Yaojia Jiang | Organic Chemistry | Best Researcher Award

Mr. Yaojia Jiang | Organic Chemistry | Best Researcher Award

Professor from Guizhou University, China

Yaojia Jiang is an accomplished chemist with a strong academic and research background in radical chemistry, carbene and nitrene chemistry, and biological sciences. His academic journey showcases steady growth under the mentorship of highly respected scholars and at leading institutions. After earning his Master’s degree at Soochow University in 2010, he pursued a Ph.D. at Nanyang Technological University, completing it in 2014. During his doctoral studies, he specialized in carbene and nitrene transformations, a highly significant area of research with broad applications in organic synthesis. Jiang then expanded his expertise through postdoctoral work in biological sciences, which added a multidisciplinary dimension to his research profile. His independent career began in 2015 at Nanjing Tech University, focusing on carbene transformations, and later advanced at Guizhou University, where his work centers on modular single-carbon insertion reactions and sustainable pesticide development. His research combines fundamental chemistry with applications that address real-world problems, particularly in agriculture and green chemistry. Yaojia Jiang’s career path highlights not only technical expertise but also innovation, adaptability, and an ongoing commitment to sustainability and atom-economical processes. His diverse experiences position him as a leading figure in advancing chemical sciences in environmentally conscious ways.

Professional Profile

Education

Yaojia Jiang’s educational journey reflects strong academic foundations and strategic specialization in areas of growing scientific importance. He earned his Master’s degree in 2010 from Soochow University under the supervision of Professor Jian-Ping Zou, specializing in radical chemistry. This early focus provided him with a rigorous understanding of reactive intermediates and set the stage for his future contributions to the field. In 2014, he completed his Ph.D. at Nanyang Technological University (NTU) in Singapore, one of Asia’s leading research institutions. His doctoral research, supervised by Professors Cheol-Min Park and Teck-Peng Loh, delved into the chemistry of carbenes and nitrenes, reactive species crucial in modern organic synthesis. His Ph.D. work significantly enhanced his expertise in reaction mechanisms and synthetic methods, skills essential for high-level chemical innovation. Jiang’s educational experiences at two prominent institutions, combined with mentorship from globally respected scientists, provided him with both theoretical depth and practical skills. His academic background was further diversified through postdoctoral research in biological sciences, broadening his interdisciplinary knowledge and positioning him well for independent research that bridges chemistry and applied life sciences.

Professional Experience

Yaojia Jiang began his independent academic career shortly after completing his postdoctoral studies. In 2015, he joined Nanjing Tech University, where he focused on carbene transformations, contributing important research on highly reactive intermediates and their controlled manipulation for synthetic applications. His early years as an independent researcher showcased a rapid transition from trainee to research leader, reflecting his ability to design, lead, and execute complex chemical research projects. Subsequently, Jiang moved to Guizhou University, a rising hub for scientific research in China. At Guizhou University, he expanded his research portfolio by focusing on modular single-carbon insertion reactions and their applications in pesticide design. His work at Guizhou emphasizes green chemistry principles and atom-economical strategies, aligning his research with global calls for sustainable innovation. Over the course of his professional career, Jiang has demonstrated a unique combination of deep technical expertise and practical application, consistently pushing the boundaries of synthetic chemistry. His progression from graduate student to a respected academic researcher in a relatively short span reflects both his scientific excellence and leadership capabilities.

Research Interest

Yaojia Jiang’s research interests center around reactive intermediates, especially carbenes and nitrenes, and their controlled transformations for synthetic applications. His early work in radical chemistry laid the foundation for a deep understanding of highly reactive species, leading to advanced exploration of carbene and nitrene chemistries during his Ph.D. training. Jiang is particularly fascinated by modular single-carbon insertion reactions, which offer precise control over molecular architecture and have significant implications in developing functional molecules. His current research aims to apply these reactions toward the design of new, environmentally friendly pesticides using green and atom-economical processes. This focus bridges fundamental organic chemistry with real-world applications in agriculture and environmental protection. His interdisciplinary approach, integrating organic synthesis with biological insights from his postdoctoral experience, allows him to pursue research topics that are both intellectually challenging and socially impactful. In an era where sustainable chemical processes are increasingly vital, Jiang’s research direction positions him at the forefront of green innovation in synthetic chemistry. His ongoing projects reflect a balance of fundamental scientific curiosity and a commitment to contributing solutions to pressing global challenges.

Research Skills

Yaojia Jiang possesses an extensive range of research skills that make him highly effective as a synthetic chemist and innovator. His expertise in radical, carbene, and nitrene chemistry provides him with a strong foundation in handling reactive intermediates and understanding complex reaction mechanisms. He is skilled in the design and execution of multi-step organic synthesis, employing both classical methods and cutting-edge techniques. His experience with biological sciences during his postdoctoral training broadened his technical capabilities to include interdisciplinary methods, blending chemistry with biological systems analysis. Jiang’s research emphasizes green chemistry and atom-economical strategies, requiring a keen understanding of reaction efficiency, catalyst design, and sustainable process development. His work also demonstrates strong skills in experimental planning, data analysis, and scientific writing, evidenced by his successful transition into independent research leadership. Jiang has shown proficiency in mentoring younger researchers and managing laboratory activities, essential skills for building and maintaining a productive research team. His methodological rigor, creativity in problem-solving, and adaptability to new research challenges underscore his profile as a highly skilled and versatile researcher ready for larger international scientific collaborations and leadership roles.

Award and Honors

Although specific awards and honors for Yaojia Jiang were not listed in the provided information, his career progression itself is a testament to his excellence. Successfully obtaining a Ph.D. from a prestigious institution such as Nanyang Technological University under the mentorship of world-renowned scientists is a strong indicator of his academic and research capabilities. Securing independent research positions at respected universities like Nanjing Tech University and Guizhou University reflects institutional recognition of his potential and contributions. His rapid transition to an independent career and his ability to sustain and develop research programs in competitive environments suggest that he has earned professional respect in the field of synthetic and green chemistry. In future stages of his career, additional formal recognitions such as international awards, research grants, or leadership appointments in scientific societies could further highlight his achievements. Overall, Yaojia Jiang’s track record positions him well for future honors as he continues to contribute significantly to the advancement of chemical sciences and sustainable technologies.

Conclusion

Yaojia Jiang exemplifies the qualities of a forward-thinking and highly capable researcher in the field of synthetic and green chemistry. His strong academic background, diverse research experiences, and focus on addressing real-world challenges through innovative chemical processes make him a standout figure in modern scientific research. His work on carbene transformations and modular single-carbon insertion reactions, with applications in sustainable pesticide development, reflects a rare combination of deep scientific understanding and social responsibility. While his profile would be further strengthened by greater international recognition and large-scale collaborations, his current achievements already demonstrate significant excellence and impact. Yaojia Jiang is on a clear path toward becoming a global leader in green chemistry and synthetic innovation. His ongoing dedication to sustainable chemical solutions and his ability to adapt and expand his research interests mark him as an ideal candidate for future prestigious awards and broader academic leadership roles.

Publications Top Notes

  1. Title: Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety

    • Authors: Zou Yue, Zhu Mei, Zhu Zongnan, Jiang Yaojia, Chen Jixiang

    • Year: 2025

  2. Title: Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System

    • Authors: Han Jiabin, Fan Yaxin, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

    • Citations: 1

  3. Title: Pd(II) Auxiliary Assembling and Diverse Transformations via Inert C(sp³)-H Bond Activation

    • Authors: Luo Jiangbin, Chen Jie, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

  4. Title: Nickel-Catalyzed Multicomponent Assembly of Alkynes Toward α‑CF₃‑Alkenes

    • Authors: Li Ling, Li Yingmei, Yan Chongchong, Zhang Jian, Jiang Yaojia

    • Year: 2024

Lisete Moutinho | Bio Composites | Best Review Paper Award

Mrs. Lisete Moutinho | Bio Composites | Best Review Paper Award

University of Aveiro, Portugal

Lisete Moutinho is a dynamic and driven researcher with a solid background in biochemistry and a focused specialization in materials science, particularly in sustainable polymer-based composites. With her academic foundation rooted in biochemistry and expanded through advanced training and research in polymer science, she has successfully bridged the gap between life sciences and engineering materials. Her current position as Project Manager and Global Technical Manager at Amorim Cork Composites reflects her ability to lead innovation-driven initiatives in applied materials research. Lisete is passionate about developing environmentally sustainable solutions, with a special interest in cork-polymer compounds for a range of applications including automotive, packaging, and leisure industries. She brings to her role a mix of technical depth and strategic vision, enhanced by practical knowledge of project management methodologies such as SCRUM. Known for her proactive approach, problem-solving skills, and curiosity, Lisete actively seeks opportunities to learn and contribute through research, technical development, and public engagement. With several presentations, a scientific publication, and industry recognitions, she stands out as an early-career researcher with strong potential to contribute meaningfully to the advancement of materials science and sustainability.

Professional Profile

Education

Lisete Moutinho’s academic journey is anchored in the life sciences, with her educational foundation laid at the Faculdade de Ciências da Universidade do Porto, where she completed her Bachelor of Science in Biochemistry (2011–2014) with a final grade of 16 out of 20. She continued her academic advancement by earning a Master of Science in Biochemistry, specializing in Biomolecular Methods, from the Universidade de Aveiro (2014–2016), where she graduated with a high distinction, achieving a final evaluation score of 17 out of 20. Driven by a passion for innovation and materials research, she is currently pursuing a PhD in Materials Science and Engineering at the Universidade de Aveiro (2021–present), where her research intersects polymer science, sustainable materials, and bio-based composites. In addition to formal degrees, Lisete has enriched her learning through multiple specialized courses including “Polymers’ Science and Technology” (105 hours), “Rheology Applied to Polymer Processing and Composites” (16 hours), and project management training with Bright Academy. She also completed a professional course on SCRUM methodology, showcasing her interdisciplinary competency across science, engineering, and project management. Her educational background reflects her strong foundation in biochemistry, broadened by a clear transition into applied material sciences with a focus on sustainability.

Professional Experience

Lisete Moutinho possesses a robust professional portfolio, built through progressive roles at Amorim Cork Composites, a part of the Amorim Group. Her career began in 2016 as a Product Developer, where she engaged in research and development of innovative cork-polymer products. In this role, she specialized in the formulation and processing of compounds involving thermoplastics, thermosets, and rubber, gaining hands-on expertise in molding, extrusion, lamination, and vulcanization. Her capabilities extended into material characterization, employing rheological tools (rheometer, Mooney viscosity), DSC, DMA, and mechanical testing methods. From 2018 to 2021, she transitioned into the position of Global Technical Manager, overseeing technical certifications, leading internal and external training, and managing product standardization. Since 2021, Lisete has served as a Project Manager and Global Technical Manager, where she leads cross-functional teams using agile methodologies (SCRUM) and manages the lifecycle of new product developments from concept through to market implementation. Her strategic involvement in innovation projects across multiple markets demonstrates her capacity to translate scientific knowledge into commercially viable solutions. Her experience exemplifies a seamless integration of research, leadership, and industry insight, making her a standout professional in the sustainable materials sector.

Research Interest

Lisete Moutinho’s research interests are rooted in the intersection of materials science, polymer chemistry, and sustainability, with a distinctive focus on the development of cork-polymer composites. Motivated by the environmental and functional potential of bio-based materials, she explores sustainable alternatives for industrial applications such as automotive parts, packaging, and leisure products. A significant portion of her work involves understanding the behavior of composite materials, particularly the interaction between natural cork granules and synthetic polymers, including polylactic acid (PLA) and various thermoplastics. Her research integrates materials processing techniques such as extrusion, molding, and vulcanization with advanced characterization methods to optimize mechanical and thermal properties of the resulting products. Additionally, she is keenly interested in biodegradability, lifecycle assessment, and the potential of renewable resources to replace traditional petroleum-based materials. Through her PhD studies and professional projects, Lisete contributes to the growing body of knowledge on bio-based and recyclable materials, aligning with global efforts toward greener production practices. Her commitment to applied sustainability positions her research as both innovative and impactful, aimed at driving environmental progress through scientific development in materials engineering.

Research Skills

Lisete Moutinho has developed a strong suite of research skills through her academic pursuits and hands-on industrial experience. Technically proficient in both wet lab techniques and material testing protocols, she brings a multidisciplinary approach to her research in biopolymers and composite materials. Her core competencies include rheological analysis using tools such as rheometers and Mooney viscometers, as well as thermal and dynamic mechanical analysis (DSC, DMA), which allow her to characterize polymer behavior under various conditions. She is also adept in mechanical testing procedures, helping assess tensile strength, elongation, and stress-strain behavior of materials. In the context of material formulation, she has experience working with both thermoplastics and thermosets, including compounding, extrusion, and molding processes. Beyond lab work, Lisete possesses valuable knowledge in project management (SCRUM), technical documentation, and product certification procedures. Her ability to merge technical skills with analytical thinking enables her to design and implement experiments that address practical challenges in material innovation. Moreover, her commitment to continual learning—reflected in her enrollment in advanced courses and certifications—demonstrates a proactive approach to professional development. These skills collectively support her capacity to conduct high-quality, industry-relevant scientific research.

Awards and Honors

Lisete Moutinho has received commendable recognition for her contributions to scientific research and communication, particularly in the field of sustainable polymer composites. Notably, she was awarded the Best Poster Presentation Prize at the 4th International Conference on Biopolymers and Bioplastics held in Rome in 2022, for her work on bio-based expanded cork polymer composites (eCPC) with poly(lactic acid) (PLA) designed for injection molding applications. This award highlights her capability to distill complex material science into impactful presentations that resonate with scientific audiences. The same year, she was also selected as a Scientific Speaker at the Materials’ District Conference in the Netherlands, where she presented on cork polymer compounds as a sustainable solution, showcasing her expertise in applied innovation and her ability to engage with international scientific and industrial communities. In addition to these public accolades, Lisete has one peer-reviewed publication in Elsevier related to fluoroquinolone-metal complexes, demonstrating her breadth of research capability. These honors reflect her growing reputation as a young researcher focused on sustainability, innovation, and cross-sector engagement. As she continues her academic journey through her PhD and ongoing project leadership, further recognition is likely to follow.

Conclusion

Lisete Moutinho exemplifies the qualities of a modern researcher—interdisciplinary, driven by sustainability, and firmly grounded in both scientific theory and industrial practice. Her career trajectory demonstrates a consistent focus on materials development, especially cork-polymer composites, supported by academic excellence and real-world impact. With a combination of project leadership, technical skill, and scientific curiosity, she contributes meaningfully to the advancement of sustainable materials for diverse applications. Her accolades at international conferences and ability to engage with both academic and industry audiences underscore her communication and innovation strengths. While she has already achieved notable success through presentations and poster awards, expanding her record of peer-reviewed publications—particularly comprehensive review articles—could further solidify her reputation in the scientific community. Nonetheless, Lisete stands out as an emerging leader in materials science, with the right mix of knowledge, motivation, and collaborative spirit. As she continues her PhD and contributes to research and development initiatives, she is well-positioned to make lasting contributions to the field of sustainable material technologies and to assume greater roles in scientific leadership and innovation.

Publications Top Notes

  1. Title: Bio-based expanded cork polymer composites (eCPC) with poly(lactic acid) (PLA) for injection moulding

  2. Authors: [Not explicitly listed — typically the presenting author is the main contributor, do you want me to help identify them?]

  3. Year: 2022

 

  1. Title: Cork Polymer Compounds as a Sustainable Solution

  2. Authors: [Typically single speaker or affiliated research group — want help identifying the individual contributor?]

  3. Year: 2022

 

  1. Title: Fluoroquinolone-metal complexes: A route to counteract bacterial resistance?

  2. Authors: [Usually includes researchers who collaborated on the study — likely available on Elsevier]

  3. Year: 2014