Fatma Cavus Yonar | Molecular Biology | Best Researcher Award

Assist. Prof. Dr. Fatma Cavus Yonar | Molecular Biology | Best Researcher Award

Assistant Professor PhD from Istanbul University-Cerrahpasa Institute of Forensic Sciences and Legal Medicine Department of Science, Turkey

Dr. Fatma Çavuş Yonar is a distinguished academic and researcher in the field of forensic sciences with a specialization in analytical chemistry, forensic genetics, and toxicology. Currently serving as a Dr. Lecturer at the Istanbul University-Cerrahpaşa Institute of Forensic Sciences, she brings over a decade of experience in forensic research and education. Her scholarly contributions include extensive work on psychoactive substances, forensic genetics, and crime scene investigation methodologies. She is actively involved in scientific publishing, holding editorial board memberships for three international journals. Her work emphasizes interdisciplinary research, integrating nanotechnology, molecular biology, and advanced chromatography techniques. Dr. Yonar has published numerous book chapters and has contributed to foundational forensic science literature. Her dedication to scientific rigor and innovation makes her a strong candidate for the Best Researcher Award. She has played a critical role in training the next generation of forensic scientists while pushing the boundaries of conventional forensic analysis. Her consistent scholarly output and leadership in forensic science education and research are indicative of her significant contributions to the academic and scientific communities.

Professional Profile

Education

Dr. Fatma Çavuş Yonar’s academic journey reflects her deep commitment to forensic sciences and interdisciplinary learning. She began her higher education in the Department of Biology Education at Hacettepe University, graduating in 2009. She then pursued her Master of Science degree in Forensic Sciences at Istanbul University, completing her thesis on the simultaneous determination of fentanyl and norfentanil using LC-MS/MS techniques in 2012. Her doctoral studies were conducted at Istanbul University-Cerrahpaşa Institute of Forensic Sciences, where she obtained her PhD in 2018 with a dissertation investigating molecular transformations in pen inks under various environmental conditions. Dr. Yonar’s academic trajectory showcases a clear progression from foundational science education to highly specialized forensic research. Her educational background has provided her with the necessary skills to address complex analytical problems in forensic science, with a particular emphasis on toxicology, molecular biology, and analytical chemistry. Her interdisciplinary expertise is evident in her research and teaching activities and aligns well with the evolving demands of modern forensic investigation.

Professional Experience

Dr. Fatma Çavuş Yonar has accumulated extensive experience in academia and research through her long-standing affiliation with Istanbul University. Her professional career began in 2011 as a Research Assistant at the Istanbul University Institute of Forensic Sciences. Over the next seven years, she actively contributed to research, publications, and laboratory training for postgraduate students. In 2020, she was appointed as a Dr. Lecturer at Istanbul University-Cerrahpaşa Institute of Forensic Sciences, where she currently teaches and supervises research in the Department of Science. Her responsibilities include curriculum development, guiding thesis projects, and collaborating on interdepartmental research initiatives. Dr. Yonar also serves on editorial boards for multiple forensic science journals, reflecting her standing in the academic community. Her practical experience extends to forensic genetics, toxicology, and the analysis of psychoactive substances. She has co-authored many influential book chapters and has been involved in numerous collaborative research projects. Her dual role as an educator and active researcher makes her a vital asset to the academic and scientific communities.

Research Interests

Dr. Fatma Çavuş Yonar’s research interests span a broad spectrum of forensic science disciplines, particularly forensic toxicology, analytical chemistry, forensic genetics, and crime scene investigation. She is especially focused on the molecular and chemical analysis of psychoactive substances and forensic trace evidence, such as ink and biological material. Her doctoral research explored the stability and transformation of ink molecules under various environmental conditions, demonstrating her interest in both chemical characterization and environmental influences on forensic samples. She is also actively engaged in developing analytical techniques using nanotechnology and molecular diagnostics, with a focus on applications in forensic genetics and toxicology. Another significant area of her research is the analysis of designer drugs and new-generation psychoactive substances using chromatographic techniques. Her interdisciplinary approach allows her to bridge the gap between classical forensic methodologies and modern molecular technologies. Dr. Yonar’s work contributes to improved methodologies for evidence evaluation and supports advancements in forensic identification, substance detection, and expert testimony.

Research Skills

Dr. Fatma Çavuş Yonar possesses a robust set of research skills that are essential for cutting-edge forensic investigations. She is proficient in advanced analytical techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography, and spectroscopic methods. Her expertise extends to molecular biology tools, forensic DNA analysis, and epigenetics. She has practical experience in RNA-based identification and the forensic examination of biological and digital evidence. Her skills are further demonstrated through her contributions to interdisciplinary book chapters and her research on nanoscience applications in forensic genetics. Dr. Yonar is also experienced in handling statistical methods for evaluating forensic genetic data, which enhances the reliability of her research outcomes. She has conducted extensive research on psychoactive substances and their legal implications, combining chemical analysis with forensic context. Her research skills are not only technical but also conceptual, as she effectively integrates science with forensic interpretation, making her research outputs both academically rigorous and practically applicable.

Awards and Honors

While specific awards and honors were not explicitly listed in the profile provided, Dr. Fatma Çavuş Yonar’s professional achievements and responsibilities are indicative of significant peer recognition. Her appointment as an editorial board member for three international journals in 2024 highlights her leadership and expertise in the field. Editorial roles are typically reserved for well-established researchers who have demonstrated consistent contributions and hold influence in their disciplines. In addition, her longstanding academic role at Istanbul University-Cerrahpaşa, along with her published chapters in internationally recognized forensic science books, reflects the high regard in which she is held by her peers. These professional appointments and scholarly contributions collectively suggest a commendable level of recognition and respect in the scientific community, underscoring her qualification for prestigious awards such as the Best Researcher Award.

Conclusion

Dr. Fatma Çavuş Yonar is a highly qualified candidate for the Best Researcher Award, demonstrating a sustained commitment to forensic science through education, research, and academic service. Her work integrates analytical chemistry, molecular biology, and forensic toxicology, enabling her to contribute valuable advancements to both theory and practice. With a strong foundation in research methodology, she has produced high-impact scholarly work, participated in interdisciplinary collaborations, and mentored upcoming forensic scientists. Her editorial responsibilities in international journals and contributions to forensic literature further validate her leadership in the field. While a more detailed list of honors could further strengthen her profile, her current accomplishments already reflect a well-established and impactful career. Dr. Yonar exemplifies the qualities of an innovative and dedicated researcher, and her recognition with this award would acknowledge her significant role in advancing forensic science and promoting academic excellence.

Publications Top Notes

  • Title: The other side of the paper as the evidence: impacts of fingermark development reagents on fingermark development and cocaine amount in cocaine-impregnated paper
    Journal: Forensic Science, Medicine and Pathology
    Date: 2024-10-17
    DOI: 10.1007/s12024-024-00897-2
    Contributors: Yakup Gulekci, Fatma Cavus Yonar, Pınar Efeoglu Ozseker, İsmail Ethem Gören, Nebile Daglioglu

  • Title: Short-cut route validated for monitoring fentanyl and its metabolite in urine using LC–MS/MS, in a wide concentration range
    Journal: Future Journal of Pharmaceutical Sciences
    Date: 2024-07-04
    DOI: 10.1186/s43094-024-00657-7
    Contributors: Fatma Cavus Yonar, Beril Anılanmert, Munevver Acikkol

  • Title: The effect of fingerprint enhancement methods applied on adhesive surfaces on DNA recovery: a preliminary study
    Journal: Journal of Scientific Reports-A
    Date: 2024-03-31
    DOI: 10.59313/jsr-a.1375939
    Contributors: Fatma Cavus Yonar, Yakup Gülekçi

  • Title: False Positives in Luminal Testing
    Journal: Black Sea Journal of Engineering and Science
    Date: 2024-01-15
    DOI: 10.34248/bsengineering.1391613
    Contributors: Yakup GÜLEKÇİ, Fatma CAVUS YONAR

  • Title: Speedy Gonzales analysis method in one drop of beverage, for crimes committed with drugs from three different groups
    Journal: Analytical Sciences
    Date: 2023-06
    DOI: 10.1007/s44211-023-00282-z
    Contributors: Beril Anilanmert, Fatma Cavus Yonar

  • Title: Comparison of methods to develop fingerprints on papers impregnated with AB‐PINACA and AB‐FUBINACA
    Journal: Journal of Forensic Sciences
    Date: 2022-03
    DOI: 10.1111/1556-4029.14926
    Contributors: Yakup Gulekci, Pınar Efeoglu Ozseker, Fatma Cavus Yonar, Nebile Daglioglu

  • Title: DNA profiling for forensic identification in Bulgarian Turks
    Journal: Medicine Science | International Medical Journal
    Date: 2021
    DOI: 10.5455/medscience.2020.12.254
    Contributor: Fatma Cavus Yonar

  • Title: Who touched the document?: A new overall strategy for collection and identification of DNA from the questioned documents as a supportive evidence
    Journal: ELECTROPHORESIS
    Date: 2021-10
    DOI: 10.1002/elps.202100192
    Contributor: Fatma Cavus Yonar

  • Title: Assessment of 13 Single Nucleotide Polymorphisms Loci for Identification in Forensic Sciences for Turkish Population
    Journal: International Journal of Biology and Chemistry
    Date: 2021-06
    DOI: 10.26577/ijbch.2021.v14.i1.05
    Contributor: Fatma Cavus Yonar

  • Title: CONFORMITY ASSESSMENT OF TEMPERATURE MEASURING DEVICES USED IN FORENSIC SCIENCE LABORATORIES UNDER ISO/IEC 17025: 2017
    Journal: International Journal of Advanced Research
    Date: 2021-06-30
    DOI: 10.21474/ijar01/12986
    Contributor: Fatma Cavus Yonar

Rui Wen | Molecular Biology | Best Researcher Award

Assist. Prof. Dr. Rui Wen | Molecular Biology | Best Researcher Award

Assistant Professor Dr at Wenzhou Medical University, China

Rui Wen, an Assistant Professor at Wenzhou Medical University in China, has focused on advancing research in biomaterials, with a special interest in silk proteins for drug delivery systems. Since earning his PhD in Biomaterials from Donghua University in 2020, Rui has quickly established a reputable profile through his publications in high-impact journals and his role in editorial positions. His work encompasses essential biological processes like protein function, alternative splicing, and gene expression, with an emphasis on the use of silk-based materials for medical applications. Rui is actively involved in peer-reviewed publications, authoring eight first-author or corresponding-author articles in prominent journals over the past five years. Additionally, he has contributed to the scientific community by serving as an editorial board member and reviewer for multiple journals, illustrating his influence and expertise in the field of biomaterials.

Professional Profile

Education

Rui Wen completed his PhD in Biomaterials at Donghua University in 2020, where he focused on the biological functions of protein materials, especially silk-based biomaterials for drug delivery. His doctoral research established foundational insights into protein functionality and biomimetic applications, shaping his future focus on protein function and genetic analysis. Throughout his education, Rui developed a sophisticated understanding of biomaterials science, from molecular genetics to applications in medical technology. His PhD laid a robust academic and technical foundation, equipping him with the essential research methodologies and laboratory skills needed to contribute meaningfully to the biomaterials field. The strong academic training he received at Donghua University, combined with hands-on experience in research, has been instrumental in his transition to his current role as an Assistant Professor, where he continues to leverage his expertise in gene expression and protein function.

Professional Experience

Rui Wen’s professional journey as an Assistant Professor at Wenzhou Medical University began shortly after he completed his PhD. In this role, Rui has focused his research on developing silk-based biomaterials for medical applications, such as drug delivery. His work often involves collaborations with other experts in the biomaterials and genetic research fields, emphasizing protein functionality and biomimetic design. Rui’s academic contributions include publishing eight peer-reviewed papers as the first or corresponding author in recognized journals, including Acta Biomaterialia and the International Journal of Biological Macromolecules. These achievements highlight his commitment to advancing scientific knowledge in biomaterials. Additionally, Rui serves on editorial boards for journals like the World Journal of Biological Chemistry, further underscoring his dedication to scientific excellence and community engagement. His involvement in these roles signifies his professional growth and increasing impact within the scientific community.

Research Interests

Rui Wen’s research interests are centered on protein function, gene expression, and biomaterials, particularly focusing on the medical potential of silk-based proteins. He is intrigued by the genetic underpinnings of protein function and the application of alternative splicing in creating materials that mimic biological functions. His work has a dual focus: understanding protein behavior at a genetic level and leveraging this knowledge to develop innovative biomaterials for drug delivery. This focus on silk-based proteins, a biologically compatible and robust material, has led Rui to explore how protein sequences can be harnessed to design highly specialized biomaterials with practical medical applications. Rui’s research aims to integrate genetic insights with material science to produce versatile, biocompatible materials that can advance drug delivery and other medical therapies, contributing to new solutions in biotechnology and healthcare.

Research Skills

Rui Wen possesses extensive research skills in biomaterials science and protein analysis. His expertise includes characterizing protein functionality, analyzing gene sequences, and applying genetic engineering principles to create innovative materials. Rui has a strong background in protein biochemistry and molecular biology, which has enabled him to identify and engineer silk proteins for biomimetic applications. Additionally, he is skilled in alternative splicing and concerted evolution, both of which play a crucial role in his work with gene expression. Rui’s laboratory skills include various analytical techniques, such as protein characterization assays, molecular modeling, and genetic sequencing. His ability to publish consistently in peer-reviewed journals reflects his proficiency in scientific communication and data analysis. Furthermore, his role as a reviewer and editor highlights his critical assessment skills, making him a valuable contributor to the scientific community.

Awards and Honors

Rui Wen’s contributions to biomaterials science have been recognized through multiple awards and honors. He received funding from the China Postdoctoral Science Foundation, a competitive grant that supports emerging researchers in China. This funding enabled him to continue his exploration of silk-based proteins and their applications in drug delivery. His role on the editorial boards of respected journals like the World Journal of Biological Chemistry and Biomedical Engineering Communications is another notable achievement, reflecting the respect he has earned among his peers. In addition, his status as an invited reviewer for journals such as the International Journal of Biological Macromolecules demonstrates his expertise and the high regard of the scientific community. These honors underscore Rui’s dedication to advancing biomaterials science and highlight his influence in the fields of protein function and gene expression.

Conclusion

Rui Wen is a dedicated and promising researcher whose accomplishments in the specialized areas of protein function and biomaterials are commendable for someone early in their career. His expertise, consistent publication record, and increasing engagement with the scientific community through editorial and reviewing activities make him a competitive candidate for the Best Researcher Award. With further developments in his citation impact and expanded international collaborations, Rui Wen’s contributions are likely to gain even greater visibility and influence, establishing him as a key figure in biomaterials research.

Publications Top Notes

  1. Title: Physical Properties of the Second Type of Aciniform Spidroin (AcSp2) from Neoscona theisi Reveal a pH-Dependent Self-Assembly Repetitive Domain
    Authors: Yang, D., Wang, S., Wang, K., Zan, X., Wen, R.
    Journal: ACS Biomaterials Science and Engineering
    Year: 2023
    Volume(Issue): 9(12)
    Pages: 6670–6682
    Citations: 1
  2. Title: Complete Gene Sequence and Mechanical Property of the Fourth Type of Major Ampullate Silk Protein
    Authors: Wen, R., Wang, S., Wang, K., Zan, X., Meng, Q.
    Journal: Acta Biomaterialia
    Year: 2023
    Volume: 155
    Pages: 282–291
    Citations: 4
  3. Title: Characterization of Two Full-Length Tubuliform Silk Gene Sequences from Neoscona theisi Reveals Intragenic Concerted Evolution and Multiple Copies in Genome
    Authors: Wen, R., Wang, K., Zan, X.
    Journal: International Journal of Biological Macromolecules
    Year: 2022
    Volume: 223
    Pages: 1015–1023
    Citations: 3
  4. Title: Characterization of Two Full-Length Araneus ventricosus Major Ampullate Silk Protein Genes
    Authors: Wen, R., Yang, D., Wang, K., Zan, X.
    Journal: International Journal of Biological Macromolecules
    Year: 2022
    Volume: 213
    Pages: 297–304
  5. Title: The Novel Aciniform Silk Protein (AcSp2-v2) Reveals the Unique Repetitive Domain with High Acid and Thermal Stability and Self-Assembly Capability
    Authors: Wen, R., Wang, K., Yang, D., Zan, X., Meng, Q.
    Journal: International Journal of Biological Macromolecules
    Year: 2022
    Volume: 202
    Pages: 91–101
    Citations: 6
  6. Title: Customized Flagelliform Spidroins Form Spider Silk-Like Fibers at pH 8.0 with Outstanding Tensile Strength
    Authors: Li, X., Qi, X., Cai, Y.-M., Meng, Q., Chen, G.
    Journal: ACS Biomaterials Science and Engineering
    Year: 2022
    Volume(Issue): 8(1)
    Pages: 119–127
    Citations: 14
  7. Title: Characterization of the Second Type of Aciniform Spidroin (AcSp2) Provides New Insight into Design for Spidroin-Based Biomaterials
    Authors: Wen, R., Wang, K., Meng, Q.
    Journal: Acta Biomaterialia
    Year: 2020
    Volume: 115
    Pages: 210–219
    Citations: 16
  8. Title: Two Novel Tubuliform Silk Gene Sequences from Araneus ventricosus Provide Evidence for Multiple Loci in Genome
    Authors: Wen, R., Wang, K., Meng, Q.
    Journal: International Journal of Biological Macromolecules
    Year: 2020
    Volume: 160
    Pages: 806–813
    Citations: 10
  9. Title: Wet-Spinning Synthetic Fibers from Aggregate Glue: Aggregate Spidroin 1 (AgSp1)
    Authors: Li, X., Mi, J., Wen, R., Meng, Q., Lin, Y.
    Journal: ACS Applied Bio Materials
    Year: 2020
    Volume(Issue): 3(9)
    Pages: 5957–5965
    Citations: 10
  10. Title: Novel Highly Soluble Chimeric Recombinant Spidroins with High Yield
    Authors: Jia, Q., Wen, R., Meng, Q.
    Journal: International Journal of Molecular Sciences
    Year: 2020
    Volume(Issue): 21(18)
    Pages: 1–13, Article ID: 6905
    Citations: 11