Longbin Liu | Engineering | Best Researcher Award

Assist. Prof. Dr. Longbin Liu | Engineering | Best Researcher Award

National University of Defense Technology | China

Dr. Liu Longbin is a dedicated aerospace engineering expert specializing in aircraft conceptual design and missile structure. Currently serving as a lecturer at the National University of Defense Technology, he actively contributes to China’s defense and aviation research efforts. His academic foundation and practical insights drive innovation in flight vehicle structures and performance. With several research papers and conference presentations to his credit, he stands out for his technical depth and commitment to academic excellence. Dr. Liu’s involvement in global research forums further reflects his growing recognition in the field and his potential as a future leader in aerospace innovation.

Professional Profile

Scopus Profile  | ORCID

Education

Dr. Liu Longbin received his Ph.D. in Aircraft Design from the prestigious Beijing University of Aeronautics and Astronautics in Beijing, China. His academic training focused on the theoretical and practical aspects of advanced aircraft and missile design. The program provided rigorous exposure to aerodynamics, materials science, systems engineering, and structural analysis, equipping him with the expertise needed to pursue cutting-edge aerospace research. His doctoral research addressed complex challenges in structural optimization and design methodology, laying a strong foundation for his later contributions to both academia and defense-oriented engineering projects.

Professional Experience

Dr. Liu Longbin currently holds the position of Lecturer at the National University of Defense Technology, where he is involved in both teaching and research. He has participated in numerous national and international projects focused on aerospace structure and design systems. His role includes guiding students, publishing peer-reviewed papers, and contributing to the defense sector through technology development. Prior to his academic appointment, he was involved in project-based work that strengthened his experience in applying theoretical knowledge to practical defense-related systems, enhancing his profile as an emerging expert in aerospace engineering.

Research Interest

Dr. Liu’s research interests lie in the fields of aircraft conceptual design and missile structural engineering. He is particularly focused on the integration of structural and aerodynamic principles to enhance flight performance, reliability, and mission capability. His work often involves the simulation and modeling of missile systems, as well as investigating the material and structural configurations that optimize weight and durability. By combining innovative design techniques with modern computational tools, Dr. Liu aims to address some of the most pressing challenges in advanced aerospace system development and contribute to national defense strategies.

Research Skills

Dr. Liu possesses a robust set of research skills that include aerodynamic simulation, structural optimization, and system-level conceptual design. He is proficient in computational tools and software widely used in aerospace engineering, such as MATLAB, CATIA, and ANSYS. His capabilities also extend to data analysis, research methodology design, and collaborative problem-solving within interdisciplinary teams. Dr. Liu is experienced in drafting scientific papers, presenting at academic conferences, and managing research timelines and deliverables effectively. These technical and analytical skills enable him to contribute meaningfully to high-impact projects in both academia and industry.

Awards and Honors

Dr. Liu Longbin has been recognized for his scholarly contributions through various academic commendations and conference selections. While specific awards have not been publicly listed, his peer-reviewed journal publications and international conference presentations speak to his credibility and recognition within the aerospace research community. His work has been well-received in academic forums, and his selection as a presenter at multiple technical gatherings underscores his reputation as a capable and respected voice in aircraft and missile design. Continued excellence in research positions him for future honors and leadership roles in scientific and engineering circles.

Publications Top Notes

  1. Title: An LSTM-driven thermoelectric coupling response prediction method for shape memory alloy actuators

    • Journal: Scientific Reports

    • Year: 2025

  2. Title: The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film

    • Journal: Applied Sciences Switzerland

    • Year: 2025

  3. Title: Analysis on the thrust characteristics of flexible deformable self-pressurized water rocket

    • Journal: Guofang Keji Daxue Xuebao (Journal of National University of Defense Technology)

    • Year: 2025

  4. Title: Research on one-dimensional phase change heat transfer characteristics based on instrument compartment structure

    • Journal: Scientific Reports

    • Year: 2024

Conclusion

In conclusion, Dr. Liu Longbin’s blend of academic excellence, technical competence, and applied research experience makes him a valuable contributor to the field of aerospace engineering. His work in aircraft and missile structural design not only advances academic understanding but also supports national defense innovation. With a solid educational background, active research involvement, and growing visibility in international forums, he is well-positioned to lead impactful projects in the future. Dr. Liu’s commitment to knowledge advancement and collaboration makes him a deserving candidate for prestigious academic and scientific recognition on global platforms.

Hamed Pahlavani | Engineering | Best Researcher Award

Dr. Hamed Pahlavani | Engineering | Best Researcher Award

CFD & Process Engineer from Dal Engineering Group, Turkey

Dr. Hamed Pahlavani is a distinguished Mechanical Engineer and Computational Fluid Dynamics (CFD) specialist with expertise spanning biomedical simulations, reactive multiphase flows, and energy system optimization. Currently serving as a Process & CFD Engineer at Dal Engineering Group in Istanbul, Turkey, he combines high-level academic research with real-world industrial applications. Dr. Pahlavani’s work integrates computational modeling of blood flow dynamics in cerebral aneurysms with fluid-structure interaction (FSI) techniques, as well as combustion modeling for alternative fuels in large-scale energy systems. With a robust foundation in OpenFOAM and other numerical tools, he has developed custom solvers and predictive models, making significant contributions to cardiovascular modeling, energy optimization, and environmental engineering. His innovative approaches and research outputs are featured in several peer-reviewed journals. In addition to his scientific contributions, he has been an active participant in industry-sponsored and TÜBİTAK-funded projects. His cross-disciplinary knowledge, proficiency in simulation platforms, and commitment to solving critical engineering challenges demonstrate both academic and practical excellence. Fluent in English, Turkish, and Persian, Dr. Pahlavani has also presented his work internationally, earning recognition within both academia and industry. His combination of deep technical acumen, innovative thinking, and collaborative mindset makes him a standout candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Hamed Pahlavani holds a Ph.D. in Mechanical Engineering from Istanbul Technical University, Turkey, awarded in January 2022. His doctoral dissertation, titled “Modeling of Two-Phase Blood Flow and Fluid-Structure Interactions in Cerebral Aneurysms”, focused on applying advanced CFD techniques and FSI to model blood rheology and arterial wall deformation. He utilized state-of-the-art simulation tools such as OpenFOAM, CALCULIX, and preCICE, running high-performance computing (HPC) environments to address complex, patient-specific geometries. Prior to this, he completed a Master of Science in Mechanical Engineering from the same institution in 2015. His M.Sc. thesis involved the design and simulation of a refrigerator cabinet based on the solidification process of polyurethane foam, emphasizing multiphase reactive flows and chemical kinetics using ANSYS Fluent. Dr. Pahlavani began his academic journey with a Bachelor of Science degree from Azad University of Khoy, Iran, in 2012, laying a strong foundation in classical mechanical engineering principles. His educational background reflects a consistent trajectory of excellence, with progressive specialization in simulation-based design, energy systems, and biomedical engineering. The combination of solid academic preparation and advanced computational modeling skills has positioned him to tackle both fundamental and applied engineering problems across multiple sectors.

Professional Experience

Dr. Hamed Pahlavani has accumulated valuable professional experience across both industrial and academic domains. Since November 2023, he has been working as a Process & CFD Engineer at Dal Engineering Group in Istanbul, where he leads simulation projects focused on the combustion of alternative fuels and calcination processes in cement calciners. He has applied OpenFOAM’s Euler–Lagrange framework to model solid fuel behavior, reaction kinetics, and pollutant formation. He also performs 1D heat and mass balance modeling to support plant optimization efforts and has participated in field measurements to validate simulation outputs with real-world data. Prior to this, from October 2021 to May 2023, Dr. Pahlavani served as a CFD, Combustion, and Thermal Systems Engineer at Turaş GAS A.Ş., where he focused on improving domestic gas burner performance using CFD tools, achieving notable reductions in emissions and increases in thermal efficiency. His earlier engagements included roles in academic projects sponsored by TÜBİTAK and the Turkish Ministry of Industry. These roles required him to blend research and development with engineering applications, often collaborating with multidisciplinary teams. His professional record illustrates his capacity to translate complex simulation data into actionable outcomes for environmental and industrial improvements.

Research Interests

Dr. Pahlavani’s research interests lie at the intersection of computational modeling, thermal-fluid sciences, and biomedical engineering. A central theme in his research is Computational Fluid Dynamics (CFD), particularly applied to multiphase and turbulent reactive flows, combustion systems, and fluid-structure interactions (FSI). His work on alternative fuel combustion explores the behavior of solid fuels such as TDF, rubber, SRF, and petcoke, focusing on processes like drying, devolatilization, and char oxidation using custom reaction models. In the biomedical field, he specializes in non-Newtonian blood flow modeling and its interactions with arterial structures, enabling in-depth investigations of cerebral aneurysms, thrombosis risks, and blood rheology using advanced simulation techniques. Additional interests include optimization of energy systems, gas-solid interactions, phase change modeling, and biomedical flow simulations in patient-specific geometries. His focus is both analytical and practical, using computational methods to simulate real-world behavior in mechanical systems, energy conversion units, and biological tissues. The cross-domain applicability of his research makes it highly relevant to healthcare innovation, renewable energy development, and environmental sustainability. Dr. Pahlavani’s ongoing work continues to address critical challenges in these fields through innovative simulation-based methodologies.

Research Skills

Dr. Pahlavani possesses an extensive array of research and technical skills that position him at the forefront of simulation-based engineering. He is highly proficient in OpenFOAM, an open-source CFD platform where he develops and customizes solvers for turbulent and multiphase flows, including complex chemical reactions and phase transitions. He has utilized CALCULIX for structural analysis and preCICE for coupling fluid and solid domains, enabling sophisticated fluid-structure interaction (FSI) simulations. His programming capabilities include C++ and Python, allowing him to tailor numerical models and automate simulation workflows. Additionally, he is experienced with ANSYS Fluent, ICEM CFD, Tecplot, Paraview, and CAD tools such as CATIA v5 and SolidWorks. These tools have been critical in simulating complex systems ranging from domestic gas burners to cement calciners and blood flow in cerebral arteries. His ability to integrate 1D process modeling with full-scale CFD simulations enhances his capacity for system-wide energy optimization and emissions reduction. Dr. Pahlavani also possesses strong data validation skills, conducting on-site measurements to ensure simulation accuracy. His blend of coding expertise, engineering judgment, and validation techniques reflects a well-rounded research skill set with high translational value.

Awards and Honors

Dr. Hamed Pahlavani has received notable awards and honors in recognition of his contributions to computational modeling and engineering innovation. He served as the Principal Researcher for a TÜBİTAK-funded project titled “Computational Modelling of Deep Vein Thrombosis” (Project No. 117M430), which involved simulating thrombus formation using CFD-FSI coupling techniques in patient-specific geometries. This project not only demonstrated his academic leadership but also showcased the medical relevance of his research. He also contributed significantly to an industry-sponsored project titled “CFD Modeling of Reaction and Injection Molding of Polyurethane Foam in Refrigerators”, supported by the Ministry of Industry and Arçelik Inc. (Project No. 01213.STZ.2012-1). These honors reflect his capacity to attract funding and execute impactful projects that bridge science and industry. In addition to research awards, Dr. Pahlavani’s technical papers and conference presentations have received recognition at scientific meetings, further validating the quality and relevance of his work. His demonstrated success in securing competitive funding, combined with strong industry collaboration, underlines his innovative approach to solving engineering challenges and his potential for continued leadership in computational mechanics.

Conclusion

In conclusion, Dr. Hamed Pahlavani exemplifies a modern, research-driven mechanical engineer with an exceptional portfolio that blends academic rigor with industrial relevance. His contributions span diverse domains, from biomedical flow simulations to advanced combustion modeling and energy system optimization. With a Ph.D. from Istanbul Technical University, multiple peer-reviewed publications, and hands-on experience in both experimental validation and computational design, he brings a rare depth of understanding to complex fluid dynamics and multiphysics systems. His leadership in TÜBİTAK- and industry-funded projects, combined with technical mastery of tools such as OpenFOAM, preCICE, and CALCULIX, further reinforces his excellence in research execution and impact delivery. Dr. Pahlavani’s work not only pushes the frontiers of CFD and biomedical engineering but also contributes significantly to sustainability efforts by improving combustion efficiency and reducing emissions in industrial systems. His multilingual proficiency and international collaborations position him as a globally relevant researcher capable of addressing multidisciplinary challenges. Based on his accomplishments and forward-looking research agenda, Dr. Pahlavani is an outstanding candidate for the Best Researcher Award. His innovative thinking, problem-solving skills, and dedication to societal advancement through engineering research mark him as a leader of the future.

Publications Top Notes

  1. Effect of red blood cell concentration on the blood flow in patient-specific aneurysms
    2025 | Pahlavani, H.; Ozdemir, I.B.
  2. Interactions between non-Newtonian blood flow and deformable walls of a patient-specific aneurysm
    2025 | H. Pahlavani; I.B. Ozdemir
  3. Neural network predictive models to determine the effect of blood composition on the patient-specific aneurysm
    2023 | Quadros, J.D.; Pahlavani, H.; Ozdemir, I.B.; Mogul, Y.I.
  4. CFD models for aneurysm analyses and their use in identifying thrombosis formation and risk assessment
    2022 | Pahlavani, H.; Ozdemir, I.B.; Yildirim, D.
  5. Effects of forebody geometry on side forces on a cylindrical afterbody at high angles of attack
    2020 | Serdaroglu Timucin; Pahlavani Hamed; Ozdemir I. Bedii
  6. Effects of air vents on the flow of reacting polyurethane foam in a refrigerator cavity
    2018 | Özdemir, İ.B.; Pahlavani, H.

Snekhalatha Umapathy | Engineering | Excellence in Research Award

Prof. Dr. Snekhalatha Umapathy | Engineering | Excellence in Research Award

Professor and Head from SRM Institute of Science and Technology, India

Dr. Snekhalatha Umapathy is a distinguished Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology. With a research career spanning over a decade, she has made substantial contributions to biomedical instrumentation, biosensors, medical image and signal processing, and artificial intelligence applications in healthcare. She has authored over 145 publications, including 55 in SCI-indexed journals and 54 in the Web of Science, showcasing her consistent academic productivity. Her research is highly interdisciplinary, integrating engineering, medicine, and advanced computing techniques. Dr. Umapathy’s work has led to the granting of five patents and the publication of three more, underscoring her commitment to innovation and translational research. She has successfully supervised six Ph.D. scholars and continues to mentor three more, indicating her dedication to academic leadership and student development. Her most recent studies focus on quantum machine learning and wearable biosensors, areas of increasing importance in personalized medicine. Through her extensive involvement in international conferences, book publications, and impactful journals, she maintains a strong academic presence. Overall, Dr. Umapathy stands out as a highly accomplished researcher whose work bridges fundamental research and clinical application, positioning her as a leading expert in the biomedical engineering domain.

Professional Profile

Education

Dr. Snekhalatha Umapathy’s academic background is rooted in a strong foundation in engineering and interdisciplinary science. She pursued her higher education in fields that aligned closely with biomedical innovation, integrating elements of electronics, instrumentation, and life sciences. Although specific degree titles and institutions are not listed here, her progression to a professorial role and active research leadership indicates the successful completion of undergraduate and postgraduate degrees in relevant engineering disciplines, followed by a doctorate (Ph.D.) in a field closely related to biomedical engineering. Her educational pathway has allowed her to explore the integration of engineering principles with human physiology, medical diagnostics, and therapeutic technologies. Through rigorous training and advanced coursework, she has developed specialized expertise in areas such as biosensor technology, medical imaging, signal processing, and artificial intelligence applications in medicine. This academic training has been critical in enabling her to publish in high-impact journals, supervise doctoral research, and secure patents in the biomedical technology space. Her educational journey reflects both depth and diversity, providing her with the tools necessary to contribute meaningfully to multidisciplinary research and academic mentorship within the global biomedical engineering community.

Professional Experience

Dr. Snekhalatha Umapathy currently serves as a Professor in the Department of Biomedical Engineering at SRM Institute of Science and Technology, a role that reflects her vast academic experience and leadership capabilities. Over the years, she has played a pivotal role in driving research innovation, mentoring students, and establishing industry-academic linkages within the university setting. Her responsibilities include supervising doctoral scholars, delivering advanced courses in biomedical instrumentation and AI in healthcare, and leading funded research initiatives. With more than 145 publications and several patents to her name, she has consistently demonstrated a capacity to translate academic inquiry into practical, real-world applications. In addition to her research and teaching duties, she actively participates in organizing conferences, delivering keynote addresses, and collaborating with interdisciplinary teams for technological development. Her professional experience extends beyond academia, encompassing collaborative projects with clinicians, engineers, and researchers to design medical devices and diagnostic systems. Dr. Umapathy’s work ethic, combined with her technical insight and administrative contributions, positions her as a highly effective academic leader. Her commitment to fostering innovation and knowledge transfer has not only elevated the research profile of her department but has also contributed significantly to the broader biomedical engineering landscape in India.

Research Interests

Dr. Snekhalatha Umapathy’s research interests lie at the intersection of engineering, healthcare, and computational science. Her primary focus areas include biosensors, point-of-care diagnostic devices, biomedical signal and image processing, and the integration of deep learning and quantum machine learning techniques into healthcare applications. She is particularly interested in developing non-invasive diagnostic tools and wearable biosensors that can monitor biomarkers for diseases such as diabetes, chronic kidney disease, and Alzheimer’s. Her work in medical image processing includes automated classification and detection using AI, contributing to early diagnosis and improved patient outcomes. Dr. Umapathy also explores the use of novel materials, such as graphene-based sensors, in creating affordable and scalable healthcare solutions. A forward-thinking researcher, she is actively investigating the potential of quantum machine learning algorithms to enhance the accuracy and efficiency of medical diagnostic systems. By bridging the gap between technology development and clinical utility, her research addresses pressing global health challenges while contributing to the scientific advancement of biomedical instrumentation and artificial intelligence. Her interdisciplinary approach allows for innovative problem-solving and has led to significant academic recognition, industry relevance, and translational impact.

Research Skills

Dr. Snekhalatha Umapathy possesses a rich array of research skills that position her as a leader in the field of biomedical engineering. She is highly skilled in advanced signal and image processing techniques, enabling her to extract meaningful data from complex physiological signals and imaging modalities. Her expertise in deep learning, convolutional neural networks (CNNs), and machine learning allows her to develop predictive models for disease diagnosis, particularly in applications such as Alzheimer’s detection and rheumatoid arthritis classification. She is also proficient in working with quantum computing frameworks to apply quantum machine learning techniques, which is a highly specialized and emerging area in medical diagnostics. In the laboratory, she demonstrates strong capabilities in biosensor design, materials characterization, and experimental modeling, especially in breath analysis using graphene-based sensor arrays. Dr. Umapathy’s analytical and programming skills extend to MATLAB, Python, and simulation tools used in biomedical signal modeling. In addition, she is experienced in writing grant proposals, publishing scholarly articles, and securing intellectual property rights through patents. Her collaborative approach and project management skills further enhance her ability to lead multidisciplinary teams and contribute meaningfully to high-impact, solution-oriented research.

Awards and Honors

Dr. Snekhalatha Umapathy has been recognized for her academic and research contributions through several awards and honors, although the specific names of the awards are not listed in the provided details. The granting of five patents and the publication of three more reflects her recognition as an innovator in biomedical technology. Her consistent presence in high-impact journals such as Scientific Reports, Analytical Chemistry, and Biomedical Signal Processing and Control suggests acknowledgment by the global academic community. Additionally, her role as a Ph.D. supervisor and her involvement in international conferences and book publications are indicators of her esteemed position in the academic world. It is highly likely that she has received internal and external recognition from academic institutions, professional societies, and funding agencies for her work. Dr. Umapathy’s interdisciplinary research combining AI, biosensing, and biomedical instrumentation places her at the forefront of emerging health technologies. These honors not only validate her research excellence but also serve as an inspiration for future scholars in the field. Her achievements in innovation, publication, and mentoring further solidify her reputation as a leading academic figure in biomedical engineering.

Conclusion

Dr. Snekhalatha Umapathy exemplifies excellence in biomedical engineering through her innovative research, prolific publication record, and dedication to academic mentorship. Her work spans crucial areas such as biosensor development, AI-driven diagnostics, and quantum machine learning, addressing some of the most pressing healthcare challenges of our time. With a robust portfolio of SCI-indexed publications, multiple patents, and successful Ph.D. supervisions, she embodies the qualities of a high-impact researcher. Her collaborative and interdisciplinary approach ensures her work remains both scientifically rigorous and practically relevant. Dr. Umapathy’s research not only advances academic knowledge but also holds tangible benefits for clinical practice and public health. She has established herself as a thought leader, mentor, and innovator who is shaping the future of biomedical research and education. As the healthcare landscape evolves toward personalized and technology-driven care, her contributions are poised to play an influential role. Her candidacy for any prestigious research award, including the Excellence in Research Award, is not only well justified but highly recommended. Her continued dedication to innovation, education, and societal impact makes her a beacon of research excellence in India and beyond.

Publications Top Notes

  • Title: Artificial intelligence-based automated detection of rheumatoid arthritis

  • Title: Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence
    Journal: Biomedical Physics and Engineering Express
    Year: 2025

  • Title: CNN Transformer for the Automated Detection of Rheumatoid Arthritis in Hand Thermal Images
    Citations: 1

  • Title: Artificial intelligence based real time colorectal cancer screening study: Polyp segmentation and classification using multi-house database
    Journal: Biomedical Signal Processing and Control
    Year: 2025
    Citations: 15

  • Title: Corrigendum: Early detection of Alzheimer’s disease in structural and functional MRI
    Journal: Frontiers in Medicine
    Year: 2024

  • Title: Design and Development of Portable Body Composition Analyzer for Children
    Journal: Diagnostics
    Year: 2024

  • Title: ADVANCING COLORECTAL POLYP DETECTION: AN AUTOMATED SEGMENTATION APPROACH WITH COLRECTSEG-UNET
    Authors: [Not specified]
    Journal: Biomedical Engineering Applications Basis and Communications
    Year: 2024
    Citations: 4

  • Title: Tongue image fusion and analysis of thermal and visible images in diabetes mellitus using machine learning techniques
    Journal: Scientific Reports
    Year: 2024
    Citations: 8

  • Title: Exploring Reduction Techniques for Graphene Oxide: A Comparative Study of Thermal and Chemical Methods
    Journal: Chemistry Select
    Year: 2024
    Citations: 1

  • Title: RA-XTNet: A Novel CNN Model to Predict Rheumatoid Arthritis from Hand Radiographs and Thermal Images: A Comparison with CNN Transformer and Quantum Computing
    Journal: Diagnostics
    Year: 2024
    Citations: 4

Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019

Yuqing Hu | Engineering | Outstanding Contribution Award

Mr. Yuqing Hu | Engineering | Outstanding Contribution Award

Vice President from Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, China

Yuqing Hu is a distinguished professional in the field of geographic information systems and cadastral surveying, currently serving as the Vice Dean at the Chongqing Planning and Natural Resources Survey and Testing Institute. With over three decades of experience in land resource management, Hu has demonstrated exceptional expertise in leading high-impact projects related to land survey, cadastral mapping, and real estate registration. His career has been marked by a continuous trajectory of advancement through various leadership roles across government and technical institutions. Hu has played a pivotal role in the development of several award-winning systems and technologies that have advanced the precision and efficiency of land monitoring and property registration processes in China. His efforts have been formally recognized through numerous national-level awards, including the Science and Technology Progress Award and multiple Excellent Engineering Awards. He is also credited as a key contributor to patented innovations and published research. Through his combined experience in technology, policy, and strategic leadership, Yuqing Hu has significantly contributed to the modernization and digital transformation of natural resource monitoring and land information systems. His achievements position him as a highly suitable candidate for honors recognizing outstanding contributions to applied research and development.

Professional Profile

Education

Yuqing Hu holds a Bachelor’s degree in Engineering, majoring in Cartography, from Wuhan University of Surveying and Mapping, one of China’s foremost institutions in the field of geospatial sciences. He completed his studies from 1988 to 1992, laying a strong academic foundation in geographic information systems, topographic science, and land surveying technologies. During his time at Wuhan University, Hu received training in advanced mapping techniques and cadastral analysis, which would later become central to his professional expertise. The program provided a rigorous blend of theoretical knowledge and practical application, allowing him to develop early proficiency in geospatial data interpretation, field mapping, and land resource planning. His education equipped him with a solid understanding of both the technical and regulatory frameworks underpinning land survey and natural resource governance in China. This academic background continues to underpin his contributions to cadastral reform, land registration system design, and geospatial data-driven policy implementation. Hu’s academic credentials, combined with his professional trajectory, reflect a rare synergy of educational excellence and applied technological leadership, making him an authority in the domains of cartography, property data modeling, and land information systems.

Professional Experience

Yuqing Hu has built an extensive professional career spanning over 30 years, largely centered around land surveying, cadastral registration, and geographic information system (GIS) development. Beginning in 2013, he served as Vice President and Party Committee Member of the Chongqing Land Resources and Housing Survey and Planning Institute. He then held several key leadership roles, including Deputy Director of the Chongqing Land and Housing Ownership Registration Center and Deputy Director of the Chongqing Real Estate Registration Center. Between 2019 and 2022, he led the Nan’an Real Estate Registration Center as Secretary and Director of the Party Branch, during which he was appointed as a third-level professional technician. Since December 2022, Hu has served as Vice President of the Chongqing Planning and Natural Resources Survey and Testing Institute, where he continues to guide major initiatives related to urban and rural land administration, cadastral data integration, and natural resource monitoring. He is recognized for his technical expertise at the Level 3 level and recently qualified as a registered surveyor. His professional journey reflects a rare combination of strategic leadership and deep technical capability, making him an influential figure in public land management and spatial information infrastructure in China.

Research Interests

Yuqing Hu’s research interests are centered on cadastral surveying, property rights registration systems, land resource planning, and the integration of geospatial technologies into real-world governance frameworks. His focus includes the development and application of automated 3D modeling systems, intelligent land monitoring technologies, and the design of digital platforms for real estate data management. Hu is particularly interested in how visual programming languages and intelligent data processing can enhance the precision and efficiency of property rights modeling. He is also engaged in rural land reform projects, focusing on integrated systems for real estate registration and cadastre database construction. As land reform and digital governance remain critical to sustainable development, Hu’s research extends to the intersection of technology, urban planning, and policy implementation. His work contributes to improving the accuracy, interoperability, and efficiency of cadastral systems across diverse and complex terrain. Furthermore, he is involved in research that addresses the digital transformation of traditional surveying methods, helping to develop scalable and cost-effective solutions for local and national governments. Hu’s interests support the advancement of a modernized, transparent, and intelligent land governance infrastructure in China.

Research Skills

Yuqing Hu possesses a comprehensive skill set that combines technical, managerial, and analytical proficiencies in the field of land and resource surveying. His core skills include high-precision cadastral surveying, GIS-based spatial data analysis, automated 3D modeling of property rights, and system integration for land registration platforms. He is highly skilled in designing and implementing intelligent investigation and monitoring systems for natural resources in both urban and rural settings. His expertise extends to the use of visual programming languages to automate property data modeling and stratification. Hu has a strong command over database management systems related to land and housing records and is proficient in integrating these systems with real-time monitoring technologies. As a qualified registered surveyor, he brings practical experience to legal and regulatory aspects of land ownership documentation. In addition to technical competencies, he has demonstrated project management skills through his leadership of large-scale government projects, often involving interdisciplinary collaboration. His ability to bridge the gap between technical development and policy application allows him to deliver solutions that are not only technologically advanced but also compliant with legal and administrative frameworks.

Awards and Honors

Yuqing Hu has been the recipient of multiple prestigious awards that recognize his outstanding contributions to geographic information science and cadastral engineering. He ranked second in the Science and Technology Progress Award issued by the China Geographic Information Industry Association for his work on high-precision intelligent monitoring systems. He also earned the Excellent Engineering Gold Award for his role in developing the application system for the Chongqing branch of the National Land Survey Cloud. Additionally, Hu led the “Chongqing Natural Resources Cadastre Survey and Database Construction” project, which won the Silver Award from the Chinese Society of Surveying and Mapping, where he was ranked first. His project on rural real estate registration earned the National Excellent Surveying and Mapping Engineering Award. Moreover, he co-authored a patented invention related to automatic modeling based on property stratification and mapping, solidifying his role as an innovator in land information systems. He has also contributed to internationally indexed research with publications such as one in Advances in Civil Engineering. These honors reflect his sustained impact, leadership, and commitment to technological innovation in land governance and resource monitoring.

Conclusion

In conclusion, Yuqing Hu exemplifies the qualities of an outstanding researcher and innovator in the domains of land surveying, cadastral information systems, and digital governance of natural resources. His rich combination of leadership experience, technical skill, and recognized contributions positions him as a significant figure in the transformation of China’s land and property registration infrastructure. The national-level awards he has received demonstrate his capacity to deliver practical, high-impact solutions with both scientific and societal value. While his international academic visibility could be further expanded, his influence in applied research and engineering is already well-established. Hu’s involvement in strategic projects that digitize and modernize traditional land management practices signifies a long-term commitment to national development priorities and sustainable land use planning. His ability to translate complex technical ideas into scalable, policy-aligned solutions makes him highly suitable for recognition under the Research for Outstanding Contribution Award. His work not only addresses immediate governmental and public sector needs but also sets a benchmark for innovation in spatial information systems and cadastral technology development.

Publications Top Notes

  • Title: Automatic Construction of 3D Building Property Rights Model Based on Visual Programming Language in China

  • Authors: Qin, Guocheng; Hu, Yuqing; Wang, Ling; Liu, Ke; Hou, Yimei

  • Journal: Advances in Civil Engineering

  • Year: 2024

Guocheng Qin | Engineering | Best Researcher Award

Mr. Guocheng Qin | Engineering | Best Researcher Award

Researcher from Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, China

Qin Cheng is a dedicated and innovative civil engineering researcher with a strong focus on integrating advanced digital technologies such as Building Information Modeling (BIM), 3D laser scanning, and Unmanned Aerial Vehicle (UAV) systems into modern construction and infrastructure projects. Born in March 1994, he has consistently demonstrated academic excellence, practical engineering insight, and a deep interest in smart city development and sustainable infrastructure. His work spans across both academic and applied settings, with a particular emphasis on intelligent monitoring systems, reverse modeling, and digital design optimization. He has contributed to various high-profile research initiatives and collaborative international projects, particularly during his tenure as a visiting scholar at the University of Louvain. Qin Cheng has also been actively involved in training graduate students, guiding technical design, and promoting intelligent construction practices. His experience working with institutions such as the Chongqing Leuven Institute of Smart City and Sustainable Development and contributions to international exhibitions like the China Intelligent Industry Expo reflect his ability to bridge academic research with real-world applications. With a clear commitment to advancing civil engineering practices through technology and innovation, Qin Cheng continues to emerge as a promising voice in the field of smart construction and structural engineering.

Professional Profile

Education

Qin Cheng’s academic journey in civil engineering began with a Bachelor of Engineering from Zhengzhou Institute of Technology and Business, where he studied from September 2013 to July 2017. Building on a solid undergraduate foundation, he pursued a Master of Engineering in Civil Engineering with a structural specialization at Chongqing Jiaotong University from September 2017 to July 2020. During his master’s studies, Qin demonstrated exceptional academic and research abilities, further enriching his education through international exposure. Between October 2018 and January 2019, he served as a visiting scholar at the University of Louvain in Belgium, engaging in scholarly exchanges focused on construction waste regeneration and sustainable urban development. This international experience broadened his perspective on global engineering practices and enhanced his research on smart city applications. His academic background is marked by strong technical competence in structural systems, intelligent monitoring, and construction digitization. Through both domestic and international institutions, Qin Cheng has built a strong academic profile grounded in research excellence, multidisciplinary learning, and hands-on application of modern civil engineering technologies.

Professional Experience

Qin Cheng has built a diverse portfolio of professional experience that merges academic research, international collaboration, and field application. One of his notable professional engagements was his time as a visiting scholar at the University of Louvain (October 2018 to January 2019), where he contributed to academic exchanges on sustainable urban development and construction waste regeneration. He also engaged with world-renowned engineering firms such as Jan de Nul Group to explore cutting-edge civil engineering practices. Qin served as a researcher at the Chongqing Leuven Institute of Smart City and Sustainable Development, where he played a key role in conducting technical breakthroughs in forward design, reverse modeling, and intelligent monitoring systems. His responsibilities included training graduate students in architectural information technology, guiding bridge reverse modeling projects in Norway, and participating in major events such as the China International Intelligent Industry Expo. His professional activities emphasize the integration of BIM and 3D technologies into infrastructure development. Through his involvement in large-scale projects such as the Taihong Yangtze River Bridge and the FAW-Volkswagen Digital Factory, Qin has effectively applied his academic expertise to real-world engineering challenges. His career path reflects a commitment to technological innovation, cross-border collaboration, and the advancement of intelligent infrastructure systems.

Research Interests

Qin Cheng’s research interests center on the integration of advanced digital technologies in civil engineering, with a particular focus on intelligent construction and infrastructure management. He is deeply engaged in developing and applying Building Information Modeling (BIM), 3D laser scanning, and UAV technologies to improve the design, monitoring, and maintenance of civil structures. His work explores how digital tools can optimize construction processes, enhance precision in modeling, and support virtual simulations for pre-assembly. Qin is also interested in reverse modeling techniques for complex structures, smart monitoring of bridges and buildings, and the use of point cloud data in structural analysis. His international collaborations have further shaped his interest in sustainable urban development, where he examines how smart technologies can be leveraged to build resilient, efficient cities. Through projects focused on highway management systems, digital curtain wall design, and large-scale bridge construction, he aims to create innovative solutions that address contemporary challenges in civil engineering. Qin’s research embodies a forward-thinking approach that blends theoretical modeling with practical application, striving to make infrastructure safer, more efficient, and more intelligent through continuous technological advancement.

Research Skills

Qin Cheng possesses a robust set of research skills that enable him to address complex challenges in civil and structural engineering through technological innovation. His core competencies include advanced proficiency in Building Information Modeling (BIM) and 3D laser scanning, which he has used extensively for deformation monitoring, digital pre-assembly, and reverse modeling of both buildings and bridges. He is skilled in UAV route planning and tilt photography for site inspections and large-scale mapping, showcasing his adaptability in remote sensing applications. His hands-on experience with point cloud data processing enables him to conduct accurate structural analysis and digital model construction. Qin is also proficient in integrating BIM with IoT systems for smart bridge management, combining sensor data with digital modeling for real-time infrastructure monitoring. In academic and collaborative environments, he has guided graduate students in technical training and project design, demonstrating strong mentorship capabilities. He is comfortable working across international platforms and has presented his work at major conferences. Qin’s methodological rigor, combined with his technical agility, allows him to innovate across design, monitoring, and operational aspects of civil engineering projects. His ability to apply research techniques to practical scenarios is a key strength in his professional and academic career.

Awards and Honors

Throughout his academic and early research career, Qin Cheng has received several prestigious awards and honors that reflect his dedication, excellence, and potential in the field of civil engineering. During his undergraduate studies, he was consistently recognized with merit-based scholarships, including the National Encouragement Scholarship and first-class and second-class academic scholarships. His excellence continued into his postgraduate years at Chongqing Jiaotong University, where he was awarded the Beijing CCCC Road Tong Million Scholarship and the first-class postgraduate scholarship. In 2020, he won the second prize in the “My College Life” competition and the third prize in the “Transportation BIM Engineering Innovation Award” from the China Highway Society. These accolades highlight both his academic achievements and his contributions to engineering innovation. His participation in various international academic events and his role in large-scale national infrastructure projects further affirm his growing reputation in the field. The consistent recognition of his work through these awards underscores his capability to combine theoretical knowledge with practical engineering excellence. These honors are a testament to his talent, perseverance, and impact in advancing intelligent construction technologies and modern infrastructure development.

Conclusion

In conclusion, Qin Cheng emerges as a highly motivated and capable young researcher with a strong foundation in civil engineering and a clear commitment to technological innovation in infrastructure development. His integration of BIM, 3D laser scanning, and UAV systems into design and monitoring processes showcases his forward-thinking approach and alignment with the needs of smart and sustainable urban construction. With a solid academic background, international experience, and a growing body of research publications, he brings both technical expertise and practical insight to the field. Although he currently holds a master’s degree, his trajectory suggests significant potential for further academic advancement and research leadership. He has demonstrated the ability to bridge academic research with real-world engineering applications, making valuable contributions to both scholarly and professional communities. While increasing publication in top-tier journals and engaging in patent development could further enhance his profile, Qin Cheng has already laid a strong foundation for a successful research career. He is a suitable and deserving candidate for recognition in early-stage researcher or emerging researcher award categories and has the capacity to evolve into a leading expert in smart construction and digital civil engineering in the years ahead.

Publications Top Notes

  1. Title: Automatic Construction of 3D Building Property Rights Model Based on Visual Programming Language in China
    Authors: Qin, Guocheng; Hu, Yuqing; Wang, Ling; Liu, Ke; Hou, Yimei
    Journal: Advances in Civil Engineering
    Year: 2024

Leila Omidi | Engineering | Best Researcher Award

Dr. Leila Omidi | Engineering | Best Researcher Award

Assistant Professor from Tehran University of Medical Sciences, Iran

Leila Omidi is an accomplished academic and researcher specializing in Occupational Health and Safety Engineering. She currently serves as an Assistant Professor in the Department of Occupational Health Engineering at Tehran University of Medical Sciences. With a focus on process safety, risk analysis, resilience engineering, and human factors affecting safety, Omidi has significantly contributed to research in high-risk industries, particularly in fire safety systems, human error management, and safety performance metrics. Her work addresses both theoretical and practical aspects of safety engineering, offering solutions to enhance safety standards in industries such as oil refining and healthcare. She has authored multiple research papers, secured numerous research grants, and held various academic leadership roles. Omidi’s expertise and influence in her field extend through her editorial work with several prominent safety journals, showcasing her leadership in advancing research and knowledge in her discipline.

Professional Profile

Education

Leila Omidi earned her Ph.D. in Occupational Health and Safety Engineering from Tehran University of Medical Sciences, where her research focused on process safety and resilience engineering. She completed her MSc in Occupational Health and Safety Engineering at Shahid Beheshti University of Medical Sciences. Throughout her academic journey, Omidi has honed her expertise in risk analysis, safety culture, and human reliability. Her educational background forms a solid foundation for her ongoing research and academic contributions. Omidi’s doctoral and master’s thesis work provided innovative insights into optimizing safety systems in high-risk sectors, further enhancing her credentials as a leading scholar in her field.

Professional Experience

Leila Omidi has gained extensive professional experience through both academic and industry roles. She is currently an Assistant Professor at Tehran University of Medical Sciences, where she teaches graduate-level courses in Crisis and Emergency Management, Accident Analysis, Fire Risk Assessment, and Occupational Health. In addition to her academic roles, Omidi has served as a Health Expert at the Iran Ministry of Health and as a Safety Advisor at various industrial companies, including Mizan Binazir Industrial Company and Gam Metal Casting Company. Her experience in industry and academia has allowed her to bridge the gap between research and real-world application, making her research highly relevant and impactful for safety engineering practices.

Research Interests

Leila Omidi’s research interests are centered on process safety, risk analysis, safety culture, and human factors in high-risk industries. She is particularly interested in resilience engineering and safety performance indicators, with a focus on improving safety outcomes through leading and lagging metrics. Omidi’s work also explores human reliability analysis (HRA) and safety performance in industrial settings, as well as human error management. Her research contributes to both theoretical understanding and practical applications, addressing challenges such as fire risk assessment, safety climate factors, and risk-based resilience in industries like oil refining and healthcare. Through her studies, Omidi aims to enhance safety systems and reduce accidents, ultimately improving worker health and safety.

Research Skills

Leila Omidi possesses advanced research skills in risk analysis, resilience engineering, and human reliability analysis. Her expertise includes using simulation-based methods to assess and optimize safety systems, as demonstrated by her work on the risk-based resilience of fire extinguishing systems in the oil refining industry. Omidi is skilled in applying a range of quantitative and qualitative research methods to evaluate safety performance and risk factors. Her proficiency in process safety performance indicators, safety culture assessments, and fire risk analysis showcases her diverse research capabilities. Furthermore, her involvement in human error identification and system safety analysis highlights her ability to address complex challenges in industrial safety.

Awards and Honors

Leila Omidi has received numerous awards and honors for her academic and research achievements. She has been awarded several research grants, including funding for her Ph.D. thesis on risk-based resilience in the fire extinguishing system of the oil refining industry. Additionally, she has received multiple MSc thesis grants for her work on reliability-centered maintenance strategies and human error analysis. Omidi’s accomplishments also include being named a top student in her department at Shahid Beheshti University and recognition as a member of Iran’s National Elites Foundation. Her contributions to safety engineering and occupational health have earned her various distinctions, cementing her reputation as a leading scholar in her field.

Conclusion

Leila Omidi is a highly accomplished researcher and academic in the field of Occupational Health and Safety Engineering. With a strong educational foundation and extensive professional experience, she has contributed significantly to the advancement of process safety, risk analysis, and human reliability. Omidi’s research has practical implications for improving safety systems in industries such as oil refining and healthcare, and her teaching has shaped the next generation of safety engineers. Her numerous research grants and awards, combined with her leadership in academic publishing and her editorial work, demonstrate her impact on the field. While her international collaborations and interdisciplinary research could be expanded, Omidi’s work continues to have a significant influence on improving safety and resilience in high-risk industries.

Publications Top Notes

  1. Title: Resilience assessment in process industries: A review of literature

    • Authors: Ghaljahi Maryam, Omidi Leila, Karimi Ali

    • Year: 2025

  2. Title: Safety leadership and safety citizenship behavior: the mediating roles of safety knowledge, safety motivation, and psychological contract of safety

    • Authors: Omidi Leila, Karimi Hossein, Pilbeam Colin J., Mousavi Saeid, Moradi Gholamreza R.

    • Year: 2025

    • Citations: 3

  3. Title: Evaluation of Domino Effects and Vulnerability Analysis of Oil Product Storage Tanks Using Graph Theory and Bayesian Networks in a Process Industry

    • Authors: Ghaljahi Maryam, Omidi Leila, Karimi Ali

    • Year: 2024

    • Citations: 1

Baoqiang Du | Engineering | Best Researcher Award

Prof. Baoqiang Du | Engineering | Best Researcher Award

Director from Hunan Normal University, China

Dr. Du Baoqiang is a highly respected academician and researcher specializing in information and communication engineering, satellite navigation, and high-precision measurement technologies. Born in November 1973, he currently serves as a second-level professor and doctoral supervisor at Hunan Normal University. His educational background includes studies at the PLA Information Engineering University, Zhengzhou University, and Xidian University, followed by postdoctoral research in related fields. As a “Furong Scholar” specially appointed professor, he has demonstrated leadership in various major educational and research programs. Dr. Du is known for his pioneering contributions to Beidou satellite signal processing, where he introduced new theories and technical innovations that have had significant industrial and academic impact. His research work has led to the development of instruments reaching international advanced standards, particularly enhancing satellite positioning precision from the centimeter to the millimeter level. In addition to publishing over a hundred academic papers and holding numerous patents, he has actively contributed to national-level projects, academic evaluations, and technical developments. His outstanding achievements and leadership make him a leading figure in his field and a strong candidate for top-tier research awards.

Professional Profile

Education

Dr. Du Baoqiang’s academic journey reflects a solid and progressive formation in engineering and technology. He pursued his undergraduate and graduate studies successively at the PLA Information Engineering University, Zhengzhou University, and Xidian University. Throughout these institutions, he specialized in areas deeply connected to communication engineering, information processing, and computer science. Following the completion of his Doctor of Engineering degree, Dr. Du engaged in postdoctoral research in Information and Communication Engineering and Computer Science and Technology. His academic development not only provided him with a robust technical foundation but also exposed him to interdisciplinary research fields, crucial for his later innovations in satellite navigation and signal processing. The combination of military-grade information systems education and civilian academic excellence equipped him with unique insights that have greatly benefited his professional career. His education path shows a consistent focus on high-tech fields, indicating early strategic planning and dedication to advancing in cutting-edge technological domains. These experiences laid the groundwork for his contributions to the Beidou navigation system and high-precision positioning technologies.

Professional Experience

Dr. Du Baoqiang’s professional career is marked by substantial academic leadership and technological innovation. As a second-level professor at Hunan Normal University, he supervises doctoral candidates and leads multiple strategic programs. He serves as the head of the Department of Communication Engineering and directs several critical programs, including the provincial first-class major in Communication Engineering and the master’s degree programs in Electronic Science and Technology. He is also the director of significant research facilities, such as the Hunan Province Beidou High-Performance Cooperative Positioning Engineering Technology Research Center and the Key Laboratory of Beidou Intelligent Navigation Information Processing. Beyond his academic roles, Dr. Du actively contributes to industry and policy development as the vice president of the Hunan Satellite Application Association and an expert advisor for the China Beidou Tianheng Think Tank. His service as a reviewer for the National Natural Science Foundation of China and national undergraduate and doctoral evaluations underlines his status as a trusted figure in academic quality assurance. Throughout his career, he has successfully led numerous national and provincial research projects, making significant strides in both theoretical research and practical technological applications.

Research Interest

Dr. Du Baoqiang’s primary research interests center around satellite navigation signal processing, high-precision time-frequency information measurement, and cooperative positioning system development. His work particularly focuses on advancing the Beidou navigation system, one of China’s major satellite positioning initiatives. He has delved into the theory and practical applications of ultra-high-resolution heterogeneous frequency group quantization phase processing and adaptive frequency tracking technologies. Additionally, Dr. Du is keenly interested in solving complex challenges in weak signal detection, phase synchronization, and error elimination in circuit systems. His research addresses both theoretical advancements and industrial applications, aiming to bridge the gap between scientific research and technological commercialization. He strives to enhance the precision and reliability of satellite-based positioning services, pushing capabilities from the centimeter level to the millimeter level. Furthermore, his contributions support the national strategic goals in satellite navigation and communication engineering, solidifying China’s competitiveness in this critical high-tech domain. Dr. Du’s research philosophy integrates scientific discovery, engineering innovation, and application-driven development, ensuring that his work remains relevant to academic progress and national technological needs.

Research Skills

Dr. Du Baoqiang demonstrates an exceptional range of research skills, blending theoretical analysis with practical system development. His expertise covers advanced signal processing algorithms, high-precision time-frequency measurement systems, and the technological integration necessary for industrial-scale applications. He has a deep understanding of Beidou satellite systems and has innovated unique methods like ultra-high-resolution group quantization and adaptive differential phase synchronization. His skills include the design and development of high-precision instruments, project leadership in large-scale scientific and technological endeavors, and academic writing, with a record of over 100 peer-reviewed publications. As a project manager, he exhibits strategic planning abilities, team leadership, and cross-disciplinary collaboration. Dr. Du also possesses strong skills in patent development, having successfully registered 28 invention patents. Moreover, his capabilities as a scientific reviewer and advisor for national foundations and educational ministries demonstrate his critical evaluation and research assessment skills. These diverse abilities enable him to contribute comprehensively to his field, from pioneering theoretical insights to delivering real-world technological breakthroughs.

Awards and Honors

Throughout his career, Dr. Du Baoqiang has earned numerous awards and honors that reflect his contributions to science, education, and technology. He holds the prestigious title of “Furong Scholar,” a designation for distinguished professors in Hunan Province. He has been recognized as an outstanding party affairs worker by the Comprehensive Committee of Social Organizations of Hunan Province, illustrating his leadership not only in academics but also in organizational development. His technological achievements have been validated through eight provincial-level scientific and technological appraisals, all reaching the international advanced level. Under his leadership, instruments like the DF427 high-precision Doppler frequency shift measuring system have achieved world-leading performance. Dr. Du has also been appointed as an expert with the China Beidou Tianheng Think Tank and serves as a reviewer for critical national funding programs, confirming his high standing in China’s scientific community. His prolific output of high-impact publications and patents further cements his reputation as an innovator and thought leader in communication engineering and satellite navigation technologies.

Conclusion

Dr. Du Baoqiang represents a model of excellence in engineering research and academic leadership. His combination of deep theoretical knowledge, innovative technical development, and influential leadership roles positions him as a top figure in the fields of satellite navigation and high-precision measurement technologies. His scientific contributions have practical significance, enhancing China’s technological capabilities and supporting national strategic interests in the Beidou navigation system. While his national recognition is substantial, further expanding his international collaborations would elevate his influence to a truly global scale. Nevertheless, the depth, breadth, and impact of Dr. Du’s work make him exceptionally deserving of prestigious honors such as the Best Researcher Award. His career is a testament to sustained dedication, scientific creativity, and the practical application of advanced research to solve critical technological challenges.

Publication Top Notes

  1. Title: High-Stability Adaptive Frequency Comparison Method Based on Fuzzy Area Characteristics

    • Authors: Du Baoqiang, Yang Zerui, Su Yangfan

    • Year: 2025

  2. Title: High-Accuracy Frequency Standard Comparison Technology Combining Adaptive Frequency and Lissajous Figure

    • Authors: Du Baoqiang, Su Yangfan, Yang Zerui

    • Year: 2025

  3. Title: High-Accuracy Phase Frequency Detection Technology Based on BDS Time and Frequency Signals

    • Authors: Du Baoqiang, Tan Lanqin

    • Year: 2024

  4. Title: A High-Precision Frequency Measurement Method Combining π-Type Delay Chain and Different Frequency Phase Coincidence Detection

    • Authors: Du Baoqiang, Li Wenming

    • Year: 2024

    • Citations: 2

 

Jingxia Wang | Engineering | Best Researcher Award

Ms. Jingxia Wang | Engineering | Best Researcher Award

Doctor from University of Shanghai for Science and Technology, China

Jingxia Wang is a promising young researcher and lecturer in the School of Mechanical Engineering at the University of Shanghai for Science and Technology. Her academic journey and research achievements reflect a strong commitment to advancing the field of electrical and electromechanical systems. With a specialized focus on the electromagnetic-thermal coupling and iron loss analysis in electric machines, she has contributed significantly to the theoretical and applied aspects of energy conversion technologies. Her research addresses key challenges in improving the performance and efficiency of permanent magnet and induction motors under inverter supply, aligning with the growing demands for high-performance electric drives. She has published several high-quality articles in top-tier journals such as IEEE Transactions on Industrial Electronics and IEEE Transactions on Energy Conversion, establishing her as a rising expert in her field. In addition to scholarly publications, she has also contributed to patented innovations in the domain of loss calculation and electromagnetic simulation. Her active participation in national research funding programs and leadership roles in funded projects underscore her academic capabilities. Jingxia Wang continues to grow as an independent researcher with a clear vision and technical depth, making her a strong candidate for prestigious academic recognition, including the Best Researcher Award.

Professional Profile

Education

Jingxia Wang has built her academic foundation through a robust and consistent educational trajectory in the field of electrical engineering. She completed her undergraduate studies at Northeast Electric Power University from September 2011 to July 2015, where she obtained a Bachelor’s degree in Electrical Engineering and Automation. Her early training laid the groundwork for deeper technical exploration and problem-solving in electric machine systems. Driven by academic passion and curiosity, she pursued doctoral studies at Southeast University—one of China’s top institutions—in the field of Electrical Engineering from September 2015 to March 2022. During her Ph.D., she specialized in iron loss modeling, magnetic field modulation, and electromagnetic-thermal coupling in motor systems, which later became core aspects of her research focus. Her doctoral work contributed to high-impact publications and several patents, indicating both theoretical innovation and practical relevance. While she has not undertaken a postdoctoral fellowship, the depth and breadth of her Ph.D. training have equipped her with the technical acumen necessary for independent research and academic leadership. Her educational background reflects strong theoretical grounding and hands-on experience with complex computational models and machine dynamics, positioning her well within the academic and industrial research community.

Professional Experience

Jingxia Wang has been serving as a Lecturer at the School of Mechanical Engineering, University of Shanghai for Science and Technology since June 2022. In this capacity, she has been actively engaged in both teaching and research activities related to electric machinery and computational modeling. Her professional role involves mentoring students, contributing to curriculum development, and leading research projects funded by national and municipal agencies. Although she does not have postdoctoral experience, her transition from Ph.D. to faculty position demonstrates her capability to operate as an independent researcher. As a principal investigator, she has led and managed a National Natural Science Foundation Youth Fund project focused on inverter-fed induction motors and magnetic loss analysis, reflecting her technical leadership and project management skills. Additionally, she has participated in and contributed to major collaborative research projects funded by NSFC and the Shanghai Science and Technology Commission. Her involvement in interdisciplinary work, such as multi-physics coupling analysis, further expands the relevance of her professional profile across mechanical and electrical domains. Jingxia’s teaching experience and project responsibilities showcase a balanced academic career that combines foundational research, practical application, and knowledge dissemination, strengthening her suitability for academic recognition and further career advancement.

Research Interests

Jingxia Wang’s research interests lie at the intersection of electrical machine design, electromagnetic modeling, and multiphysics simulation. Her work primarily focuses on accurate calculation and analysis of iron loss in permanent magnet and induction motors, especially under pulse-width modulation (PWM) inverter supply. One of her core contributions has been the application of general airgap magnetic field modulation theory to quantify iron loss and stray load loss more effectively. Additionally, she has expanded her research into bidirectional coupling between electromagnetic and thermal fields, a critical area for enhancing the design accuracy and reliability of electric machines in dynamic environments. Her interests also include finite element analysis (FEA), fast calculation algorithms, and field-oriented control techniques for electric drives. Through her ongoing research, she addresses challenges in improving energy efficiency, thermal stability, and operational reliability in motor systems used in transportation, robotics, and industrial automation. Her work bridges theoretical electromagnetics with real-world implementation, making her contributions both academically valuable and industrially applicable. As sustainability and electrification become global priorities, her research remains timely and impactful, paving the way for smarter, more efficient electromechanical devices and systems.

Research Skills

Jingxia Wang possesses a comprehensive set of research skills that support her specialization in electric machine systems and computational modeling. She is highly proficient in electromagnetic field theory and loss analysis techniques, particularly in inverter-fed motors. Her expertise includes the application of general airgap field modulation theory, finite element analysis (FEA), and the development of fast calculation methods for complex electromechanical systems. She is also skilled in thermal simulation and electromagnetic-thermal bidirectional coupling analysis, which are crucial for evaluating machine performance under varying operational conditions. Her programming capabilities and simulation experience with industry-standard tools enable her to handle multi-domain simulations efficiently. Furthermore, she has experience with research project design, proposal writing, data interpretation, and results dissemination through high-impact publications. Her skill set extends to intellectual property development, as evidenced by her co-invention of several patents. Jingxia is adept at translating theoretical models into practical applications, making her a valuable collaborator in both academic and industrial research environments. Her methodological rigor, combined with strong analytical and communication skills, enhances her ability to lead independent research and mentor students in advanced engineering topics.

Awards and Honors

Although specific awards are not listed beyond patents and project funding, Jingxia Wang’s academic track record includes several forms of recognition that demonstrate her research excellence and innovative capabilities. She has received competitive research funding from the National Natural Science Foundation of China, including a Youth Fund project, which is highly regarded for supporting emerging researchers with outstanding potential. Her leadership in this and other municipal projects such as the Shanghai “Science and Technology Innovation Action Plan” reflects recognition by key funding bodies and the research community. Her scholarly work has appeared in prestigious journals such as IEEE Transactions on Industrial Electronics and IEEE Transactions on Energy Conversion, often as the sole first author—a significant academic distinction. She has also co-invented multiple patents related to magnetic field modulation, iron loss calculation, and electromagnetic-thermal modeling, highlighting her contribution to applied research and technology transfer. These honors, combined with her early career achievements, serve as strong indicators of her research strength, impact, and upward trajectory. As her academic career progresses, she is well-positioned to attain further distinctions at both national and international levels.

Conclusion

Jingxia Wang emerges as a highly capable and driven early-career academic with a solid foundation in electrical engineering and a sharp focus on energy-efficient electromechanical systems. Her contributions span theoretical innovation, computational modeling, and practical engineering solutions—making her research both relevant and forward-looking. Through high-impact publications, funded projects, and patented technologies, she has already made a significant mark in the field of electric machine analysis. Her ability to integrate electromagnetic theory with thermal dynamics in machine modeling reflects a rare depth of technical insight and interdisciplinary thinking. While she could further benefit from postdoctoral experience or international research exposure, her current achievements speak to her strong potential for future academic and industrial leadership. As a researcher who demonstrates clarity in focus, rigor in methodology, and creativity in solving complex engineering problems, Jingxia Wang is a compelling nominee for the Best Researcher Award. Her trajectory suggests sustained contributions to science and engineering, with the capacity to influence not only academic discourse but also real-world applications in energy and automation systems.

Publications Top Notes

  1. Double-virtual-vector-based model predictive torque control for dual three-phase PMSM
    Authors: Qingqing Yuan, Rongyan Xiao, Jingxia Wang, Kun Xia, Wei Yu
    Journal: Electronics (Switzerland)
    Year: 2025

Reza Amjadifard | Engineering | Best Researcher Award

Assist. Prof. Dr. Reza Amjadifard | Engineering | Best Researcher Award

Faculty member at Iranian Space research Center, Iran 

Reza Amjadifard is a seasoned researcher and educator in geotechnical engineering, with a strong emphasis on soil mechanics, foundation design, and sustainable ground improvement techniques. With over a decade of academic and field experience, he has contributed extensively to both the theoretical and applied dimensions of civil engineering. Reza holds a Ph.D. in Geotechnical Engineering and has served in academic and research positions in Iran, Malaysia, and other parts of Southeast Asia. He is known for his work on soil stabilization using recycled and environmentally friendly materials, a topic that reflects his deep commitment to sustainable development. His scholarly work includes numerous peer-reviewed journal articles, conference presentations, and research collaborations that span continents. Reza’s professional journey is marked by a seamless integration of teaching, research, and real-world applications. He is recognized for his ability to lead multidisciplinary teams, mentor graduate students, and secure competitive research funding. In addition to his technical capabilities, Reza possesses strong communication and leadership skills, which have helped him contribute to academic program development and institutional partnerships. Through his career, Reza has consistently demonstrated a forward-thinking approach to geotechnical challenges, making him a valuable contributor to both academia and industry.

Professional Profile

Education

Reza Amjadifard’s educational journey is rooted in a deep curiosity for solving complex engineering problems and a passion for sustainable infrastructure development. He earned his Bachelor of Science in Civil Engineering from Islamic Azad University in Iran, where he laid the foundation for his technical knowledge in structural analysis, hydraulics, and soil mechanics. Driven by a growing interest in geotechnical engineering, he pursued a Master of Science in Geotechnical Engineering, also at Islamic Azad University, where he conducted research on slope stability and earth reinforcement techniques. His master’s thesis explored innovative methods for improving soil strength, igniting his long-term research interests in ground improvement and soil behavior. Reza further advanced his academic career by earning a Ph.D. in Geotechnical Engineering from Universiti Sains Malaysia (USM), one of Southeast Asia’s top research institutions. His doctoral research focused on the use of recycled materials in soil stabilization, combining environmental sustainability with engineering efficiency. Throughout his academic career, Reza consistently achieved high academic distinctions and published numerous papers based on his thesis work. His formal education has been complemented by international workshops, seminars, and certifications that have kept him abreast of emerging technologies and methodologies in civil and geotechnical engineering.

Professional Experience

Reza Amjadifard has cultivated a robust and multidisciplinary professional background in civil engineering, spanning over a decade of academic and practical contributions. He began his academic career as a Lecturer at Islamic Azad University in Iran, where he taught courses in geotechnical engineering, soil mechanics, and foundation design. During this time, he also supervised numerous undergraduate and graduate student projects, fostering a passion for mentorship and academic leadership. His work in the field progressed with collaborative projects involving slope stability, soil improvement, and foundation engineering, allowing him to apply theoretical knowledge to real-world geotechnical challenges. Following his relocation to Malaysia, Reza joined Universiti Sains Malaysia (USM) as a Research Fellow, where he contributed to funded research projects focusing on sustainable ground improvement techniques and innovative uses of recycled materials in geotechnical applications. His international experience expanded further with research engagements in Australia and other parts of Southeast Asia, where he worked alongside diverse teams to address region-specific geotechnical issues such as soft soil stabilization and coastal erosion. Reza’s experience seamlessly integrates teaching, research, and field applications, showcasing his capacity to contribute across academic and industry sectors. His professional journey highlights not only technical expertise but also a strong commitment to advancing sustainable and innovative solutions in geotechnical engineering.

Research Interest

Reza Amjadifard’s research interests lie at the intersection of geotechnical engineering, environmental sustainability, and materials science. A significant portion of his work focuses on ground improvement techniques using environmentally friendly and recycled materials, such as waste tire chips, industrial by-products, and natural fibers. These innovations aim to reduce the environmental footprint of civil engineering practices while improving soil stability and bearing capacity. Reza is particularly interested in the behavior of soft soils under various loading and environmental conditions, including the effects of moisture content, chemical treatment, and dynamic forces. His research also delves into slope stability analysis, foundation performance, and soil-structure interaction, providing practical solutions for infrastructure in challenging geological settings. Reza is keen on integrating experimental and numerical methods in his studies, often employing advanced geotechnical software to simulate soil behavior and validate laboratory findings. Furthermore, he is exploring smart and adaptive geotechnical systems, including sensor-based monitoring techniques for early warning in landslide-prone regions. His interdisciplinary approach connects geotechnical engineering with sustainability, resilience, and emerging technologies, making his research highly relevant in the context of climate change and urban expansion. Reza’s work contributes meaningfully to safer, more durable, and eco-friendly infrastructure development.

Research Skills

Reza Amjadifard possesses a comprehensive set of research skills that span both experimental and analytical domains within geotechnical engineering. His expertise includes advanced laboratory testing of soils, such as direct shear tests, triaxial compression tests, consolidation tests, and permeability analysis. He is skilled in developing and modifying testing procedures to assess the effectiveness of novel soil stabilization materials, especially those derived from waste and recycled sources. In addition to hands-on laboratory capabilities, Reza is proficient in the use of numerical modeling tools such as PLAXIS, GeoStudio, and FLAC, which he applies to simulate soil behavior, foundation systems, and slope stability under varying conditions. He also brings strong statistical analysis skills using software like SPSS and MATLAB, which support data interpretation and model calibration. Reza’s research skill set extends to project planning, grant writing, and research paper publication. He has led and participated in interdisciplinary projects funded by both academic institutions and industry, demonstrating his ability to collaborate effectively. His skills in technical writing and presentation have helped him communicate complex findings to both technical and non-technical audiences. Overall, his diverse research competencies make him an asset to teams focused on sustainable geotechnical innovation and infrastructure resilience.

Awards and Honors

Reza Amjadifard’s dedication to research excellence and academic service has earned him numerous awards and honors throughout his career. During his doctoral studies at Universiti Sains Malaysia, he received the prestigious Graduate Research Assistantship for his groundbreaking work in sustainable soil stabilization, a recognition awarded to top-tier doctoral candidates. His research contributions have been acknowledged through Best Paper Awards at several international geotechnical and civil engineering conferences, highlighting the impact and quality of his scholarly output. Reza has also been honored with research grants from governmental and academic bodies, including funding for interdisciplinary projects that address environmental and infrastructural challenges in developing regions. In addition, he has been invited to serve as a peer reviewer for several high-impact journals in the fields of geotechnical engineering, environmental geotechnology, and construction materials, recognizing his expertise and thought leadership. His excellence in teaching was acknowledged by Islamic Azad University, where he received the “Outstanding Lecturer” award for his engaging and innovative teaching methods. These accolades reflect Reza’s continuous pursuit of academic and research excellence, his commitment to mentorship, and his contributions to the advancement of geotechnical engineering both locally and internationally.

Conclusion

Reza Amjadifard exemplifies the qualities of a dedicated scholar, innovative researcher, and impactful educator in the field of geotechnical engineering. His academic journey and professional experiences across multiple countries reflect a global perspective and a deep commitment to advancing sustainable and practical solutions in civil infrastructure. By integrating cutting-edge research with real-world applications, Reza has addressed critical challenges in soil stabilization, foundation engineering, and environmental geotechnology. His research not only contributes to academic knowledge but also supports industries and communities in developing resilient and sustainable infrastructure. Beyond his technical expertise, Reza is a skilled communicator and collaborator, capable of leading interdisciplinary teams and mentoring emerging scholars. His numerous awards and recognitions are a testament to his influence in both academia and practice. Looking ahead, Reza aims to expand his research collaborations internationally, explore emerging technologies such as smart geotechnical systems, and contribute to educational programs that inspire the next generation of engineers. With his rich background, future-focused vision, and unwavering dedication to excellence, Reza is well-positioned to continue making meaningful contributions to the field of geotechnical engineering and to broader efforts in sustainable development.

Publications Top Notes

1.Proposing an Improved DC LISN for Measuring Conducted EMI Noise

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei
Year: 2021
Citations: 19

2. Suggesting a Non-Unity Turn Ratio Two-Winding Coupled Inductor for Filtering CM EMI Noise in an SRC

Authors: R. Amjadifard, M.T. Bina, H. Khaloozadeh, F. Bagheroskouei, A. Shahirinia
Year: 2023
Citations: 6

3. Design and implementation of the electrical power subsystem for a small satellite

Authors: F. Bagheroskouei, S. Karbasian, M. Baghban, R. Amjadifard
Year: 2017
Citations: 6

4. Improved source-end current Power Quality performance of a BLDC motor drive using a novel DC-DC converter

Authors: A.N. Babadi, A.H. Pour, R. Amjadifard
Year: 2017
Citations: 6

5. A New Index for Reliability Assessment of power semiconductor devices: IGBTs

Authors: A.N. Babadi, M.T. Bina, R. Amjadifard
Year: 2022
Citations: 3

6. System-level Evaluation of the Operation of Different Solar Array Structures for Various CubeSat Configurations

Authors: O. Shekoofa, F. Bagheroskouei, R. Amjadifard
Year: 2022
Citations: 2

7. Simulation of total ionizing dose radiation effect on telecommunication satellite by GEANT4

Authors: S. Zamani Moghaddam, R. Amjadifard, M. Khoshsima
Year: 2016
Citations: 2

8. Topology and configuration selection for DC/DC converters in space electrical power systems based on comparative reliability evaluation

Authors: R. Amjadifard, A. Fasooniehchi, E. Kosari
Year: 2015
Citations: 2

9. Studying the Effects of Multi-Layer Shielding in Reducing Space Radiations Exposure of Human and Electrical Components in Space Missions

Authors: S. Shoorian, S. Feghhi, H. Jafari, R. Amjadifard
Year: 2023
Citations: 1

10. Effect of Total Ionizing Dose Damage on Laser Subsystem of Space LIDAR Payload: System Level Design of Remote Sensing Satellite

Authors: M. Khoshsima, R. Amjadifard, M.S. Zamani, S. Ghazanfarinia
Year: 2018
Citations: 1

11. Model Predictive Control for Reduced Structure Multilevel Converters in Compact Power Conversion Units

Authors: A.H. Pour, A.N. Babadi, R. Amjadifard
Year: 2017
Citations: 1

12. Conducted EMI Noise Modelling for DC–DC Converters Based on the Time‐Domain Measurements

Authors: R. Amjadifard, F. Bagheroskouei, V. Talebzadeh
Year: 2025

13. Analysis of Radiation Damage of a Satellite in GTO Orbit: System Level Design

Authors: R. Amjadifard, M. Khoshsima
Year: 2024

14. Identification and Prioritization of Satellite Electrical Power Subsystem Technologies for National Development Based on Multiple Criteria Decision Making

Authors: R. Amjadifard, E. Mousivand, F. Bagheroskuee, S. Karbasian, E. Kosari
Year: 2024

15. Design, Implementation and Test of a Space Qualified Dosimeter for Total Ionizing Dose Measurement

Authors: R. Amjadifard, F. Bagheroskouei, O. Shekoofa
Year: 2022

16. Discrete-Time Modeling of Dual Active Bridge Converter Benefiting Extended Phase Shift Modulation Based on Generalized Averaged Model

Authors: A.A. Khorhe, M.T. Bina, R. Amjadifard
Year: 2022

17. Modeling and Verification of the State Space Equation for an Isolated Series Resonant Converter

Authors: R. Amjadifard, M. Tavakoli Bina, H. Khaloozadeh, F. Bagheroskouei, …
Year: 2021

18. Estimation of Solar Panels Available Power for a LEO Satellite in Detumbling Mode Based on Monte Carlo Analysis

Authors: R. Amjadifard, F. Bagheroskouei, E. Maani, A. Fasooniehchi
Year: 2019

19. Evaluation of the Effects of Radiation, Irradiance, and Temperature on Solar Cell Electrical Characteristics and Extraction of Maximum Solar Panel Power by MPPT

Authors: M. Taherbaneh, A. Fasooniehchi, Sh. Karbasian, R. Amjadifard
Year: 2008