Tianli Wang | Organic Synthesis | Best Researcher Award

Prof. Tianli Wang | Organic Synthesis | Best Researcher Award

Professor from Sichuan University, China

Professor Wang Tianli is a distinguished researcher in organic chemistry, currently serving as a Professor at Sichuan University. His expertise lies in asymmetric catalysis, organic synthesis, green chemistry, reaction mechanisms, and bioactive molecules. With a Ph.D. from the Institute of Chemistry, Chinese Academy of Sciences, he has made significant contributions to the field through high-impact research publications in Angewandte Chemie and Nature Communications. His career includes valuable international experience as a Research Fellow at the National University of Singapore, where he worked under Prof. Yixin Lu. Recognized for his academic excellence, he has received multiple prestigious awards, including the National Excellent Young Scientist Award and the Sichuan Province Academic and Technical Leader Award. Professor Wang is actively involved in mentoring young researchers and advancing innovative chemical methodologies. His research focuses on developing sustainable and efficient synthetic strategies with broad applications in pharmaceuticals and material sciences. His strong publication record, leadership in academia, and continuous contributions to cutting-edge research position him as a leading figure in his field.

Professional Profile

Education

Professor Wang Tianli obtained his Ph.D. in Organic Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2006–2011), where he was mentored by Prof. Qing-Hua Fan. During his doctoral studies, he focused on the development of novel asymmetric catalytic reactions, contributing to advancements in enantioselective synthesis. Prior to his Ph.D., he completed his Bachelor’s degree in Applied Chemistry at Sichuan University (2002–2006) under the supervision of Prof. Xiaoming Feng. His undergraduate research laid the foundation for his interest in asymmetric catalysis and organic synthesis. His strong academic background and training at leading institutions provided him with a solid understanding of synthetic methodologies and reaction mechanisms. Throughout his education, he actively engaged in research projects that resulted in high-quality publications in international journals. His academic journey reflects a continuous pursuit of knowledge, positioning him as a specialist in catalytic organic transformations.

Professional Experience

Professor Wang Tianli has accumulated extensive research experience in both academic and industrial settings. Since 2016, he has been a Professor at the College of Chemistry, Sichuan University, where he leads a research group focusing on asymmetric catalysis and sustainable organic synthesis. Before joining Sichuan University, he worked as a Research Fellow at the National University of Singapore (2012–2016) under Prof. Yixin Lu, where he contributed to groundbreaking studies in organocatalysis and reaction mechanisms. His postdoctoral research allowed him to expand his expertise in green chemistry and develop innovative catalytic systems. He also served as an Assistant Researcher at the Institute of Chemistry, Chinese Academy of Sciences (2011–2012), engaging in fundamental research on transition metal catalysis. His professional experience highlights his commitment to advancing the field of organic synthesis through both theoretical and practical contributions.

Research Interests

Professor Wang Tianli’s research interests lie at the intersection of asymmetric catalysis, organic synthesis, green chemistry, reaction mechanisms, and bioactive molecules. He focuses on the development of novel catalytic systems that enhance enantioselectivity and efficiency in synthetic transformations. His work aims to reduce environmental impact by designing sustainable catalytic processes, a crucial aspect of modern green chemistry. Additionally, his research explores the mechanistic understanding of organic reactions, contributing to the rational design of new synthetic methodologies. His interest in bioactive molecules has led to the synthesis of complex organic compounds with pharmaceutical applications. By integrating computational chemistry and experimental techniques, he strives to create innovative and practical solutions for chemical synthesis challenges.

Research Skills

Professor Wang Tianli possesses a diverse set of research skills that make him a leader in organic chemistry. His expertise includes asymmetric catalysis, reaction mechanism elucidation, organocatalysis, and transition metal catalysis. He is highly skilled in advanced spectroscopic techniques such as NMR, X-ray crystallography, and mass spectrometry, which he uses for structural characterization of complex molecules. Additionally, he has extensive experience in computational chemistry, employing quantum mechanical calculations to predict and optimize reaction pathways. His proficiency in green chemistry techniques enables the development of environmentally friendly synthetic strategies. As a research leader, he also excels in scientific writing, grant proposal preparation, and project management, ensuring the successful execution of complex research projects. His ability to mentor students and collaborate with interdisciplinary teams further enhances his contributions to the field.

Awards and Honors

Professor Wang Tianli has received numerous awards in recognition of his outstanding contributions to organic chemistry. In 2024, he was honored with the Young Speaker Award at the 24th International Conference on Phosphorus Chemistry and the Excellent Presentation Award at the 23rd International Conference on Organic Synthesis (2023). He was also named a Sichuan Province Academic and Technical Leader in 2023. Nationally, he has been recognized as a National Excellent Young Scientist (2022) and a Sichuan Province Outstanding Young Scientist (2022). His achievements extend to international recognition, including the Thieme Chemistry Journals Award (2022), ACP Lectureship Award (2019), and National Young Thousand Talents Program (2017). These honors underscore his research excellence and influence in the scientific community.

Conclusion

Professor Wang Tianli is a highly accomplished researcher with a remarkable record in organic synthesis, asymmetric catalysis, and green chemistry. His strong academic background, extensive publication record, and numerous prestigious awards establish him as a leader in the field. With profound research skills, mentorship experience, and international collaborations, he has made significant contributions to advancing sustainable chemical methodologies. His work continues to impact both academic and industrial applications, particularly in pharmaceuticals and fine chemical synthesis. As he expands his research scope and leadership in large-scale projects, his contributions will further shape the future of organic chemistry.

Publication Top Notes

  1. Organocatalytic Enantioselective Arylation to Access Densely Aryl-Substituted P-Stereogenic Centers

    • Authors: Huilin Hu, Siqiang Fang, Xingjie Luo, Zhipeng Xu, Tianli Wang
    • Year: 2025
  2. Desymmetrization/Kinetic Resolution of Planar Chiral [2.2]Paracyclophanes by Bioinspired Peptide-Iminophosphorane Catalysis

    • Authors: Zhengdong Wu, Siqiang Fang, Jiajia He, Zhishan Su, Tianli Wang
    • Year: 2025
  3. Organocatalytic Enantioselective [2 + 2] Cycloadditions Towards Chiral Fused α-Trifluoromethyl Azetidines

    • Authors: Song Zhang, Xingjie Luo, Siqiang Fang, Zhipeng Xu, Tianli Wang
    • Year: 2024
  4. Organocatalytic Skeletal Reorganization for Enantioselective Synthesis of S-Stereogenic Sulfinamides

    • Authors: Zanjiao Liu, Siqiang Fang, Haoze Li, Zhishan Su, Tianli Wang
    • Year: 2024
    • Citations: 8
  5. Cationic Foldamer-Catalyzed Asymmetric Synthesis of Inherently Chiral Cages

    • Authors: Siqiang Fang, Zhaowei Bao, Zanjiao Liu, Bo Li, Tianli Wang
    • Year: 2024
    • Citations: 5
  6. Asymmetric Synthesis of Bis-Spiro Cyclopropane Skeletons via Bifunctional Phosphonium Salt-Catalyzed [2 + 1] Annulation

    • Authors: Xiaojun Yu, Fan Wang, Juan Du, Lixiang Zhu, Tianli Wang
    • Year: 2024
  7. Asymmetric Nucleophilic Additions Promoted by Quaternary Phosphonium Ion-Pair Catalysts

    • Authors: Lingzhu Chen, Youlin Deng, Tingting Li, Xiaoyu Ren, Tianli Wang
    • Year: 2024
    • Citations: 10

 

Farag Altalbawy | Organic Chemistry | Excellence in Research

Prof. Dr. Farag Altalbawy | Organic Chemistry | Excellence in Research

ProfDr. at University of Tabuk, Saudi Arabia

Prof. Dr. Farag Mohamed A. Altalbawy is an esteemed Professor of Photoorganic Chemistry with a distinguished career marked by significant contributions to organic and nanomaterial chemistry. Born in Giza, Egypt, Prof. Altalbawy has held various academic roles in Egypt and Saudi Arabia, specializing in photoorganic chemistry and nanotechnology applications. His research focuses on organic and heterocyclic chemistry, spectroscopic analysis, and nanoparticle chemistry, with recent work addressing environmental applications, drug delivery systems, and cancer therapies. Prof. Altalbawy has an impressive publication record with studies appearing in prestigious international journals. His collaboration with researchers worldwide underlines his commitment to advancing scientific knowledge. Known for his expertise in Density Functional Theory (DFT) and spectroscopic methods, he leverages advanced analytical tools to tackle complex research questions. Prof. Altalbawy’s career showcases a dedication to innovative, interdisciplinary research and a global perspective on collaboration.

Professional Profile

Education

Prof. Altalbawy completed his B.Sc. in Chemistry with distinction at Cairo University in 1988. His academic journey took him to Monash University, Australia, where he earned an M.Sc. in 2001, focusing on photoorganic chemistry and gaining foundational expertise in organic synthesis. In 2005, he achieved his Ph.D. in Photoorganic Chemistry from Cairo University. His doctoral research delved into advanced photophysical and photochemical properties of organic molecules, equipping him with an in-depth understanding of spectroscopic analysis and reaction mechanisms. His comprehensive education, combining theoretical knowledge with practical training in experimental methodologies, laid the groundwork for his later research in nanomaterials and heterocyclic chemistry. Prof. Altalbawy’s academic background has been instrumental in shaping his innovative approach to chemical research, particularly in developing nano-based systems for biomedical applications.

Professional Experience

Prof. Altalbawy has accumulated over two decades of academic and research experience, beginning as a Demonstrator at Cairo University in 1997. He progressed to Assistant Lecturer in 2001 and Assistant Professor by 2006, solidifying his expertise in photoorganic and spectroscopic chemistry. In 2013, he advanced to Associate Professor at Cairo University, where he expanded his research into nanomaterials and computational chemistry. Currently, Prof. Altalbawy holds a professorship at the University of Tabuk in Saudi Arabia, a position he has occupied since 2018. His role there encompasses teaching, mentoring, and leading research initiatives in advanced chemistry topics. Throughout his career, Prof. Altalbawy has not only taught a wide array of chemistry courses but also contributed to numerous research projects with international collaborators, illustrating his commitment to fostering scientific exchange and innovation.

Research Interests

Prof. Altalbawy’s research interests lie at the intersection of organic chemistry, nanotechnology, and computational modeling. His work spans organic synthesis, heterocyclic chemistry, spectroscopic analysis, and the application of nanoparticles in environmental and biomedical fields. In recent years, he has focused on nanostructured materials for drug delivery, with significant contributions in Density Functional Theory (DFT) studies, providing theoretical insights into molecular interactions. Prof. Altalbawy’s exploration of metal-organic frameworks (MOFs) and other novel nanostructures for sensing and catalysis reflects his dedication to developing cutting-edge solutions for complex chemical challenges. Additionally, his research on anti-cancer drug delivery systems and nanosensors underscores his commitment to advancing healthcare through chemistry, positioning him as a key contributor to modern photochemistry and nano-biotechnology.

Research Skills

Prof. Altalbawy is proficient in a wide range of research skills, including advanced spectroscopic techniques, DFT computational modeling, and organic synthesis. He is skilled in the use of software tools like ChemDraw and ISIS for chemical structure visualization and analysis. His expertise in Microsoft Office and internet-based research applications supports his data management and presentation capabilities. Prof. Altalbawy has significant experience with spectroscopic instrumentation, employing techniques such as UV-Vis and FTIR to analyze molecular properties. Additionally, his computational skills enable him to conduct theoretical studies on nanostructured materials, investigating their potential applications in areas such as drug delivery and environmental remediation. His combined proficiency in both experimental and computational methods reflects a versatile approach to tackling interdisciplinary scientific problems.

Awards and Honors

Prof. Altalbawy’s contributions to the field of chemistry have earned him recognition both regionally and internationally. While specific awards are not listed in his CV, his achievements, including numerous high-impact publications in international journals, reflect his stature and influence in the scientific community. His work in advancing photoorganic and nanomaterial chemistry has likely brought him considerable respect among his peers, and his role at University of Tabuk as a professor underscores his academic distinction. Prof. Altalbawy’s collaborations across global research teams are a testament to his expertise and the value his insights bring to multi-disciplinary projects. His career achievements highlight his dedication to advancing knowledge and innovation in chemistry, making him a strong candidate for honors within academic and scientific circles.

Conclusion

Prof. Dr. Farag Mohamed A. Altalbawy’s strong research portfolio, international collaborations, and extensive publication record make him a robust candidate for the Best Researcher Award. His profile is distinguished by a commitment to innovative and relevant research areas in photoorganic chemistry and nanotechnology, which aligns well with the award’s criteria. Adding mentorship and greater diversity in research methods would further strengthen his candidacy, but overall, he demonstrates exceptional qualifications worthy of recognition.

Publication Top Notes

  1. The PDINH decorated NH2-UiO-67 MOF for promoted photocatalytic Cr(VI) reduction: Performance, and mechanism
    • Authors: Suliman, M., Altalbawy, F.M.A., Sur, D., Hamoodah, Z.J., Almoswee, M.
    • Year: 2025
    • Journal: Journal of Molecular Structure, 1322, 140374
  2. An overview of lncRNA NEAT1 contribution in the pathogenesis of female cancers; from diagnosis to therapy resistance
    • Authors: Ibraheem Shelash Al-Hawari, S., Abdalkareem Jasim, S., M. A. Altalbawy, F., Alsaadi, S.B., Hussein Zwamel, A.
    • Year: 2025
    • Journal: Gene, 933, 148975
  3. Incorporation anthracene and Cu to NH2-Zr-UiO-67 metal-organic framework: Introducing the simultaneous selectivity and efficiency in photocatalytic CO2 reduction to ethanol
    • Authors: Saadh, M.J., Mustafa, M.A., Altalbawy, F.M.A., Alam, M.M., Abosaoda, M.K.
    • Year: 2024
    • Journal: Journal of Molecular Structure, 1318, 139329
  4. Exploring green synthesis and characterization of ZIF-8 and recent developments in anti-infective applications
    • Authors: Suliman, M., Altalbawy, F.M.A., Kaur, M., Zwamel, A.H., Abualigah, L.
    • Year: 2024
    • Journal: Inorganic Chemistry Communications, 170, 113333
  5. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression
    • Authors: Jasim, S.A., Farhan, S.H., Ahmad, I., Alsaadi, S.B., Abosaoda, M.K.
    • Year: 2024
    • Journal: Molecular Biology Reports, 51(1), 964
  6. Fe3O4@SiO2-APA-Amide/Imid-NiCl2 as a New Nano-Magnetic Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]benzothiazole Derivatives via MCRs Under Solvent-Free Conditions
    • Authors: Altalbawy, F.M.A., Ballal, S., Chahar, M., Kalyani, T., Alhadrawi, M.
    • Year: 2024
    • Journal: ChemistrySelect, 9(42), e202403810
  7. A theoretical approach on the removal of elemental Cu and Cu (I) ions applying the g-C3N4S, g-C3N4O, g-C3N4N, and g-C3N4 nanosheets
    • Authors: Altalbawy, F.M.A., Mustafa Hameed, S., Rekha, M.M., Ali Mtasher, A., Seed, F.F.
    • Year: 2024
    • Journal: Computational and Theoretical Chemistry, 1241, 114917
  8. Synthesis, characterization, and applications of starch-based nano drug delivery systems for breast cancer therapy: A review
    • Authors: Mei, S., Roopashree, R., Altalbawy, F.M.A., Al-Abdeen, S.H.Z., Alhadrawi, M.
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules, 280, 136058
  9. Harmonizing sustainability and sensing: Exploring green synthesis approaches and sensing advancements in Au-based nanostructures
    • Authors: Roopashree, R., Altalbawy, F.M.A., Krishna Saraswat, S., Warid Maya, R., Alhadrawi, M.
    • Year: 2024
    • Journal: Inorganic Chemistry Communications, 169, 113130
  10. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis
    • Authors: Al-Hawary, S.I.S., Altalbawy, F.M.A., Jasim, S.A., Jawad, M.A., Zwamel, A.H.
    • Year: 2024
    • Journal: Cell Biology International, 48(11), 1601–1611