Arshiya Ansari | Materials Science | Best Researcher Award

Ms. Arshiya Ansari | Materials Science | Best Researcher Award

Indian Institute of Technology Jodhpur, India

Arshiya Ansari is an accomplished researcher in Materials Science and Engineering, with expertise in materials synthesis, optoelectronics, photodetectors, electrochemical sensors, gas sensors, batteries, and 2D materials such as graphene and borophene. She earned her Ph.D. from the Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur (2025) with a CGPA of 9.08/10, and conducted research at National Yang Ming Chiao Tung University and the National Synchrotron Radiation Research Center, Taiwan. She also holds an M.Tech in Nanotechnology from Jamia Millia Islamia, New Delhi, and an M.Sc. in Physics from Aligarh Muslim University. Arshiya’s professional experience includes research in advanced nanomaterials, polymer-metal oxide composites, UV photodetectors, electrochemical and gas sensors, and energy storage devices, with proficiency in fabrication techniques such as sol-gel nanocomposites, CNT-FET optimization, thin-film deposition, spin coating, sputtering, lithography, and characterization tools including XRD, Raman, SEM, UV-Vis spectroscopy, photoluminescence, and electrochemical analysis. She has authored 27 publications with 459 citations, an h-index of 12, and an i10-index of 15, contributing to journals like ACS Applied Nano Materials, Langmuir, Advanced Engineering Materials, and Journal of Materials Science: Materials in Electronics, and has filed a US provisional patent on Borophene tubes. Arshiya has presented her work at international conferences in Italy and India, served as a peer reviewer for reputed journals, and actively participates in professional societies including the International Society of Muslim Women in Science and the American Physical Society. Her achievements are complemented by grants from the Anusandhan National Research Foundation and SERB International Travel Support. Recognized for her leadership, mentorship, and community engagement through volunteer initiatives, Arshiya demonstrates a strong commitment to advancing materials research. Her dedication, technical expertise, and international collaborations position her as a promising leader in optoelectronic devices, sensor technologies, and energy materials, making her an outstanding candidate for the Best Researcher Award.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

Ahmed, S., Ansari, A., Haidyrah, A. S., Chaudhary, A. A., Imran, M., & Khan, A. (2022). Hierarchical molecularly imprinted inverse opal-based platforms for highly selective and sensitive determination of histamine. ACS Applied Polymer Materials, 4(4), 2783–2793.

Madhaiyan, G., Tung, T. W., Zan, H. W., Meng, H. F., Lu, C. J., Ansari, A., Chuang, W. T., … (2020). UV-enhanced room-temperature ultrasensitive NO gas sensor with vertical channel nano-porous organic diodes. Sensors and Actuators B: Chemical, 320, 128392.

Ahmed, S., Ansari, A., Siddiqui, M. A., Imran, M., Kumari, B., Khan, A., & Ranjan, P. (2023). Electrochemical and optical-based systems for SARS-CoV-2 and various pathogens assessment. Advances in Natural Sciences: Nanoscience and Nanotechnology, 14(3), 033001.

Ahmed, S., Ansari, A., Siddiqui, M. A., Khan, A., & Ranjan, P. (2023). A potential optical sensor based on nanostructured silicon. Journal of Materials Science: Materials in Electronics, 34(8), 755.

Ahmed, S., Khatun, S., Sallam, S., Ansari, A., Ansari, Z. A., Kumar, R. R., Hakami, J., … (2022). Photoresponse of porous silicon for potential optical sensing. Europhysics Letters, 139(3), 36001.

Ms. Arshiya Ansari’s work in advanced nanomaterials, optoelectronic devices, and electrochemical sensors drives innovation in energy storage, environmental monitoring, and healthcare diagnostics, bridging fundamental research with practical applications. Her pioneering research enhances global scientific knowledge, supports sustainable technologies, and fosters international collaborations that advance both industry and society.

Shahzad Ahmed | Materials Science | Best Researcher Award

Mr. Shahzad Ahmed | Materials Science | Best Researcher Award

Indian Institute of Technology Jodhpur, India

Mr. Shahzad Ahmed is a distinguished researcher and Prime Minister’s Research Fellow (PMRF) pursuing his Ph.D. in the Department of Materials Engineering at the Indian Institute of Technology (IIT) Jodhpur, India, with a stellar CGPA of 9.54. He holds an M.Tech in Nanotechnology (Gold Medalist, CGPA 9.48) from Jamia Millia Islamia, an M.Sc. in Physics from the University of Delhi, and a B.Sc. (Hons) in Physics from Ramjas College, University of Delhi. His professional and international research experience includes serving as a Visiting Scholar at the State University of New York at Buffalo (USA) and as a Researcher at the National Yang Ming Chiao Tung University (Taiwan), where he worked on nanostructured materials and advanced sensor technologies. His research interests lie in nanomaterials and nanotechnology, particularly borophene, graphene, MoS₂, and other low-dimensional materials, focusing on electrochemical-based sensors, biosensors, and thin-film fabrication for health and food monitoring applications. Mr. Ahmed possesses strong technical and analytical expertise in electrochemical analysis (CV, EIS, DPV), nanoparticle synthesis, CVD/PVD coating, photolithography, and advanced material characterization using SEM, Raman, FTIR, and UV-Vis spectroscopy. He has published more than 36 peer-reviewed papers, accumulating 872 citations and an h-index of 17, along with a U.S. Patent on borophene tubes. His remarkable achievements include securing the prestigious PMRF Fellowship, qualifying GATE (AIR 1839), and completing specialized training in Nano- and Microfabrication at National Tsing Hua University, Taiwan. He is also an active reviewer for more than twenty international journals, reflecting his professional recognition in the global scientific community. In conclusion, Mr. Shahzad Ahmed’s academic excellence, innovative research, and multidisciplinary skills make him a promising young scientist poised to contribute significantly to the advancement of nanotechnology, materials science, and sensor innovation on an international scale.

Profiles: Scopus | ORCID | Google Scholar | ResearchGate | Staff Page

Featured Publications

Khan, A., Islam, S. M., Ahmed, S., Kumar, R. R., Habib, M. R., Huang, K., Hu, M., Yu, X., … (2018). Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Advanced Science, 5(11), 1800050.

Ahmed, S., Ansari, A., Haidyrah, A. S., Chaudhary, A. A., Imran, M., & Khan, A. (2022). Hierarchical molecularly imprinted inverse opal-based platforms for highly selective and sensitive determination of histamine. ACS Applied Polymer Materials, 4(4), 2783–2793.

Imran, M., Ahmed, S., Abdullah, A. Z., Hakami, J., Chaudhary, A. A., Rudayni, H. A., … (2023). Nanostructured material‐based optical and electrochemical detection of amoxicillin antibiotic. Luminescence, 38(7), 1064–1086.

Khan, A., Ahmed, S., Sun, B. Y., Chen, Y. C., Chuang, W. T., Chan, Y. H., Gupta, D., … (2022). Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes. Biosensors and Bioelectronics, 198, 113811.

Khan, A., Cong, J., Kumar, R. R., Ahmed, S., Yang, D., & Yu, X. (2022). Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Applied Nano Materials, 5(12), 17544–17555.

Mr. Shahzad Ahmed’s pioneering research on advanced nanomaterials and electrochemical sensors is driving innovation in sustainable healthcare, food safety, and environmental monitoring. His work bridges the gap between scientific discovery and real-world application, fostering global progress in nanotechnology and smart sensing solutions for a healthier, safer, and more sustainable future.

Yaping Wu | Materials Science | Best Researcher Award

Prof. Dr. Yaping Wu | Materials Science | Best Researcher Award

Xiamen University, China

Professor Dr. Yaping Wu is a distinguished physicist at the Department of Physics, Xiamen University, China, with expertise in wide-bandgap semiconductor optoelectronic devices, quantum structures, graphene and two-dimensional materials, as well as surface interface physics and spintronics. He earned his B.Sc. in Physics from Xiamen University in 2006 and his Ph.D. in Microelectronics and Solid-State Electronics in 2012, including joint doctoral training at the University of Texas at Austin, USA. Since 2012, he has progressed from assistant professor to associate professor and currently serves as full professor at Xiamen University, demonstrating strong academic leadership and mentorship. His research interests encompass the growth and application of novel quantum structures, spin injection and regulation in nitride semiconductors, heterostructures of 2D materials, and chiral photonic quantum devices. Professor Wu possesses advanced research skills in device fabrication, spintronic and optoelectronic characterization, and integration of 2D material heterostructures. He has led multiple national and provincial projects, including NSFC Excellent Young Scientists Fund and several General Program grants, reflecting his leadership in pioneering semiconductor and quantum device research. His scholarly contributions include over 127 publications in high-impact journals such as Nature Electronics, Advanced Materials, Nano Letters, and ACS Nano, with 3,994 citations and an h-index of 23. He also holds numerous patents on spintronic devices, optical rotation systems, and electrically controllable quantum devices. Professor Wu’s awards and honors include Outstanding Research Achievement from NSFC, Top 10 Research Advances in China’s Semiconductor Science and Technology, multiple national teaching and supervision awards, and recognition as a high-level talent in Fujian Province and Xiamen City. With a proven record of high-impact research, innovation, mentorship, and international collaboration, Professor Wu is positioned to continue advancing cutting-edge developments in semiconductor physics, optoelectronics, and 2D quantum materials, fostering both scientific breakthroughs and the next generation of researchers globally.

Profile: Scopus

Featured Publications

Wu, X., Li, X., Kang, W., Zhang, X., Chen, L., Zhong, Z., Zhou, Y., Åkerman, J., Wu, Y., Zhang, R., & Kang, J. (2023). Topology-induced chiral photon emission from a large-scale meron lattice. Nature Electronics, 6(7), 516–524.

Wu, S., Wu, Q., Zhang, Y., Liu, M., Zhang, C., Wei, Y., Gao, Y., Xu, F., Zhang, C., Cao, Y., Zheng, X., Wu, Y., Wu, Z., Li, X., & Kang, J. (2025). Giant and anisotropic spin relaxation time in van der Waals GeSe with gate-tunability. Advanced Materials, 37(34), e2501618.

Cheng, A., Li, Z., Huang, F., Zhang, Y., Zhang, C., Xu, F., Zheng, X., Li, X., Wu, Z., Wu, Y., & Kang, J. (2025). Plasma-mediated polarity modulation in 2D ReS2 memristors for bio-inspired cascaded memristive architecture with stability-plasticity synergy. Materials Today. Advance online publication.

Liu, H., Zhang, Z., Zhang, C., Li, X., Zhang, C., Xu, F., Wu, Y., Wu, Z., & Kang, J. (2024). Simultaneously regulated highly polarized and long-lived valley excitons in WSe2/GaN heterostructures. Nano Letters, 24(6), 1851–1858.

Wu, X., Gong, B., Kang, W., Chen, L., Li, X., Wu, Y., & Kang, J. (2025). Orbital coupling and spin textures of Fe/Pd thin films grown on Si substrate with high magnetic fields. Advanced Science, 12(23), e2417810.

Prof. Dr. Yaping Wu’s pioneering research in wide-bandgap semiconductors, quantum structures, and 2D materials drives advances in next-generation optoelectronic and spintronic devices, enabling high-performance communication, energy-efficient electronics, and transformative technologies that impact science, industry, and global innovation.

Afsar Ahmed | Materials Science | Best Researcher Award

Dr. Afsar Ahmed | Materials Science | Best Researcher Award

Saha Institute of Nuclear Physics, India

Dr. Afsar Ahmed is a promising researcher in condensed matter physics, currently pursuing his Ph.D. at the Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Kolkata (2019–2025) under the guidance of Prof. Indranil Das. He completed his M.Sc. (2017) and B.Sc. (2015) in Physics from Aligarh Muslim University, India, both with first-class distinction. His professional experience encompasses extensive research in magnetic materials, magnetocaloric effects, magnetotransport phenomena, anomalous and topological Hall effects, spintronics, and skyrmions, with a Ph.D. thesis focused on non-collinear spin-induced magnetic and transport properties in intermetallic compounds, exploring the coexistence of real-space and momentum-space topologies in systems like inverse Heusler alloys, β-Mn, and layered magnets. Dr. Ahmed has authored 12 publications in reputed journals including Advanced Functional Materials, Physical Review B, and Journal of Physics: Condensed Matter, with 32 citations and an h-index of 3, and presented his work at leading national conferences such as DAESSPS, QMAT, SMS, and ICBEC. His research skills include polycrystalline and single-crystal sample preparation, thin-film deposition (PLD, sputtering), device fabrication, X-ray diffraction (Rigaku TTRAX-III), TEM-EDX, SQUID-VSM, PPMS, and customized cryogenic setups (9 T, 2 K), supported by proficiency in Origin, FullProf, Vesta, Python, LabVIEW, LaTeX, and Fortran-77. Dr. Ahmed has been recognized through merit scholarships, and has qualified competitive exams including GATE, NET, JEST, and WBSET. His awards and honors highlight his academic excellence and commitment to research. With a strong academic foundation, robust publication record, diverse research skills, and active engagement in the scientific community, Dr. Afsar Ahmed is well-positioned to advance impactful research in quantum and topological materials, contribute to international collaborations, and mentor future generations of scientists.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

Ahmed, A., Mazumdar, D., Das, K., & Das, I. (2022). A comparative study of the magnetic and magnetocaloric effect of polycrystalline Gd0.9Y0.1MnO3 and Gd0.7Y0.3MnO3 compounds: Influence of Y-ions on the magnetic state of GdMnO3. Journal of Magnetism and Magnetic Materials, 551, 169133.

Bhattacharya, A., Habib, M. R., Ahmed, A., Satpati, B., DuttaGupta, S., & Dasgupta, I. (2024). Spin-valve-like magnetoresistance and anomalous Hall effect in magnetic Weyl metal. Physical Review B, 110(1), 014417.

Bhattacharya, A., Ahmed, A., DuttaGupta, S., & Das, I. (2023). Critical behavior and phase diagram of skyrmion-hosting material Co3.6Fe4.4Zn8Mn4 probed by anomalous Hall effect. Journal of Alloys and Compounds, 960, 170274.

Bhattacharya, A., PC, S., Ahmed, A., Kurebayashi, D., Tretiakov, O. A., Satpati, B., … (2025). Giant topological Hall effect in magnetic Weyl metal Mn2Pd0.5Ir0.5Sn. Advanced Functional Materials, 35(17), 2424841.

Ahmed, A., Das, K., & Das, I. (2024). Large magnetocaloric effect and giant magnetoresistance in rare earth based intermetallic compound ErAl3: Construction of magnetic phase diagram. Journal of Physics: Condensed Matter. Advance online publication.

Dr. Afsar Ahmed’s research on topological and magnetic materials advances fundamental understanding of quantum phenomena, enabling the development of next-generation spintronic devices and energy-efficient technologies, while fostering innovations that bridge materials science, industry applications, and global scientific progress.