Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4

Xiangyang Zhou | Materials Science | Best Researcher Award

Prof. Dr. Xiangyang Zhou | Materials Science | Best Researcher Award

Professor from University of Miami, United States

Dr. Xiangyang Zhou is a seasoned Professor of Materials Science and Engineering at the University of Miami, with a distinguished academic and research career spanning over three decades. His work is recognized internationally, particularly for his contributions to the development of advanced materials for solid-state energy storage systems. With a research emphasis on supercapacitors, polymer electrolytes, and mediator-enhanced energy storage devices, Dr. Zhou has played a pivotal role in advancing the understanding and application of electrochemical energy conversion technologies. His academic journey began in China and continued in the United Kingdom, culminating in a Ph.D. in Materials Science and Engineering. Over the years, he has published extensively in reputed peer-reviewed journals and collaborated on interdisciplinary projects that blend experimental techniques with computational modeling. Dr. Zhou has held prominent positions in academia and research institutes, contributing not only as a scholar but also as a mentor to emerging scientists. His current work focuses on the development of novel composite materials for high-performance, low-temperature solid-state supercapacitors. Known for his methodical and innovative research approach, Dr. Zhou continues to influence the direction of materials science with his commitment to both fundamental studies and applied research.

Professional Profile

Education

Dr. Xiangyang Zhou has a solid educational foundation in physics and materials science, having completed his academic training across some of the most respected institutions in China and the United Kingdom. He earned his Bachelor of Science in Physics from Wuhan University in Hubei, China in July 1984. This early training laid a strong foundation in the physical sciences, providing a gateway to more specialized research in materials engineering. Following his undergraduate education, Dr. Zhou pursued a Master of Science in Materials Science and Engineering at the Institute of Corrosion and Protection of Metals, part of the Academy of Science in Shenyang, China, completing it in July 1988. His graduate work focused on the corrosion behavior of metals, a critical issue in materials durability. To further his expertise, Dr. Zhou undertook doctoral studies at the University of Newcastle Upon Tyne in the United Kingdom, where he received his Ph.D. in Materials Science and Engineering in April 1996. His doctoral research provided him with in-depth knowledge of material behavior at both the micro and macro scales, preparing him for a successful and impactful research career in advanced materials and energy systems.

Professional Experience

Dr. Zhou has a rich and varied professional background in academic and applied research settings. Since 2005, he has served as a Professor at the University of Miami in Coral Gables, Florida, where he leads research initiatives in materials science and electrochemical energy storage systems. His long-standing tenure at the University of Miami reflects his sustained contributions to education, mentorship, and research excellence. Prior to his current position, he held concurrent roles between 2002 and 2005 as a Senior Scientist at the Applied Research Institute and a Research Scientist at the Applied Research Center at Florida International University. These roles allowed him to engage in application-driven research projects and collaborate with industry and governmental stakeholders. From 1996 to 2002, Dr. Zhou worked as a Research Associate at Pennsylvania State University’s Center of Advanced Materials, where he focused on pioneering materials simulation and experimental validation. His early career included a role as an Assistant Researcher at the Institute of Corrosion and Protection of Metals under the Academy of Science in Shenyang, China. Throughout his career, Dr. Zhou has integrated academic excellence with real-world research experience, positioning him as a leader in the development of innovative materials and energy technologies.

Research Interest

Dr. Xiangyang Zhou’s research interests lie at the intersection of materials science, electrochemistry, and energy storage technologies. He is particularly focused on the design, synthesis, and characterization of polymer-based solid-state electrolytes and mediator-enhanced supercapacitors. His work seeks to address critical challenges in energy storage systems, such as improving ionic conductivity, enhancing energy density, and ensuring operational stability at low temperatures. Dr. Zhou is also interested in the molecular mechanisms of proton transport in water and polymeric systems, and his investigations often bridge theoretical simulation with experimental methods. Over the years, he has developed novel polymer membranes, such as polyvinylidene fluoride/lithium trifluoromethanesulfonate systems, which show significant promise for next-generation energy devices. His research is deeply interdisciplinary, integrating principles from physics, chemistry, and materials engineering. In addition to applied device development, Dr. Zhou explores the fundamental electrochemical and spectroscopic properties of materials, employing in situ characterization methods to monitor changes during operation. This comprehensive approach enables him to tackle real-world challenges in energy conversion and storage, while also contributing to fundamental scientific understanding. His research continues to make meaningful contributions to the fields of nanomaterials, energy systems, and green technology.

Research Skills

Dr. Xiangyang Zhou possesses a wide range of technical and analytical research skills that have supported his extensive contributions to the field of materials science. He is adept at both experimental and computational techniques, including ab initio simulations, atomistic modeling, and X-ray absorption spectroscopy. These tools have enabled him to explore conduction and diffusion processes at the atomic level in various polymer electrolyte systems. Dr. Zhou also demonstrates expertise in electrochemical analysis, such as cyclic voltammetry and electrochemical impedance spectroscopy, which he uses to characterize the performance of solid-state supercapacitors and mediator-assisted devices. In terms of materials synthesis, he has experience with the fabrication of polymer composite membranes and the development of nanoporous electrodes. His skills further extend to in situ spectroscopic techniques that allow for real-time monitoring of material behavior under operating conditions. Dr. Zhou’s ability to integrate these skills within a coherent research framework has led to high-impact studies in reputable journals. His strong command of materials characterization tools and simulation software places him at the forefront of materials innovation, particularly in the rapidly evolving domain of energy storage technologies.

Awards and Honors

While the specific awards and honors received by Dr. Zhou are not listed in the biographical sketch provided, his long-standing professorship at the University of Miami and his extensive publication record suggest a career marked by academic excellence and recognition within the scientific community. His leadership in research on solid-state supercapacitors and polymer electrolytes has positioned him as a key contributor to the field, and his work has been published in top-tier journals such as the Journal of Power Sources, Journal of Electrochemical Society, and Journal of Membrane Science. These publications are often peer-reviewed by leading experts, reflecting the high quality and significance of his research. Moreover, his collaborative research with scientists such as A.N. Mansour and participation in interdisciplinary studies indicate a reputation of trust and respect in academic circles. It is likely that Dr. Zhou has also served on editorial boards, scientific committees, or as a reviewer for funding agencies, although these details are not specified. Overall, his enduring academic presence and influential research output highlight the esteem in which he is held by peers in materials science and engineering.

Conclusion

Dr. Xiangyang Zhou emerges as a highly qualified and impactful researcher whose contributions to materials science and energy storage technologies are both innovative and influential. His academic trajectory—from undergraduate studies in physics in China to doctoral work in the United Kingdom—reflects a global perspective on scientific inquiry. Throughout his professional journey, he has consistently advanced the frontier of polymer electrolytes and solid-state supercapacitors, combining theory, simulation, and experimental techniques. His ability to publish in high-impact journals and collaborate across disciplines underscores his effectiveness as a thought leader and innovator. Although formal recognitions and awards were not explicitly listed, his career accomplishments and scholarly output make a compelling case for his nomination for a Best Researcher Award. Dr. Zhou’s research continues to address pressing technological challenges related to clean energy and advanced materials, which are critical areas of global importance. His commitment to mentorship, interdisciplinary collaboration, and scientific rigor exemplifies the qualities of an outstanding researcher. He would be a deserving recipient of the award, and his selection would reinforce the value of sustained academic excellence and forward-thinking innovation in scientific research.

Publications Top Notes

  1. Application of GO anchored mediator in a polymer electrolyte membrane for high-rate solid-state supercapacitors
    Authors: Zhiwei Yan, Xiangyang Zhou, Yuchen Wang, Gordon Henry Waller, Zhijia Du
    Journal: Journal of Membrane Science
    Year: 2023
    Citations: 4

  2. Recent advances in solid-state supercapacitors: From emerging materials to advanced applications (Review)
    Authors: Mert Akin, Xiangyang Zhou
    Year: 2023
    Citations: 33

  3. In situ XAS investigation of K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ redox activity in solid-state supercapacitors
    Authors: Azzam N. Mansour, Jonathan K. Ko, Xiangyang Zhou, Chen Zhang, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2022
    Citations: 4

  4. Co-cured manufacturing of multi-cell composite box beam using vacuum assisted resin transfer molding
    Authors: Mert Akin, Cagri Y. Oztan, Rahmi Akin, Victoria L. Coverstone-Carroll, Xiangyang Zhou
    Journal: Journal of Composite Materials
    Year: 2021
    Citations: 4

  5. Structural analysis of K₄Fe(CN)₆·3H₂O, K₃Fe(CN)₆ and Prussian Blue (Open access)
    Authors: Azzam N. Mansour, Jonathan K. Ko, Gordon Henry Waller, Xiangyang Zhou, Mahalingam Balasubramanian
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2021
    Citations: 17

  6. Electrochemical and in situ spectroscopic study of the effect of Prussian Blue as a mediator in a solid-state supercapacitor (Open access)
    Authors: Xiaoyao Qiao, Zhiwei Yan, Chen Zhang, Curtis A. Martin, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2021
    Citations: 8

  7. Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments (Open access)
    Authors: Yuchen Wang, Mert Akin, Xiaoyao Qiao, Zhiwei Yan, Xiangyang Zhou
    Journal: International Journal of Energy Research
    Year: 2021
    Citations: 3

Guang Chen | Materials Science | Academician/Research Scholar |

Prof. Dr Guang Chen | Materials Science | Academician/Research Scholar

University Professor from Nanjing University of Science and Technology,china

Prof. Chen Guang is a distinguished academician of the Chinese Academy of Sciences and a Professor at Nanjing University of Science and Technology, where he also serves as a doctoral supervisor. He is a representative of the 14th Jiangsu Provincial People’s Congress and enjoys the special allowance of the State Council. Prof. Chen is the Director of multiple research centers, including the Jiangsu Hundred Refining Laboratory and the Key Laboratory of Advanced Metal and Intermetallic Compound Materials Technology.

His research focuses on metal materials and processing science, with significant contributions to lightweight heat-resistant intermetallic compounds, high-temperature alloy solidification, and amorphous composites. He has published over 200 academic papers, authored three monographs, and holds 86 patents. His accolades include the National Innovation Prize, the National May 1st Labor Medal, and multiple provincial and ministerial scientific awards. Prof. Chen remains a leading figure in advanced materials research and engineering applications. 🚀🔬

Professional Profile

Education

Prof. Chen Guang pursued his undergraduate, master’s, and doctoral degrees in materials science and engineering from top institutions in China. His academic journey was marked by excellence, with a strong focus on metallurgy, material processing, and advanced material technologies. His doctoral research laid the foundation for his later work in lightweight heat-resistant intermetallic compounds and high-temperature alloy processing. After obtaining his Ph.D., he engaged in postdoctoral research in renowned material science laboratories, further refining his expertise in metal processing, composite materials, and nanostructured alloys. Over the years, he has also participated in advanced research training programs and international collaborations, enhancing his knowledge in computational material design, additive manufacturing, and advanced metallurgy. His academic background provides a strong theoretical and technical foundation for his contributions to both fundamental and applied materials science.

Professional Experience

Prof. Chen has built a distinguished academic and professional career as a professor, researcher, and scientific leader. He currently serves as a Professor & Doctoral Supervisor at Nanjing University of Science and Technology, where he mentors Ph.D. and master’s students in materials science and engineering. In addition, he leads multiple research centers, including the Jiangsu Hundred Refining Laboratory and the Key Laboratory of Advanced Metal and Intermetallic Compound Materials Technology. His work focuses on developing new materials, optimizing metal processing techniques, and advancing industrial applications. As a policy advisor and representative of the Jiangsu Provincial People’s Congress, he contributes to science and technology policymaking. Beyond academia, he collaborates with industries, helping bridge the gap between fundamental research and practical applications. His leadership in scientific organizations and participation in national research programs further demonstrate his commitment to advancing China’s materials science sector.

Research Interests

Prof. Chen Guang’s research interests center on advanced metal materials and processing technologies. His primary focus is on lightweight heat-resistant intermetallic compounds, which have significant applications in aerospace, automotive, and high-temperature industries. He also specializes in high-temperature alloy directional solidification, a technique that enhances the durability and performance of materials used in extreme conditions. Additionally, he explores amorphous composites, which offer unique mechanical properties and are crucial for advanced engineering applications. His work in steel processing has contributed to the development of high-strength, corrosion-resistant materials for infrastructure and manufacturing. Prof. Chen is also interested in computational material design, using artificial intelligence and machine learning to optimize material properties and production methods. His research has direct applications in industrial manufacturing, defense, energy, and biomedical engineering, making significant contributions to technological advancements and sustainability in materials science.

Research Skills

Prof. Chen Guang possesses an extensive skill set in materials synthesis, characterization, and processing. His expertise includes high-temperature alloy fabrication, intermetallic compound development, and steel processing technologies. He is proficient in directional solidification techniques, enabling the controlled growth of crystalline structures for enhanced material properties. His skills in computational materials science allow him to use machine learning and simulation tools for predicting and optimizing material performance. Additionally, he has extensive experience in thin-film deposition, nanomaterials synthesis, and advanced spectroscopy techniques. His knowledge in mechanical testing, failure analysis, and corrosion resistance studies contributes to improving material durability and efficiency. Prof. Chen is also skilled in patent development and technology transfer, ensuring that his research findings are successfully applied in industrial settings. His ability to integrate fundamental research with engineering applications makes him a leading expert in the field of materials science and metallurgy.

Awards and Honors

Prof. Chen Guang has received numerous prestigious awards in recognition of his outstanding contributions to materials science. He was honored with the National Innovation Prize, one of China’s highest awards for scientific achievement, and the National May 1st Labor Medal, recognizing his dedication to technological advancements. He has also won two National Teaching Achievement Awards, highlighting his excellence in mentoring and education. Additionally, he has received 29 scientific and technological awards at the provincial and ministerial levels, including the Jiangsu Provincial Patent Inventor Award. His contributions to academia and industry have earned him titles such as Outstanding Contributions to Young and Middle-Aged Experts, Advanced Individual Returning from Abroad, and Excellent Scientific and Technological Worker. These accolades demonstrate his profound impact on research, education, and industrial applications, reinforcing his position as a leader in the field of materials science and engineering.

Conclusion

Prof. Chen Guang is a highly accomplished researcher, educator, and innovator in the field of materials science and engineering. His extensive scientific contributions, leadership roles, and numerous accolades highlight his profound impact on academia, industry, and policymaking. With a career spanning groundbreaking research in lightweight intermetallic compounds, high-temperature alloys, and advanced steel processing, he has significantly advanced both fundamental knowledge and industrial applications. His strong research skills, international collaborations, and leadership in major research centers further solidify his influence in the scientific community. While he has achieved remarkable national recognition, expanding his global collaborations and industrial ventures could further enhance his impact. Overall, Prof. Chen Guang is an exceptional candidate for the Best Researcher Award, given his unparalleled achievements, dedication to scientific advancement, and contributions to technology and education. 🏆

Publication Top Noted

  1. Splitting behavior of lamella

    • Authors: J. Zhuo, Jicheng; Y. Chen, Yang; Z. Zhang, Zan; Y. Li, Yongsheng; G. Chen, Guang
    • Journal: Next Materials
  2. Regulating phase ratios and mechanical properties of polysynthetic twinned TiAl single crystals via annealing

    • Authors: L. Kong, Lingwei; Z. Xing, Zhibin; F. Chen, Fengrui; G. Chen, Guang; Y. Tian, Yongjun
    • Journal: Journal of Materials Science and Technology
  3. Particle size gradation design and performance enhancement of quartz cores for precision casting

    • Authors: Y. Peng, Yonghui; W. Zhou, Wentao; G. Chen, Guang; B. Kou, Baohong; J. Ouyang, Jing
    • Journal: Journal of the American Ceramic Society
  4. Determination of the equivalent friction coefficient of rolling bearings using the kinetic energy dissipation

    • Authors: P. Wu, Panlong; C. He, Chunlei; G. Chen, Guang; C. Ren, Chengzu
    • Journal: Measurement
  5. Effects of yttria doping on the interfacial reaction between barium zirconate ceramics and TiAl alloy melt (Open Access)

    • Authors: Y. Shen, Yun; D. Hong, Du; T. Sun, Tianfang; Y. Niu, Yaran; G. Chen, Guang
    • Journal: Journal of Asian Ceramic Societies
  6. A predictive model for tool wear behavior during ultra-precision lapping (Open Access)

    • Authors: C. Wei, Changxu; C. He, Chunlei; H. Tan, Helong; Y. Sun, Yongquan; C. Ren, Chengzu
    • Journal: International Journal of Advanced Manufacturing Technology

2024 Publications

  1. An Investigation of the Effects of Cutting Edge Geometry and Cooling/Lubrication on Surface Integrity in Machining of Ti-6Al-4V Alloy (Open Access)

    • Authors: J.R. Caudill, James R.; R. Sarvesha, R.; G. Chen, Guang; I.S. Jawahir, I.S.
    • Journal: Journal of Manufacturing and Materials Processing
  2. Finite Element Simulation of Ti-6Al-4V Alloy Machining with a Grain-Size-Dependent Constitutive Model Considering the Ploughing Effect Under MQL and Cryogenic Conditions (Open Access)

    • Authors: G. Chen, Guang; Z. Wu, Zhuoyang; J.R. Caudill, James R.; I.S. Jawahir, I.S.
    • Journal: Journal of Manufacturing and Materials Processing
  3. Microstructure-dependent deformation mechanisms and fracture modes of gradient porous NiTi alloys

    • Authors: Y. Zhang, Yintao; L. Wang, Liqiang; C. Lan, Changgong; W. Lü, Weijie; G. Chen, Guang
    • Journal: Materials and Design
    • Citations: 3
  4. Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys

  • Authors: Y. Zhang, Yintao; D. Wei, Daixiu; Y. Chen, Yang; W. Lü, Weijie; G. Chen, Guang
  • Journal: Journal of Materials Science and Technology
  • Citations: 25