical Properties: Unveiling Anisotropic Charge Transport and Optical Limiting Behavior
    • Authors: Catherine Paul, A., Hemamalini, M., Mustaqim Rosli, M., Alwani Zainuri, D., Abdul Razak, I.
    • Year: 2024
  • Title: 4-Amino-3,5-dichloropyridinium 3-hydroxypicolinate Monohydrate
    • Authors: Ashokan, A., Nehru, J., Chakkarapani, N., Rajakannan, V., Hemamalini, M.
    • Year: 2023
  • Title: (2,4-Dichlorobenzylidene)[2-(1H-indol-3-yl)ethyl]-amine
    • Authors: Murugan, S., Paul, A.C., Khamrang, T., Rajakannan, V., Hemamalini, M.
    • Year: 2023

 

 

Vladimir Yarovenko | Organic Synthesis | Best Researcher Award

Mr. Vladimir Yarovenko | Organic Synthesis | Best Researcher Award

Chemist of Center of N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Russia.

Mr. Vladimir Yarovenko is a distinguished researcher specializing in organic chemistry and advanced materials science. With over 240 scientific papers and 30 inventions to his credit, Mr. Yarovenko has made significant contributions to the fields of photophysics, organic synthesis, and drug discovery. He is renowned for his work in designing functional materials with unique properties, particularly in the areas of photonics and solar energy applications. Mr. Yarovenko’s accomplishments include leading research initiatives that resulted in the development of innovative compounds for 3D optical memory and photovoltaic devices. He has been recognized with prestigious awards, including the USSR Council of Ministers Award, for his outstanding achievements in scientific research.

Professional Profiles:

Education

Mr. Vladimir Yarovenko’s academic journey is characterized by a strong foundation in chemistry and extensive scholarly achievements. He completed his undergraduate studies at the Moscow M.V. Lomonosov Institute of Fine Chemical Technology, where he received rigorous training in chemical principles and techniques. Subsequently, Prof. Krayushkin pursued postgraduate studies at the esteemed N.D. Zelinsky Institute of Organic Chemistry, culminating in the successful defense of his Candidate Degree (equivalent to Ph.D.) in 1970. Continuing his academic pursuits, Mr. Vladimir Yarovenko advanced his credentials by obtaining a Doctor Degree (equivalent to Dr. habil.) from the N.D. Zelinsky Institute in 1984. These educational milestones not only solidified his expertise in organic chemistry but also laid the groundwork for his prolific research career.

Professional Experience

Mr. Vladimir Yarovenko professional experience spans several decades of dedicated work in the field of organic chemistry and scientific research. He began his career as a Scientist at the N.D. Zelinsky Institute’s Laboratory of Organic Chemistry in 1970, where he conducted fundamental research and contributed to the synthesis of novel compounds. Over the years, Mr. Vladimir Yarovenko advanced to the position of Senior Researcher and subsequently assumed leadership as the Head of the Laboratory of Heterocyclic Compounds at the same institute in 1985. Throughout his tenure,Mr. Vladimir Yarovenko directed research initiatives focused on organic synthesis, heterocyclic compounds, medicinal chemistry, and advanced materials. His leadership and scientific expertise have been instrumental in mentoring young researchers and guiding groundbreaking projects in the field. Mr. Vladimir Yarovenko contributions are documented in numerous scientific papers and patents, reflecting his significant impact on the advancement of organic chemistry and related disciplines.

Research Interest

Mr. Vladimir Yarovenko research interests span a diverse range of topics within organic chemistry and interdisciplinary fields. He is particularly focused on advancing organic synthesis methodologies, with a specialized interest in heterocyclic compounds and their applications in medicinal chemistry. Mr. Vladimir Yarovenko work extends to the development of advanced materials, including polymers and nanoparticles, with applications in optoelectronics and catalysis. Additionally, he explores the photophysical properties of organic molecules, investigating light-induced processes for potential applications in photovoltaics and optical data storage. Mr. Vladimir Yarovenko is committed to green chemistry principles, developing environmentally sustainable synthetic approaches and utilizing renewable resources in chemical transformations.

Award and Honors

Mr. Vladimir Yarovenko research interests span a diverse range of topics within organic chemistry and interdisciplinary fields. He is particularly focused on advancing organic synthesis methodologies, with a specialized interest in heterocyclic compounds and their applications in medicinal chemistry. Mr. Vladimir Yarovenko work extends to the development of advanced materials, including polymers and nanoparticles, with applications in optoelectronics and catalysis. Additionally, he explores the photophysical properties of organic molecules, investigating light-induced processes for potential applications in photovoltaics and optical data storage. Mr. Vladimir Yarovenko is committed to green chemistry principles, developing environmentally sustainable synthetic approaches and utilizing renewable resources in chemical transformations.

Research Skills

Mr. Vladimir Yarovenko possesses a diverse and robust skill set in organic chemistry and interdisciplinary research, cultivated through extensive experience and scholarly contributions. He excels in organic synthesis, demonstrating proficiency in designing and executing complex synthetic routes to develop novel heterocyclic compounds and bioactive molecules. Mr. Vladimir Yarovenko expertise extends to medicinal chemistry, where he applies his skills to drug discovery and development, contributing to advancements in pharmaceutical science. Furthermore, he is adept in materials science, specializing in the synthesis and characterization of advanced materials like polymers and nanoparticles for applications in optoelectronics and catalysis. Mr. Vladimir Yarovenko understanding of photophysics and photochemistry enables him to explore light-induced processes, paving the way for innovations in photovoltaics and optical data storage. His commitment to green chemistry underscores his ability to develop sustainable synthetic methodologies and utilize renewable resources effectively.

Publications

  1. Publication Title: “Oxamic acid thiohydrazides and hydrazones based on them as convenient starting compounds for the synthesis of S- and N-containing heterocyclic products. A mini-review”
    • Authors: Krayushkin, M.M.; Yarovenko, V.N.
    • Journal: Arabian Journal of Chemistry, 2024, 17(6), 105796
    • Citations: 0
  2. Publication Title: “Reaction of gossypol with thiohydrazides of oxamic acids”
    • Authors: Stepanov, A.V.; Yarovenko, V.N.; Krayushkin, M.M.
    • Journal: Russian Chemical Bulletin, 2024, 73(2), pp. 437–441
    • Citations: 1
  3. Publication Title: “Synthesis of (2-chloroquinolin-3-yl)-1,3,4-thiadiazole-2-carboxamides”
    • Authors: Aksenov, A.N.; Krayushkin, M.M.; Yarovenko, V.N.
    • Journal: Russian Chemical Bulletin, 2021, 70(6), pp. 1131–1134
    • Citations: 4
  4. Publication Title: “Desulfurizing agent for thioamides”
    • Authors: Polushina, A.V.; Zavarzin, I.V.; Krayushkin, M.M.; Rodionova, G.M.; Yarovenko, V.N.
    • Journal: Russian Chemical Bulletin, 2021, 70(2), pp. 383–385
    • Citations: 1
  5. Publication Title: “Unusual transformations of 3-thiocarbamoylchromones”
    • Authors: Demin, D.Y.; Fakhrutdinov, A.N.; Ilyasov, I.R.; Krayushkin, M.M.; Yarovenko, V.N.
    • Journal: Tetrahedron Letters, 2020, 61(32), 152202
    • Citations: 0
  6. Publication Title: “Progress in the chemistry of nitrogen-, oxygen- And sulfur-containing heterocyclic systems”
    • Authors: Makhova, N.N.; Belen’kii, L.I.; Gazieva, G.A.; Shirinian, V.Z.; Yarovenko, V.N.
    • Journal: Russian Chemical Reviews, 2020, 89(1), pp. 55–124
    • Citations: 93
  7. Publication Title: “Synthesis of Polyfunctionalized Thiophenes and Pyrido[3,2-c]Coumarines from 3-Carbamoyl/3-Thiocarbamoyl Chromones”
    • Authors: Demin, D.Y.; Myannik, K.A.; Lyssenko, K.A.; Krayushkin, M.M.; Yarovenko, V.N.
    • Journal: ChemistrySelect, 2019, 4(20), pp. 6090–6093
    • Citations: 4
  8. Publication Title: “Synthesis of 3-(N-arylcarbamoyl)chromones from 2-hydroxyarylaminoenones and isocyanates”
    • Authors: Myannik, K.A.; Semenova, I.S.; Yarovenko, V.N.; Krayushkin, M.M.
    • Journal: Russian Chemical Bulletin, 2019, 68(1), pp. 104–109
    • Citations: 5
  9. Publication Title: “Synthesis of 2-aminochromone-3-carbaldehyde hydrazones from 3-thiocarbamoylchromones and hydrazines”
    • Authors: Demin, D.Y.; Rodionova, G.М.; Yarovenko, V.N.; Krayushkin, М.М.
    • Journal: Russian Chemical Bulletin, 2018, 67(11), pp. 2054–2057
    • Citations: 0
  10. Publication Title: “Synthesis of 3-(N-arylthiocarbamoyl)chromones from 2-hydroxyaryl amino enones and isothiocyanates”
    • Authors: Demin, D.Y.; Myannik, K.A.; Ermolich, P.A.; Krayushkin, M.M.; Yarovenko, V.N.
    • Journal: Mendeleev Communications, 2018, 28(5), pp. 485–486
    • Citations: 1