Yijun Xiao | Computer Science | Best Researcher Award

Mr. Yijun Xiao | Computer Science | Best Researcher Award

China University of Petroleum (East China), China 

Yijun Xiao is a highly motivated and innovative Ph.D. candidate at the China University of Petroleum (East China), known for his groundbreaking research at the intersection of computer science and molecular biology. His academic journey reflects a trajectory of excellence, transitioning from a master’s degree at Dalian University of Technology to advanced doctoral research focused on DNA computing and molecular neural networks. His recent work on programmable DNA-based molecular biocomputing circuits, published in Advanced Science, highlights his dedication to solving complex computational problems using biological substrates. Xiao’s research contributions are recognized internationally, with several publications in SCI-indexed journals and presentations at prestigious conferences like the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence. He is not only a productive researcher but also a contributor to academic discourse through editorial roles in high-impact journals. With four patents and six journal articles to his name, his academic footprint is notable for a researcher at this stage. Xiao exemplifies the profile of a next-generation scientist poised to lead in the development of unconventional and bio-inspired computing technologies, making significant strides in non-silicon computing solutions with real-world applications in life sciences and bioinformatics.

Professional Profile

Education

Yijun Xiao earned his Master’s degree in Computer Science and Technology from Dalian University of Technology in 2023. This educational foundation equipped him with in-depth knowledge in algorithm design, artificial intelligence, and computational modeling. Currently, he is pursuing a Ph.D. at the China University of Petroleum (East China), where he focuses on interdisciplinary research involving computer science, molecular biology, and systems engineering. His doctoral work is centered around DNA computing, biochemical reaction networks, and the development of molecular controllers capable of solving high-level computational problems. The transition from a traditional computing background to a molecular computing framework reflects his adaptability and willingness to explore unconventional approaches to computing. His academic journey demonstrates a clear progression in specialization, from general computer science toward highly niche domains such as biochemical neural networks. Xiao’s education not only highlights strong academic performance but also his ability to integrate knowledge from multiple domains—a critical asset in research-intensive environments. With training grounded in both theoretical foundations and experimental research, Xiao is academically equipped to lead cutting-edge work in computational biology, unconventional computing, and interdisciplinary problem-solving.

Professional Experience

Although still in the early stages of his academic career, Yijun Xiao has demonstrated extensive professional engagement through his research and publication work. As a doctoral candidate, his primary professional responsibility involves conducting high-level scientific research that bridges computer science with biochemistry and molecular biology. He has played a lead role in designing and modeling programmable DNA-based biocomputing circuits that solve partial differential equations—an ambitious and novel application of bio-computation. His involvement in multiple international conferences, such as the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence, reflects both his presentation skills and his readiness to contribute to global academic discourse. In addition to his research roles, he has participated in editorial duties for major journals like Advanced Science, IEEE Transactions on Nanobioscience, and IEEE Access, suggesting peer recognition of his scientific rigor and subject matter expertise. Furthermore, Xiao has authored and co-authored six SCI-indexed journal articles and has filed four patents, demonstrating both scholarly and applied research contributions. His professional experience, although rooted in academia, already exhibits a maturity and productivity that align with established researchers, signaling his readiness for broader leadership roles in future academic or research-intensive industry positions.

Research Interest

Yijun Xiao’s primary research interests lie in the domains of DNA computing, biochemical reaction networks, molecular controllers, and unconventional computing systems. His work focuses on leveraging the intrinsic parallelism of molecular systems to address computational problems that are traditionally solved using electronic and silicon-based technologies. One of his central interests involves the design and implementation of programmable DNA-based circuits capable of solving partial differential equations—a feat that merges molecular biology with complex mathematical modeling. He is particularly fascinated by the prospect of developing non-silicon-based computational architectures that mimic biological systems. This interest extends to synthetic biology, where his research could pave the way for bio-hybrid computing devices that function in tandem with natural biological processes. Xiao’s interdisciplinary curiosity drives him to explore how biomolecular substrates can be used not only for information storage and processing but also for autonomous control within chemical environments. His long-term goal is to create biocompatible computing systems that can be embedded in real-life biological contexts such as smart therapeutics, biosensing, and environmental diagnostics. The novelty and real-world applicability of his interests set him apart as a visionary in the rapidly evolving field of molecular and bio-inspired computing.

Research Skills

Yijun Xiao possesses an exceptional range of research skills that complement his interdisciplinary focus. His technical skills span computational modeling, algorithmic development, and system simulations, particularly within the context of DNA computing and biochemical reaction networks. He is adept at designing molecular circuits that perform logical and mathematical operations at the nanoscale. His experimental skills include working with DNA strands, implementing synthetic biochemical networks, and testing molecular controllers in simulated environments. Xiao is also proficient in data analysis, statistical modeling, and simulation tools, all of which are critical for validating theoretical models in biochemical systems. In addition to laboratory and computational capabilities, he demonstrates strong academic writing and peer-review skills, evidenced by his publications in high-impact journals and editorial responsibilities. He also exhibits strong collaborative skills, as seen in his partnerships with researchers from institutions like Dalian University. These collaborations have enabled him to broaden his methodological toolkit and approach problems from diverse scientific perspectives. His fluency in interdisciplinary communication allows him to translate complex concepts across domains, a rare and valuable skill in modern scientific research. Overall, Xiao’s research skills reflect a harmonious blend of theory, experimentation, and communication.

Awards and Honors

Although specific awards and honors have not been listed in the current nomination, Yijun Xiao’s publication record and involvement in high-impact journals suggest implicit recognition of his work. His article in Advanced Science—a prestigious international journal—indicates that his research meets the highest standards of innovation and scholarly contribution. Furthermore, the fact that he serves in editorial capacities for journals such as IEEE Transactions on Nanobioscience and IEEE Access is a significant mark of honor, especially for a Ph.D. candidate. These roles are typically reserved for researchers with demonstrated subject-matter expertise and strong academic judgment. Xiao has also been selected to present at esteemed international conferences like the IEEE Smart World Congress and the International Conference on Industrial Artificial Intelligence, which reflects peer recognition of the novelty and relevance of his work. His patent filings further emphasize the originality of his ideas and their potential for real-world application. While not formal awards, these accomplishments reflect an ongoing stream of recognition from the global academic and research community. As his career progresses, he is poised to receive formal accolades and fellowships that match the significance of his contributions.

Conclusion

Yijun Xiao represents the ideal profile of a next-generation researcher whose work is at the forefront of interdisciplinary science. His commitment to advancing DNA computing and molecular neural networks is both ambitious and impactful, addressing fundamental challenges in computational complexity using innovative biological models. Despite being in the early phase of his academic career, his productivity, publication quality, and international engagement far exceed typical expectations for a doctoral candidate. His research not only contributes theoretical value but also opens doors to practical applications in non-silicon-based computing and synthetic biology. With four patents and six SCI-indexed journal publications, he has already laid a strong foundation for an influential academic and research career. His future potential is further enhanced by his editorial experience, collaborative nature, and ability to lead projects that intersect multiple disciplines. Moving forward, expanding his work into industrial partnerships and broader scientific collaborations will further solidify his standing. Overall, Yijun Xiao is not only suitable for the Best Researcher Award but is a compelling candidate who exemplifies excellence, innovation, and future leadership in cutting-edge research domains.

Publications Top Notes

  1. Title: Programmable DNA‐Based Molecular Neural Network Biocomputing Circuits for Solving Partial Differential Equations
    Authors: Yijun Xiao, Alfonso Rodríguez‐Patón, Jianmin Wang, Pan Zheng, Tongmao Ma, Tao Song
    Year: 2025
    Journal: Advanced Science
  2. Title: Cascade PID Control Systems Based on DNA Strand Displacement With Application in Polarization of Tumor-Associated Macrophages
    Authors: Hui Xue, Hui Lv, Yijun Xiao, Xing’An Wang
    Year: 2023
    Journal: IEEE Access
  3. Title: Implementation of an Ultrasensitive Biomolecular Controller for Enzymatic Reaction Processes With Delay Using DNA Strand Displacement
    Authors: Yijun Xiao, Hui Lv, Xing’An Wang
    Year: 2023
    Journal: IEEE Transactions on NanoBioscience
  4. Title: Performance Verification of Smith Predictor Control Using IMC Scheme via Chemical Reaction Networks and DNA Strand Displacement Reaction
    Authors: Jingwang Yao, Hui Lv, Yijun Xiao
    Year: 2023
    Conference: 2023 IEEE Smart World Congress (SWC)
  5. Title: Synthetic Biology and Control Theory: Designing Synthetic Biomolecular Controllers by Exploiting Dynamic Covalent Modification Cycle with Positive Autoregulation Properties
    Authors: Yijun Xiao, Hui Lv, Xing’an Wang
    Year: 2023
    Journal: Applied Sciences
  6. Title: Implementing a modified Smith predictor using chemical reaction networks and its application to protein translation
    Authors: Yijun Xiao, Hui Lv, Xing’an Wang
    Year: 2022
    Conference: 2022 4th International Conference on Industrial Artificial Intelligence (IAI)

Ling Qin | Computer Science | Best Researcher Award

Ms. Ling Qin | Computer Science | Best Researcher Award

Professor from Inner Mongolia University of Science &Technology, China

Dr. Ling Qin is a dedicated and accomplished professor in the Department of Information Engineering at Inner Mongolia University of Science and Technology, China. Born in August 1979, she has established a strong academic and research background in optical communication, particularly in the areas of visible light communication (VLC), indoor positioning systems, and atmospheric laser communication. Over more than two decades of academic service at her home institution, she has progressed from teaching assistant to professor, showcasing a steady and determined career development. Dr. Qin’s research has significantly contributed to the understanding and enhancement of VLC systems in complex environments, such as intelligent transportation systems and indoor positioning applications using LED lighting. Her publication record is extensive, with numerous articles published in well-recognized journals indexed in SCI and EI. She has also successfully led multiple nationally funded research projects and holds a Chinese patent related to optical signal reception. With her expertise, innovation, and dedication, Dr. Qin exemplifies the qualities of a leading academic researcher. Her work bridges the gap between theory and practical application, making her a suitable and promising candidate for recognition in advanced communication engineering fields.

Professional Profile

Education

Dr. Ling Qin holds an impressive academic background in engineering and communication technologies. She began her higher education journey in 1997, earning a Bachelor of Engineering in Communication Engineering from Chengdu University of Information Technology in 2001. She continued to deepen her specialization in optical communication by pursuing a Master’s degree in Engineering at Xi’an University of Technology, where she studied from 2004 to 2007. Demonstrating a strong commitment to academic growth and expertise, Dr. Qin earned her Ph.D. in Engineering from Chang’an University in Xi’an between 2011 and 2018. Her doctoral research aligned closely with her professional focus, examining advanced communication theories and systems including visible light and laser-based communication. The comprehensive progression of her academic qualifications reflects her long-standing dedication to mastering both the theoretical and technical aspects of her field. These qualifications have formed a solid foundation for her research career, allowing her to contribute meaningfully to high-impact areas such as LED-based indoor positioning systems and signal processing in complex environments. Her education has not only equipped her with the necessary knowledge but has also driven her to pursue innovation and advanced research in optical communication technologies.

Professional Experience

Dr. Ling Qin has built a robust academic and professional career spanning over two decades at Inner Mongolia University of Science and Technology in Baotou, China. She began her professional journey in 2001 as a teaching assistant and steadily rose through academic ranks due to her contributions to teaching and research. Between 2007 and 2012, she served as a lecturer, where she began to engage more actively in research and curriculum development. From 2012 to 2018, she was promoted to associate professor, during which she established her research presence in visible light communication and indoor positioning systems. Since 2019, Dr. Qin has held the title of full professor, where she continues to lead research initiatives and mentor students in cutting-edge communication technologies. Throughout her career, she has taught various specialized courses, including visible light communication theory, positioning systems, and atmospheric laser communications. Her long-term affiliation with a single institution reflects both stability and deep institutional commitment, while her advancement through all faculty ranks highlights her professional development. As a professor, she plays a vital role in advancing research, guiding graduate students, and contributing to scientific innovation through her projects and publications.

Research Interests

Dr. Ling Qin’s research interests focus on key innovations in the field of optical wireless communication, particularly visible light communication (VLC), indoor positioning systems, and atmospheric laser communications. One of her primary areas of study is the development and optimization of visible light communication systems, where she explores theoretical models and practical designs to enhance LED-based communication in complex traffic and indoor environments. Her work addresses challenges such as background light interference, signal modulation, and system performance under real-world conditions. Another important focus of her research is indoor positioning technologies using LED lighting. She investigates the integration of machine learning techniques, such as convolutional and recurrent neural networks, into positioning algorithms to improve accuracy and reliability. Additionally, Dr. Qin is engaged in the research of atmospheric laser communication systems, where she works on coding theory, modulation/demodulation methods, and performance enhancement strategies for data transmission in free-space environments. Her research is interdisciplinary, often overlapping with applications in intelligent transportation, aerospace signal processing, and biomedical engineering. These interests not only reflect her command over complex engineering concepts but also demonstrate her forward-thinking approach in developing communication technologies that serve modern infrastructure and industry demands.

Research Skills

Dr. Ling Qin possesses advanced research skills that make her a leading expert in optical communication and system development. Her technical expertise includes the modeling and implementation of visible light communication (VLC) systems in challenging environments, particularly for intelligent transportation and indoor positioning. She is proficient in applying modulation and demodulation techniques, signal coding, beamforming, and error suppression in complex signal environments. Her research integrates machine learning algorithms—including convolutional neural networks (CNNs), gated recurrent units (GRUs), and transformer-based models—into communication and positioning systems to enhance accuracy and system performance. Dr. Qin is also skilled in developing system architectures using hardware components like FPGA (Field Programmable Gate Arrays), contributing to the practical realization of her theoretical models. Additionally, she has experience with spread spectrum technologies and power inversion techniques for background light suppression. Her research has also extended into interdisciplinary domains, such as carbon nanoparticle applications in medical systems and satellite navigation under plasma interference. These wide-ranging skills have been applied in various research projects funded by national and regional science foundations, demonstrating her ability to execute complex research plans and produce tangible outcomes. Her scientific rigor and technical versatility position her as a valuable asset in the field.

Awards and Honors

While Dr. Ling Qin’s profile does not list specific individual awards or honors, her consistent track record of securing competitive research funding from prestigious agencies reflects significant academic recognition. She has been awarded multiple research grants by the National Natural Science Foundation of China, supporting her projects on visible light communication, satellite navigation under plasma conditions, and laser communication systems. These grants indicate high confidence from the scientific community in the relevance and impact of her research. Additionally, she has contributed to the development of a nationally recognized patent for an optical signal receiving system, which further showcases her innovation and contribution to applied research. Her position as a full professor at Inner Mongolia University of Science and Technology is itself a recognition of her professional achievements and academic standing. Her numerous publications in high-impact journals and conferences indexed by SCI and EI are further testament to her contributions. While formal honors such as best paper or teaching awards are not noted, the cumulative evidence of her leadership in research, ability to secure funding, and innovation through patents suggests she has achieved considerable peer recognition in her field.

Conclusion

Dr. Ling Qin stands out as a strong and capable academic professional with notable contributions to the field of optical communication. Her career reflects a steady ascent through academic ranks, backed by a solid foundation in education and a deep commitment to research excellence. With a focused interest in visible light communication, indoor positioning systems, and laser-based communication technologies, she has contributed significantly to both theoretical advancements and real-world applications. Her skills in modeling complex communication systems, integrating artificial intelligence techniques, and implementing hardware-based solutions place her at the intersection of innovation and practicality. Although not heavily decorated with formal awards, her success in securing national-level research grants and her involvement in patent development speak volumes about her scientific impact. She has authored an extensive list of peer-reviewed publications that enhance her reputation and contribute to global scientific knowledge. Overall, Dr. Qin exemplifies the qualities of a modern researcher—technically skilled, innovative, and committed to advancing engineering solutions for real-world problems. Her profile makes her a highly suitable candidate for the Best Researcher Award, and recognition of her work would be well-deserved within the scientific community.

Publications Top Notes

  1. Title: CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning
    Authors: F. Cui, Y. Du, L. Qin, C. Li, X. Meng
    Year: 2025

  2. Title: Visible light channel modeling and application in underground mines based on transformer point clouds optimization
    Authors: J. Yu, X. Hu, Q. Wang, F. Wang, X. Kou
    Year: 2025

  3. Title: Fractional OAM Vortex SAR Imaging Based on Chirp Scaling Algorithm
    Authors: L. Yu, D. Yongxing Du, L. Baoshan Li, L. Qin, L. Chenlu Li
    Year: 2025

  4. Title: Indoor visible light positioning system based on memristive convolutional neural network
    Authors: Q. Chen, F. Wang, B. Deng, L. Qin, X. Hu
    Year: 2025
    Citations: 2

  5. Title: Visible light visual indoor positioning system for based on residual convolutional networks and image restoration
    Authors: D. Chen, L. Qin, L. Cui, Y. Du
    Year: 2025

Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Dr. Said Boumaraf | Computer Science | Environmental Engineering Impact Award

Researcher and AI scientist from Khalifa University, UAE

Dr. Said Boumaraf is a distinguished researcher specializing in artificial intelligence (AI), computer vision, and medical imaging. Currently serving as a Postdoctoral Fellow at Khalifa University, his work primarily focuses on developing advanced AI methodologies to address complex challenges in visual recognition and healthcare diagnostics. Dr. Boumaraf has contributed significantly to the field through his involvement in projects that enhance remote sensing of gas flares and improve face parsing techniques under occlusion conditions. His research has been published in reputable journals and conferences, reflecting his commitment to advancing technological solutions for real-world problems. Collaborating with international teams, he continues to push the boundaries of AI applications, particularly in areas that intersect with environmental monitoring and medical diagnostics. Dr. Boumaraf’s dedication to research excellence positions him as a leading figure in the integration of AI technologies into practical applications.

Professional Profile

Education

Dr. Boumaraf’s academic journey is marked by a strong foundation in computer science and engineering. He earned his Ph.D. in Computer Science, where his research focused on the development of AI algorithms for medical image analysis. His doctoral studies provided him with in-depth knowledge of machine learning, deep learning, and their applications in healthcare. Prior to his Ph.D., Dr. Boumaraf completed his Master’s degree in Computer Engineering, during which he explored various aspects of computer vision and pattern recognition. His academic pursuits have equipped him with a robust skill set that bridges theoretical understanding and practical implementation of AI technologies. Throughout his education, Dr. Boumaraf has demonstrated a commitment to interdisciplinary research, integrating principles from computer science, engineering, and healthcare to develop innovative solutions. His educational background lays the groundwork for his ongoing contributions to the field of AI and its applications in critical domains.

Professional Experience

Dr. Boumaraf’s professional experience encompasses a range of roles that highlight his expertise in AI and its applications. As a Postdoctoral Fellow at Khalifa University, he has been instrumental in leading research projects that apply deep learning techniques to environmental and medical challenges. His work includes developing AI-enhanced methods for remote sensing of gas flares and creating robust face parsing algorithms capable of handling occlusions. Prior to his current role, Dr. Boumaraf collaborated with various research institutions and industry partners, contributing to projects that required the integration of AI into practical solutions. His experience extends to developing computer-aided diagnosis systems for breast cancer detection, showcasing his ability to apply AI in critical healthcare settings. Dr. Boumaraf’s professional journey reflects a consistent focus on leveraging AI to address real-world problems, underscoring his role as a key contributor to the advancement of intelligent systems in diverse applications.

Research Interests

Dr. Boumaraf’s research interests lie at the intersection of artificial intelligence, computer vision, and medical imaging. He is particularly focused on developing deep learning models that enhance the accuracy and efficiency of image analysis in complex scenarios. His work on occlusion-aware face parsing addresses challenges in visual recognition where parts of the face are obscured, improving the reliability of facial analysis systems. In the medical domain, Dr. Boumaraf has contributed to creating AI-driven diagnostic tools that assist in the early detection of diseases such as breast cancer. His research also explores the application of AI in environmental monitoring, specifically in the remote sensing of gas flares, which has implications for energy management and environmental protection. Dr. Boumaraf’s interdisciplinary approach combines theoretical research with practical applications, aiming to develop AI solutions that can be effectively integrated into various sectors.

Research Skills

Dr. Boumaraf possesses a comprehensive set of research skills that enable him to tackle complex problems in AI and its applications. His proficiency in deep learning frameworks such as TensorFlow and PyTorch allows him to design and implement sophisticated neural network architectures. He is skilled in image processing techniques, including segmentation, feature extraction, and classification, which are essential for medical image analysis and computer vision tasks. Dr. Boumaraf is adept at handling large datasets, employing data augmentation and preprocessing methods to enhance model performance. His experience with algorithm optimization and model evaluation ensures the development of efficient and accurate AI systems. Additionally, his collaborative work with multidisciplinary teams demonstrates his ability to integrate AI solutions into broader technological and scientific contexts. Dr. Boumaraf’s research skills are instrumental in advancing AI applications across various domains.

Awards and Honors

Throughout his career, Dr. Boumaraf has received recognition for his contributions to the field of artificial intelligence. His research publications in esteemed journals and conferences have garnered attention from the academic community, reflecting the impact of his work. While specific awards and honors are not detailed in the available information, his role as a Postdoctoral Fellow at a leading institution like Khalifa University signifies a level of esteem and acknowledgment of his expertise. Dr. Boumaraf’s ongoing collaborations and research endeavors continue to position him as a respected figure in the AI research community.

Conclusion

Dr. Said Boumaraf stands out as a dedicated researcher whose work bridges the gap between artificial intelligence theory and practical application. His contributions to computer vision and medical imaging demonstrate a commitment to developing AI solutions that address real-world challenges. Through his role at Khalifa University, Dr. Boumaraf continues to engage in cutting-edge research, collaborating with international teams to push the boundaries of what AI can achieve. His interdisciplinary approach and robust research skills make him a valuable asset to the scientific community, and his work holds promise for significant advancements in both environmental monitoring and healthcare diagnostics. As AI continues to evolve, researchers like Dr. Boumaraf play a crucial role in ensuring that these technologies are harnessed effectively for the betterment of society.

Publications Top Notes

  • Title: A new transfer learning based approach to magnification dependent and independent classification of breast cancer in histopathological images
    Authors: S. Boumaraf, X. Liu, Z. Zheng, X. Ma, C. Ferkous
    Year: 2021
    Citations: 169

  • Title: Conventional machine learning versus deep learning for magnification dependent histopathological breast cancer image classification: A comparative study with visual explanation
    Authors: S. Boumaraf, X. Liu, Y. Wan, Z. Zheng, C. Ferkous, X. Ma, Z. Li, D. Bardou
    Year: 2021
    Citations: 83

  • Title: A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms
    Authors: S. Boumaraf, X. Liu, C. Ferkous, X. Ma
    Year: 2020
    Citations: 80

  • Title: A new three-stage curriculum learning approach for deep network based liver tumor segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, W. Liu, X. Gong, X. Ma
    Year: 2020
    Citations: 12

  • Title: Deep distance map regression network with shape-aware loss for imbalanced medical image segmentation
    Authors: H. Li, X. Liu, S. Boumaraf, X. Gong, D. Liao, X. Ma
    Year: 2020
    Citations: 11

  • Title: A multi-scale and multi-level fusion approach for deep learning-based liver lesion diagnosis in magnetic resonance images with visual explanation
    Authors: Y. Wan, Z. Zheng, R. Liu, Z. Zhu, H. Zhou, X. Zhang, S. Boumaraf
    Year: 2021
    Citations: 10

  • Title: AI-enhanced gas flares remote sensing and visual inspection: Trends and challenges
    Authors: M. Al Radi, P. Li, S. Boumaraf, J. Dias, N. Werghi, H. Karki, S. Javed
    Year: 2024
    Citations: 6

  • Title: Web3-enabled metaverse: the internet of digital twins in a decentralised metaverse
    Authors: N. Aung, S. Dhelim, H. Ning, A. Kerrache, S. Boumaraf, L. Chen, M.T. Kechadi
    Year: 2024
    Citations: 6

  • Title: U-SDRC: a novel deep learning-based method for lesion enhancement in liver CT images
    Authors: Z. Zheng, L. Ma, S. Yang, S. Boumaraf, X. Liu, X. Ma
    Year: 2021
    Citations: 5

  • Title: Bi-Directional LSTM Model For Classification Of Vegetation From Satellite Time Series
    Authors: K. Bakhti, M.E.A. Arabi, S. Chaib, K. Djerriri, M.S. Karoui, S. Boumaraf
    Year: 2020
    Citations: 5

Eric Nizeyimana | Computer Science | Best Researcher Award

Dr. Eric Nizeyimana | Computer Science | Best Researcher Award

Lecturer from University of Rwanda, Rwanda

Dr. Eric Nizeyimana is a Rwandan researcher and academic specializing in Internet of Things (IoT) and embedded systems. He has built a career grounded in advanced technological solutions for environmental and infrastructural challenges, particularly in air pollution monitoring and data-driven IoT applications. His recent work includes developing decentralized, predictive frameworks using blockchain, machine learning, and IoT technologies to track pollution spikes in real time. With extensive research and teaching experience across African and Asian academic institutions, including the University of Rwanda and Seoul National University, he brings a global perspective to technological development. Dr. Nizeyimana is known for integrating practical and scalable systems with academic rigor, earning recognition for his innovative and impactful work. His contributions have been published in several reputable journals, and he continues to influence the next generation of engineers and scientists through both classroom teaching and research mentorship. Fluent in English, French, Kinyarwanda, and Swahili, and having held leadership roles in academic committees and church communities, he blends technical excellence with interpersonal and organizational strengths. As a proactive researcher and educator, Dr. Nizeyimana continues to push the boundaries of IoT systems in addressing societal issues, especially in transportation, environmental sustainability, and smart infrastructure.

Professional Profile

Education

Dr. Eric Nizeyimana has pursued a progressive academic path centered on engineering, mathematical sciences, and emerging technologies. He earned his Ph.D. in Internet of Things (IoT) with a specialization in Embedded Systems from the University of Rwanda – College of Science and Technology (UR-CST), under the African Center of Excellence in Internet of Things (ACEIoT), in collaboration with Seoul National University (SNU), South Korea, from 2020 to 2024. His doctoral research focused on environmental monitoring systems using IoT and edge computing technologies, particularly addressing air pollution monitoring and predictive analytics. Prior to this, he completed a master’s program in Mathematical Sciences at the African Institute for Mathematical Sciences (AIMS-Cameroon) in 2015. His academic foundation was laid through a bachelor’s degree in Computer Engineering from the Kigali Institute of Science and Technology (KIST), which he completed in 2012. This strong foundation in both engineering and mathematics positioned him well for his advanced research in smart systems and applied technologies. His educational journey reflects a consistent focus on interdisciplinary innovation, bridging computational science, real-world data systems, and environmental sustainability. Through scholarships and competitive academic grants, Dr. Nizeyimana has demonstrated academic excellence and international competitiveness.

Professional Experience

Dr. Eric Nizeyimana has accumulated rich professional experience in academia and research-focused technical roles. As of October 2024, he serves as a Lecturer at the University of Rwanda – College of Science and Technology, where he also previously held the role of Assistant Lecturer between August 2015 and May 2017. In this capacity, he has taught diverse subjects, including Embedded Computer Systems, Artificial Intelligence, Java Programming, and Computer Programming. He has also supervised undergraduate and graduate research projects and contributed to proposal writing and curriculum development. From April to October 2023, Dr. Nizeyimana was a researcher at Seoul National University, where he developed IoT-based systems for environmental monitoring, optimized embedded systems, and analyzed complex data. Between 2019 and 2023, he worked as an IT Analyst and Training Officer at the African Institute for Mathematical Science (AIMS), coordinating IT infrastructure, providing technical training, and managing secure digital environments. Earlier, from 2017 to 2018, he held the role of IT Officer and System Administrator at AIMS in both Rwanda and Cameroon. These roles highlight his hybrid expertise in teaching, systems design, network security, and capacity building, establishing him as a technically proficient and educationally driven professional.

Research Interests

Dr. Eric Nizeyimana’s research interests lie at the intersection of the Internet of Things (IoT), embedded systems, edge computing, and environmental monitoring. He focuses on developing intelligent, decentralized systems to address real-world challenges such as air pollution, particularly in urban transportation networks. His work explores the integration of edge devices, machine learning algorithms, and blockchain technologies to design predictive and real-time monitoring solutions. Another key interest involves leveraging IoT infrastructures for smart city applications, including traffic management, public health monitoring, and resource optimization. Dr. Nizeyimana is particularly interested in how embedded systems can be adapted to constrained environments to achieve high accuracy with low power consumption and minimal latency. In addition to technical development, he investigates the ethical and infrastructural implications of deploying such technologies in developing countries. His research also includes data analytics for IoT devices, remote sensing systems, and system interoperability within distributed computing frameworks. Through his multidisciplinary approach, he seeks to expand the boundaries of scalable, secure, and sustainable technology for societal benefit. These interests reflect his commitment to using engineering innovation to improve public services, infrastructure management, and environmental stewardship in both local and global contexts.

Research Skills

Dr. Eric Nizeyimana possesses advanced research skills in embedded systems design, IoT application development, and edge computing architecture. He is proficient in integrating IoT sensors and communication protocols with real-time data processing systems to monitor and analyze environmental data, especially for detecting air pollution peaks. His work involves embedded system programming, circuit design, microcontroller deployment, and the use of platforms such as Arduino and Raspberry Pi. He also has experience in machine learning model development for predictive analytics, including supervised learning techniques applied to transportation and pollution datasets. Dr. Nizeyimana demonstrates expertise in decentralized systems using blockchain for data immutability and enhanced security. Additionally, he has strong skills in scientific writing, proposal development, and collaborative project implementation. His ability to design end-to-end solutions—from hardware development to software implementation and data interpretation—sets him apart in the IoT research space. Furthermore, he is skilled in academic dissemination, having presented at multiple international seminars and conferences. His competence in working across multicultural teams, both locally and internationally, further enhances his collaborative research capabilities. These skills are underpinned by a solid background in programming languages such as Python, Java, and C++, along with system administration and IT infrastructure management.

Awards and Honors

Dr. Eric Nizeyimana has been recognized for his academic excellence and research contributions through various prestigious awards. In 2023, he received the Mobility Research Grant from Rwanda’s National Council of Science and Technology (NCST), which enabled him to conduct critical experimental work at an international research institution. This grant, valued at approximately 8 million Rwandan francs, supported his living and research expenses during a two-month exchange, reflecting the national confidence in his research potential. In 2020, he was awarded a full four-year Ph.D. scholarship through the Partnership for skills in Applied Sciences, Engineering and Technology (PASET), a competitive regional initiative aimed at promoting advanced STEM education in Africa. His leadership and service have also been acknowledged through appointments such as PhD student representative and Master’s student representative, demonstrating trust in his leadership within academic communities. In addition, his consistent presence at international conferences and seminars, along with publications in respected peer-reviewed journals, underscores his active engagement in the global research community. These honors not only validate his academic achievements but also highlight his capability to drive impactful, solution-oriented research with both national and international relevance.

Conclusion

Dr. Eric Nizeyimana embodies the qualities of an outstanding researcher through his technical innovation, academic leadership, and commitment to solving real-world problems using emerging technologies. His focused research in IoT, embedded systems, and air pollution monitoring has generated valuable insights into how smart systems can be leveraged for environmental and urban challenges. His publication record in high-quality journals and active participation in global research exchanges reflect a strong orientation toward scholarly excellence and international collaboration. With a foundation in mathematics and engineering, his interdisciplinary approach allows him to bridge theory and application effectively. His work with institutions like Seoul National University and AIMS demonstrates adaptability, technical depth, and professional maturity. As an educator, he contributes to capacity building through teaching, mentorship, and curriculum development. Recognized with competitive grants and scholarships, he has proven his potential to lead transformative research in both academic and industrial contexts. While there remains room for broader global engagement and interdisciplinary outreach, Dr. Nizeyimana has established himself as a valuable contributor to the research community. His profile makes him a highly suitable candidate for recognition under a Best Researcher Award, affirming both his achievements and future promise.

Publications Top Notes

  1. Prototype of monitoring transportation pollution spikes through the internet of things edge networks

    • Authors: E. Nizeyimana, D. Hanyurwimfura, J. Hwang, J. Nsenga, D. Regassa

    • Year: 2023

    • Citations: 7

    • Journal: Sensors, 23(21), 8941

  1. Integration of Vision IoT, AI-based OCR and Blockchain Ledger for Immutable Tracking of Vehicle’s Departure and Arrival Times

    • Authors: M. Sichinga, J. Nsenga, E. Nizeyimana

    • Year: 2023

    • Citations: Not listed

    • Conference: 2023 8th Int. Conf. on Machine Learning Technologies

  1. Miniaturized Ultrawideband Microstrip Antenna for IoT‐Based Wireless Body Area Network Applications

    • Authors: U. Pandey, P. Singh, R. Singh, N.P. Gupta, S.K. Arora, E. Nizeyimana

    • Year: 2023

    • Citations: 15

    • Journal: Wireless Communications and Mobile Computing, 2023(1), 3950769

  1. IOT‐Based Medical Informatics Farming System with Predictive Data Analytics Using Supervised Machine Learning Algorithms

    • Authors: A. Rokade, M. Singh, S.K. Arora, E. Nizeyimana

    • Year: 2022

    • Citations: 20

    • Journal: Computational and Mathematical Methods in Medicine, 2022(1), 8434966

  1. Design of smart IoT device for monitoring short-term exposure to air pollution peaks

    • Authors: E. Nizeyimana, J. Nsenga, R. Shibasaki, D. Hanyurwimfura, J.S. Hwang

    • Year: 2022

    • Citations: 7

    • Journal: International Journal of Advanced Computer Science and Applications (IJACSA)

  1. Design of a decentralized and predictive real-time framework for air pollution spikes monitoring

    • Authors: E. Nizeyimana, D. Hanyurwimfura, R. Shibasaki, J. Nsenga

    • Year: 2021

    • Citations: 9

    • Conference: 2021 IEEE 6th Int. Conf. on Cloud Computing and Big Data Analysis

  1. Effect of Window Size on PAPR Reduction in 4G LTE Network Using Peak Windowing Algorithm in Presence of Non-linear HPA

    • Authors: M. Fidele, H. Damien, N. Eric

    • Year: 2020

    • Citations: 10

    • Conference: 2020 IEEE 5th Int. Conf. on Signal and Image Processing (ICSIP)

  1. Monitoring system to strive against fall armyworm in crops: case study on maize in Rwanda

    • Authors: D. Hanyurwimfura, E. Nizeyimana, F. Ndikumana, D. Mukanyiligira, …

    • Year: 2018

    • Citations: 7

    • Conference: 2018 IEEE SmartWorld/Ubiquitous Intelligence & Computing

  1. Comparative study on performance of High Performance Computing under OpenMP and MPI on Image Segmentation

    • Authors: E. Hitimana, E. Nizeyimana, G. Bajpai

    • Year: 2016

    • Citations: 1

    • Conference: Third International Conference on Advances in Computing, Communication and Informatics

  1. Development of an encrypted patient database including a doctor user interface

  • Author: E. Nizeyimana

  • Year: 2015

  • Citations: Not listed

  • Institution: African Institute for Mathematical Sciences Tanzania

Saurabh Kumar | Computer Science | Best Researcher Award

Mr. Saurabh Kumar | Computer Science | Best Researcher Award

Shri Ramswaroop Memorial University, India

Saurabh Kumar is a passionate and driven Computer Science Engineering student with a strong focus on Artificial Intelligence, Machine Learning, and Natural Language Processing (NLP). With a deep interest in solving complex real-world challenges, Saurabh has worked extensively on AI-driven projects, including fine-tuning state-of-the-art models, developing computer vision applications, and enhancing NLP systems. His expertise spans multiple domains, including deep learning, speech synthesis, and autonomous systems. Saurabh actively contributes to the tech community through open-source projects and research-driven initiatives. His commitment to continuous learning, innovation, and collaboration sets him apart as a dedicated researcher in AI.

Professional Profile

Education

Saurabh Kumar is currently pursuing a degree in Computer Science Engineering, specializing in Artificial Intelligence and Machine Learning. Throughout his academic journey, he has developed a strong foundation in data science, deep learning, and cloud computing. His coursework includes advanced machine learning algorithms, computer vision, NLP, and big data analysis. In addition to academic learning, he has actively participated in AI-focused bootcamps, hackathons, and online certifications to enhance his technical knowledge. His commitment to education is evident through his consistent efforts to bridge theoretical knowledge with practical applications in AI-driven research.

Professional Experience

Saurabh has gained hands-on experience through various AI-based projects and internships. His work includes developing a Vehicle Classification Model using deep learning and computer vision, creating an advanced Text-to-Speech (TTS) model, and building multiple real-time computer vision applications. Additionally, he has experience working with cloud platforms like IBM Cloud and using tools such as SQL, Tableau, and Docker for AI deployment. His ability to work with cutting-edge AI models and optimize them for real-world use cases highlights his technical acumen. Saurabh’s professional experience reflects a strong ability to innovate, research, and implement AI solutions effectively.

Research Interests

Saurabh Kumar’s research interests lie at the intersection of Artificial Intelligence, Machine Learning, and Natural Language Processing. He is particularly passionate about Conversational AI, Reinforcement Learning, Explainable AI, and Generative AI. His work focuses on optimizing AI models for practical applications, enhancing NLP-based speech synthesis, and improving AI-driven automation. He is also interested in exploring AI ethics, fairness in machine learning, and the development of AI-driven assistive technologies. His continuous learning in AI research methodologies and practical deployment strategies showcases his commitment to pushing the boundaries of AI innovation.

Research Skills

Saurabh possesses a strong set of research skills, including data analysis, deep learning model optimization, and AI-driven problem-solving. He is proficient in Python, PyTorch, TensorFlow, OpenCV, and NLP frameworks such as Hugging Face. His expertise in AI extends to cloud computing, SQL-based data management, and deployment of machine learning models. He has hands-on experience with real-world AI challenges, including speech synthesis, computer vision applications, and text-based AI solutions. His ability to develop, fine-tune, and deploy AI models efficiently highlights his strong research-oriented approach.

Awards and Honors

Saurabh Kumar has been recognized for his contributions to AI and research. He has successfully completed the OpenCV Bootcamp, demonstrating expertise in Computer Vision and Deep Learning. His AI-driven projects have received recognition within the tech community, and his work in fine-tuning AI models has been acknowledged on various platforms. His commitment to advancing AI research is evident through his achievements in open-source contributions and AI development. These accolades showcase his dedication to continuous learning and impactful research in Artificial Intelligence.

Conclusion

Saurabh Kumar is a dedicated AI researcher and technology enthusiast committed to innovation, research, and problem-solving. His expertise in Artificial Intelligence, Machine Learning, and NLP, combined with his passion for AI-driven solutions, makes him a strong candidate for the Best Researcher Award. His extensive work in AI model development, contributions to open-source projects, and commitment to continuous learning set him apart as a future leader in AI research. By further expanding his research publications and collaborative efforts, he is well-positioned to make significant contributions to the field of AI.

Publications Top Notes

  1. Title: Real Time Vehicle Classification Using Deep Learning—Smart Traffic Management
    Authors: T Maurya, S Kumar, M Rai, AK Saxena, N Goel, G Gupta
    Year: 2025

 

Tejasva Maurya | Computer Science | Best Researcher Award

Mr. Tejasva Maurya | Computer Science | Best Researcher Award

Shri Ramswaroop Memorial University, India

Tejasva Maurya is a dedicated researcher specializing in artificial intelligence, deep learning, and data science. With a strong academic background in computer science and engineering, he has made significant contributions to AI-driven solutions in smart traffic management, healthcare applications, and natural language processing. His work focuses on applying advanced machine learning models to real-world challenges, particularly in image processing, sentiment analysis, and human-computer interaction. Tejasva has published research in reputable journals and book chapters, showcasing his expertise in AI and its interdisciplinary applications. He has also gained valuable industry experience through internships in data science and analytics, working on projects that optimize machine learning models and enhance data-driven decision-making. His technical proficiency includes programming in Python, deep learning frameworks like PyTorch, and working with Hugging Face models for NLP and computer vision tasks. With multiple achievements in AI research, including a Scopus-indexed publication and competition awards, Tejasva continues to push the boundaries of innovation in artificial intelligence. His long-term goal is to contribute groundbreaking research in AI while bridging the gap between theoretical advancements and practical implementations.

Professional Profile

Education

Tejasva Maurya is currently pursuing a Bachelor of Technology in Computer Science and Engineering at Shri Ramswaroop Memorial University, where he has developed a strong foundation in programming, machine learning, and AI-driven applications. His coursework has provided extensive exposure to algorithms, data structures, deep learning, and computer vision techniques. Prior to his undergraduate studies, he completed his Intermediate education under the CBSE Board in 2021, securing an impressive 88.88%, which highlights his academic excellence and analytical abilities. His passion for artificial intelligence and research was evident early on, leading him to explore AI-related projects and specialized training in machine learning. Throughout his education, he has engaged in practical AI applications, contributing to his ability to develop innovative solutions in deep learning, NLP, and computer vision. His university studies have been complemented by self-driven research initiatives and internships, allowing him to apply theoretical knowledge to real-world problems. Tejasva’s continuous learning approach and commitment to AI research position him as an emerging talent in the field of artificial intelligence.

Professional Experience

Tejasva Maurya has gained substantial industry experience through internships and research projects in data science and machine learning. As a Data Scientist Intern at DevTown (June 2023 – December 2023), he worked on developing and optimizing deep learning models using PyTorch for real-world applications, focusing on NLP, image classification, and generative adversarial networks (GANs). He was responsible for designing data pipelines, preprocessing data, and conducting exploratory data analysis, ensuring the models were efficient and accurate. Additionally, Tejasva worked as a Data Analyst Trainee at MedTourEasy (August 2023 – August 2023), where he specialized in data visualization and statistical analysis. His role involved extracting actionable insights from large datasets using Python and Tableau and collaborating with different teams to implement data-driven strategies. His professional experience has strengthened his ability to apply AI techniques to practical problems, enhancing his understanding of machine learning implementation in different sectors. Through these roles, he has built strong analytical skills and technical expertise, preparing him for more advanced research in artificial intelligence and data science.

Research Interests

Tejasva Maurya’s research interests lie in artificial intelligence, deep learning, natural language processing, and computer vision. His primary focus is on developing AI-driven solutions for real-world applications, including smart traffic management, healthcare technology, and human-computer interaction. His work in vehicle classification using deep learning demonstrates his expertise in YOLO-based object detection models and their application in traffic surveillance and smart city planning. Additionally, he is keen on sentiment analysis and speech processing, contributing to AI models that improve text-to-speech (TTS) synthesis and NLP-based insights. His interest in federated learning for agricultural applications highlights his commitment to interdisciplinary research, exploring AI’s role in optimizing farming techniques and market stability. Tejasva is also exploring artificial emotional intelligence for psychological and mental health assessments, aiming to create AI models that assist in mental health diagnosis and emotional analysis. With a strong foundation in machine learning and AI, he aims to bridge the gap between theoretical advancements and practical AI implementations, driving innovation in multiple domains.

Research Skills

Tejasva Maurya possesses advanced research skills in machine learning, deep learning, and AI model development. His technical expertise includes Python programming, with proficiency in PyTorch, scikit-learn, NumPy, and OpenCV for implementing AI-based solutions. He has hands-on experience in computer vision techniques, including real-time object detection, image segmentation, and gesture-based human-computer interaction, leveraging tools like Mediapipe and Haar Cascades. In natural language processing (NLP), he is skilled in text processing, speech-to-text, and fine-tuning transformer models using Hugging Face frameworks. His research methodology includes data preprocessing, model fine-tuning, hyperparameter optimization, and performance evaluation using metrics like mAP and F1-score. He is proficient in working with large-scale datasets and has successfully published research on vehicle classification, federated learning, and AI-based healthcare applications. Additionally, he has experience in GANs and diffusion models, focusing on synthetic media generation and speech dataset augmentation. His ability to integrate AI solutions across different fields demonstrates his versatility as a researcher and innovator.

Awards and Honors

Tejasva Maurya has received multiple accolades for his contributions to AI research and innovation. One of his most notable achievements is publishing a Scopus-indexed journal article, “Real-Time Vehicle Classification Using Deep Learning—Smart Traffic Management,” in Engineering Reports (Wiley), which underscores the real-world impact of his research. He has also co-authored multiple book chapters in prestigious publishers like Nova Science, Wiley, and Bentham Science, covering AI applications in healthcare, federated learning, and artificial emotional intelligence. His research has been recognized for its contribution to intelligent traffic systems, patient-centric healthcare, and AI-powered decision-making. In addition to his research achievements, he secured 1st position in KIMO’s-Edge’ 23 Technology Competition, a testament to his problem-solving skills and technical expertise. His consistent excellence in AI research and project development has positioned him as an emerging leader in the field of artificial intelligence, with a strong track record of achievements.

Conclusion

Tejasva Maurya is a promising researcher in artificial intelligence, with expertise in deep learning, NLP, and computer vision. His strong academic foundation, technical proficiency, and impactful research make him a strong contender for recognition as a leading researcher in AI. With multiple publications, real-world AI applications, and industry experience, he has demonstrated both theoretical knowledge and practical problem-solving abilities. While he has made significant contributions, focusing on publishing in high-impact AI conferences, securing patents, and expanding interdisciplinary collaborations would further enhance his research portfolio. His dedication to bridging AI theory with real-world applications highlights his potential to contribute groundbreaking advancements in artificial intelligence.

Publications Top Notes

  1. Title: Real Time Vehicle Classification Using Deep Learning—Smart Traffic Management
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K., Goel, N., and Gupta, G.
    Publication: Engineering Reports, 7: e70082 (2025)
    DOI: https://doi.org/10.1002/eng2.70082

  2. Title: Patient Centric Healthcare
    Authors: Maurya, T., Kumar, S., Rai, M., Saxena, A.K.
    Book: Harnessing the Power of IoT-Enabled Machine Learning in Healthcare Applications
    Editors: Mritunjay Rai, Ravindra Kumar Yadav, Neha Goel, and Maheshkumar H. Kolekar

  3. Title: Integrating Artificial Intelligence and Deep Learning in Classification and Taking Care of DFU
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K., Pandey, J.K.
    Book: Machine Learning-Based Decision Support Systems for Diabetic Foot Ulcer Care
    Editors: Mritunjay Rai, Jay Kumar Pandey, and Abhishek Kumar Saxena

  4. Title: Federated Learning-Based Approach for Crop Recommendation and Market Stability in Agriculture
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Federated Learning for Smart Agriculture and Food Quality Enhancement
    Editors: Padmesh Tripathi, Bhanumati Panda, Shanthi Makka, Reeta Mishra, S. Balamurugan, and Sheng-Lung Peng

  5. Title: Artificial Emotional Intelligence for Psychological State and Mental Health Assessment
    Authors: Kumar, S., Maurya, T., Rai, M., Saxena, A.K.
    Book: Artificial Emotional Intelligence: Fundamentals, Challenges and Applications
    Editors: Padmesh Tripathi, Krishna Kumar Paroha, Reeta Mishra, and S. Balamurugan

André Guimarães | Computer Science | Best Researcher Award

Mr. André Guimarães | Computer Science | Best Researcher Award

Researcher at University of Beira Interior, Portugal

André Guimarães is a distinguished mechanical engineer and academic, renowned for his extensive contributions to mechanical engineering, industrial management, and digital transformation. With over a decade of professional experience in the manufacturing industry, he has seamlessly integrated practical expertise with academic pursuits. Currently, as a Ph.D. candidate in Industrial Engineering and Management at the University of Beira Interior, André is delving into advanced research areas, particularly focusing on Industry 4.0 and its implications for modern manufacturing processes. His role as a Guest Lecturer at the Polytechnic Institute of Viseu underscores his commitment to education and knowledge dissemination. André’s scholarly contributions include several scientific publications that explore the intersections of polymeric materials, lean management, and asset management. His active participation in various research projects highlights his dedication to advancing engineering practices and promoting digital transformation within the industry. André’s multifaceted career reflects a harmonious blend of industry experience, academic excellence, and a passion for fostering innovation in engineering.

Professional Profile

Education

André’s academic journey commenced with a Bachelor’s degree in Mechanical Engineering, laying a robust foundation in engineering principles. He further augmented his expertise by obtaining a Master’s degree in Mechanical Engineering and Industrial Management, where he engaged in research focusing on the development of novel adhesive joints utilizing fiber-metal laminates. Demonstrating a commitment to continuous learning, André pursued a postgraduate degree in Industry 4.0 and Digital Transformation from the Instituto Superior de Engenharia do Porto. This advanced training equipped him with contemporary insights into the integration of digital technologies within industrial frameworks. Currently, as a doctoral candidate at the University of Beira Interior, supported by a scholarship from the Foundation for Science and Technology, André is investigating the transformative impacts of digitalization on industrial processes. His diverse educational background reflects a dedication to both theoretical understanding and practical application, positioning him at the forefront of engineering innovation and digital advancement.

Professional Experience

André’s professional trajectory encompasses significant roles in both industry and academia. He dedicated over ten years to the manufacturing sector, notably serving as a Production Manager at IPROM – Indústria de Produtos Metálicos Lda. In this capacity, he honed his skills in production optimization, quality control, and team leadership, directly overseeing manufacturing operations and implementing process improvements. Transitioning to academia, André has been a Guest Lecturer at the Polytechnic Institute of Viseu since 2019, where he imparts knowledge in mechanical engineering and industrial management. His teaching methodology is enriched by his industry experience, providing students with practical perspectives on theoretical concepts. Additionally, André has contributed to various research initiatives, collaborating with institutions such as the University of Beira Interior’s Electromechatronic Systems Research Centre (CISE) and the Research Centre for Digital Services (CISeD) at the Polytechnic Institute of Viseu. His dual engagement in industry and academia underscores a comprehensive understanding of engineering challenges and solutions.

Research Interests

André’s research interests are centered around the integration of advanced technologies within industrial systems. He is particularly focused on Industry 4.0, exploring how digital transformation can enhance manufacturing efficiency and competitiveness. His work delves into the application of lean management principles in conjunction with digital tools to streamline production processes and reduce waste. André is also invested in the study of polymeric materials, investigating their properties and potential applications in modern engineering solutions. Another facet of his research involves asset management, where he examines strategies for optimizing the lifecycle and performance of industrial assets through predictive maintenance and data analytics. By bridging the gap between traditional engineering practices and contemporary technological advancements, André aims to contribute to the development of sustainable and efficient industrial systems.

Research Skills

André possesses a diverse skill set that encompasses both technical and analytical proficiencies. He is adept at conducting comprehensive data analysis, utilizing statistical tools to interpret complex datasets and inform decision-making processes. His expertise in numerical modeling and simulation enables him to predict system behaviors and optimize engineering designs. André is proficient in hydrodynamic modeling, particularly within the context of coastal engineering, allowing for accurate assessments of environmental impacts on engineering projects. His experience in project management is evidenced by his coordination of research initiatives, where he oversees project development, resource allocation, and team collaboration. Additionally, André’s teaching experience has honed his ability to communicate complex concepts effectively, both in written and oral formats, facilitating knowledge transfer and fostering educational growth.

Awards and Honors

Throughout his career, André has been recognized for his academic and professional excellence. He was awarded a doctoral scholarship by the Foundation for Science and Technology, acknowledging his potential to contribute significantly to research in Industrial Engineering and Management. His scholarly work has been featured in reputable journals and conferences, reflecting peer recognition of his contributions to the fields of Industry 4.0, lean management, and polymeric materials. André’s commitment to education and research has also been acknowledged through invitations to present at international conferences, where he has shared his insights on digital transformation and industrial optimization. These accolades underscore his dedication to advancing engineering practices and his impact on both academic and industrial communities.

Conclusion

In summary, André Guimarães exemplifies a professional who seamlessly integrates industry experience with academic prowess. His extensive background in mechanical engineering and industrial management, coupled with a strong focus on digital transformation, positions him as a leader in modern engineering practices. André’s dedication to research is evident through his diverse interests and active participation in projects that bridge the gap between traditional engineering and contemporary technological advancements. His commitment to education, demonstrated by his role as a Guest Lecturer, reflects a passion for fostering the next generation of engineers. As he continues his doctoral research, André is poised to make further significant contributions to the fields of industrial efficiency and digital innovation, driving progress in both academic and practical domains.

Publication Top Notes

  • Development of a Polymer Filament Extruder: Recycling 3D Printer Waste

    • Authors: André Guimarães, Samuel Messias, João Lopes, José Salgueiro, Daniel Gaspar
    • Year: 2025
    • Journal: Kexue Tongbao/Chinese Science Bulletin
  • Effects of Lean Tools and Industry 4.0 Technology on Productivity: An Empirical Study

    • Authors: André Guimarães, Eduardo e Oliveira, Marisa Oliveira, Teresa Pereira
    • Year: 2025
    • Journal: Journal of Industrial Information Integration
  • Implementation of Autonomous Mobile Robots in Intralogistics: Simulations in a Case Study

    • Authors: André Guimarães, A. Silva, J. Teixeira, F. Gomes, S. Martins
    • Year: 2025
    • Journal: Kexue Tongbao/Chinese Science Bulletin
  • The Influence of Consumer, Manager, and Investor Mood and Sentiment on Excess Market Returns

    • Authors: Pedro Nogueira Reis, António Pedro Soares Pinto, André Guimarães
    • Year: 2025
    • Journal: Investment Management and Financial Innovations
  • A Hybrid Strategy for Paint Greenhouse Optimization in Aerospace Manufacturing: Lean Principles and Mathematical Modelling

    • Authors: Maria Teresa Pereira, Marisa Pereira, Fernanda Ferreira, Francisco Silva, André Guimarães
    • Year: 2025
    • Conference: FAIM 25 – The 34th International Conference on Flexible Automation and Intelligent Manufacturing
  • Digital Transformation in Costing for Third-Part Logistics: A Case Study

    • Authors: Maria Teresa Pereira, Nuno Gabriel, Marisa Pereira, Filipe Ramos, André Guimarães
    • Year: 2025
    • Conference: DSMIE – 8th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange
  • Effects of Lean Tools and Industry 4.0 Technology on Productivity: An Empirical Study

    • Authors: André Guimarães, Eduardo e Oliveira, Marisa Oliveira, Teresa Pereira
    • Year: 2025
    • Journal: Journal of Industrial Information Integration
    • DOI: 10.1016/j.jii.2025.100787
  • The Influence of Consumer, Manager, and Investor Sentiment on US Stock Market Returns

    • Authors: Pedro Manuel Nogueira Reis, Antonio Pedro Soares Pinto, André Guimarães
    • Year: 2025
    • Journal: Investment Management and Financial Innovations
    • DOI: 10.21511/imfi.22(1).2025.18
  • A Integração da Transformação Digital na Gestão de Ativos nas Empresas Nacionais

    • Authors: Samuel Messias, André Guimarães, Hugo Raposo, Daniel Gaspar
    • Year: 2024
    • Conference: 11.º ENEGI, Encontro Nacional de Engenharia e Gestão Industrial
  • Asset Management and the Digital Transformation of Companies in Portugal: A Thematic Literature Review

    • Authors: Samuel Messias, André Guimarães, Hugo Raposo, Daniel Gaspar
    • Year: 2024
    • Journal: Journal of Management Science and Engineering

 

Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh, Imam Khomeini International University, Iran

Assoc Prof Dr. Navid Ghaffarzadeh is an accomplished engineer recognized for his innovative contributions to the field of engineering. With a focus on [specific area of expertise], he has been instrumental in advancing research and development initiatives. His dedication and impactful work earned him the prestigious Best Researcher Award, highlighting his commitment to excellence and collaboration. Navid continues to inspire through his research, aiming to drive advancements that benefit both industry and society.

 

Profile:

Education

Navid Ghaffarzadeh earned his PhD in Electrical Engineering from Iran University of Science and Technology in Tehran, completing his studies from September 2007 to April 2011. Prior to that, he obtained his Master of Science in Electrical Engineering from Amirkabir University of Technology (Tehran Polytechnic) between September 2005 and August 2007. He also holds a Bachelor of Science in Electrical Engineering from Zanjan University, where he studied from September 2001 to June 2005.

Professional Activities

Navid Ghaffarzadeh is actively engaged in the academic community as a reviewer for numerous prestigious journals in the field of electrical engineering. His reviewing contributions span a wide array of publications, including Renewable and Sustainable Energy Reviews, Applied Energy, Journal of Energy Storage, and IEEE Transactions on Power Systems, among others, with impact factors ranging from 1.276 to 16.799. With over 100 reviewed journal papers, Navid plays a vital role in advancing research quality and integrity in the field. His extensive experience demonstrates his commitment to fostering innovation and excellence in engineering research.

Research Interests

Navid Ghaffarzadeh’s research interests encompass a wide range of cutting-edge topics in electrical engineering. He focuses on renewable energy, exploring innovative solutions in battery energy storage systems and electric vehicles. His work in microgrid and smart grid design aims to enhance the efficiency and reliability of power systems. Navid is particularly interested in the application of artificial intelligence in renewable energy systems, as well as power systems protection and transients. Additionally, he investigates intelligent systems and optimization techniques to improve power systems, with a strong emphasis on ensuring power quality.

Honors and Awards: ‌

Navid Ghaffarzadeh has received numerous honors and awards throughout his academic and professional career. In 2012, he was honored with the IET Science, Measurement and Technology Premium Award for his outstanding paper on power quality disturbances, recognized as one of the best published in the journal. He has been named Outstanding Researcher at I.K International University multiple times, in 2013, 2014, 2016, and 2020, and has also received the Outstanding Professor award in 2017, 2019, 2020, 2021, and 2023. Additionally, he was awarded the Best Iranian PhD Dissertation in power system protection, highlighting his significant contributions to the field. Navid achieved top rankings in his studies, finishing first among PhD electrical power engineering students at Iran University of Science and Technology with a GPA of 18.72 out of 20, first among M.Sc. students at Amirkabir University of Technology with a GPA of 19.18 out of 20, and first among B.Sc. students at Zanjan University with a GPA of 18.36 out of 20.

 

Publication Top Note

A. Bamshad, N. Ghaffarzadeh, “A novel smart overcurrent protection scheme for renewables-dominated distribution feeders based on quadratic-level multi-agent system (Q-MAS),” Electrical Engineering, vol. 105, pp. 1497–1539, February 2023.

S. Ansari, N. Ghaffarzadeh, “A Novel Superimposed Component-Based Protection Method for Multi Terminal Transmission Lines Using Phaselet Transform,” IET Generation, Transmission & Distribution, vol. 17, no. 1, pp. 469–485, January 2023.

A. HN. Tajani, A. Bamshad, N. Ghaffarzadeh, “A novel differential protection scheme for AC microgrids based on discrete wavelet transform,” Electric Power Systems Research, vol. 220, pp. 1-12, July 2023.

A. Zarei, N. Ghaffarzadeh, “Optimal Demand Response-based AC OPF Over Smart Grid Platform Considering Solar and Wind Power Plants and ESSs with Short-term Load Forecasts using LSTM,” Journal of Solar Energy Research, vol. 8, no. 2, pp. 1367-1379, April 2023.

M. Dodangeh, N. Ghaffarzadeh, “A New Protection Method for MTDC Solar Microgrids using on-line Phaselet, Mathematical Morphology, and Signal Energy Analysis,” Energy Engineering & Management, vol. 13, no. 1, pp. 40-53, March 2023 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “An Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems,” Energy Engineering & Management, vol. 12, no. 2, pp. 12-25, August 2022 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “Optimal Location of HTS-FCLs Considering Security, Stability, and Coordination of Overcurrent Relays and Intelligent Selection of Overcurrent Relay Characteristics in DFIG Connected Networks Using Differential Evolution Algorithm,” Energy Engineering & Management, vol. 10, no. 2, pp. 14-25, May 2020 (in Persian).

A. Inanloo Salehi, N. Ghaffarzadeh, “Fault detection and classification of VSC-HVDC transmission lines using a deep intelligent algorithm,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 2, pp. 161-170, September 2022.

N. Ghaffarzadeh, H. Faramarzi, “Optimal Solar plant placement using holomorphic embedded power flow considering the clustering technique in uncertainty analysis,” Journal of Solar Energy Research, vol. 7, no. 1, pp. 997-1007, Winter 2022.

N. Ghaffarzadeh, A. Bamshad, “A new approach to AC microgrids protection using a bi-level multi-agent system,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 1, pp. 66-74, March 2022.

Amel SAHLI | Computer Science | Best Researcher Award

MS. Amel SAHLI | Computer Science | Best Researcher Award

École Nationale des Sciences de l’Informatique , Tunisia

Amel Sahli is a dedicated researcher pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique in Tunisia, focusing on optimizing e-learning processes through AI and key performance indicators. She holds a Master’s degree in information systems and has published significant work on performance measurement in education. Sahli’s diverse professional background includes roles as a contract lecturer and various internships, providing her with practical insights and teaching experience. Her technical skills in programming and web development, coupled with her proficiency in Arabic, French, and English, enhance her ability to engage with the international research community. Amel Sahli’s commitment to advancing educational methodologies through her research makes her a strong candidate for the Best Researcher Award, highlighting her potential to contribute meaningfully to the field of education technology.

 

Profile:

Education

Amel Sahli is currently pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique (ENSI) in Tunisia. Her doctoral research focuses on developing an integrated approach that leverages artificial intelligence (AI) and key performance indicators (KPIs) to optimize e-learning processes. Prior to her PhD, she earned a Master’s degree in information systems and web technologies, where she studied performance measurement in educational settings. This followed her Bachelor’s degree in computer science, during which she designed and implemented web applications for educational management. Sahli’s academic journey has been marked by consistent excellence, earning distinctions in her studies and developing a strong foundation in both theoretical and practical aspects of computer science. Her educational background not only highlights her technical competencies but also underscores her commitment to advancing the field of education through innovative research.

Professional Experiences

Amel Sahli has gained diverse professional experience that enriches her academic pursuits. She began her career as a bank intern and a counter agent, where she honed her customer service and operational skills. Following these roles, she interned at the Institut Supérieur d’Informatique du Kef, further deepening her understanding of information technology in educational contexts. In 2023, she transitioned into academia as a part-time lecturer, sharing her expertise in computer science with students. Currently, Sahli is engaged in research at the RIADI laboratory at the Université de la Manouba, where she applies her knowledge of artificial intelligence and KPIs to enhance e-learning processes. This combination of practical experience and academic engagement positions her as a well-rounded professional, capable of bridging theory and practice effectively. Sahli’s journey reflects her commitment to continuous learning and development in both research and teaching.

Research Skills

Amel Sahli possesses a robust set of research skills that are essential for her academic pursuits. Her expertise in quantitative and qualitative research methodologies allows her to design comprehensive studies that yield meaningful insights. Proficient in data analysis, Sahli employs statistical tools to interpret complex datasets, ensuring her findings are both reliable and impactful. Additionally, her experience in academic writing and publication equips her to effectively communicate her research outcomes to diverse audiences. Sahli’s ability to critically evaluate existing literature enables her to identify gaps in knowledge, guiding her own research questions. Her strong organizational skills facilitate the management of research projects, from initial conception to final execution. Moreover, her proficiency in various programming languages and web development enhances her capability to create innovative solutions within her research, particularly in optimizing e-learning processes. Overall, Sahli’s comprehensive research skill set positions her as a valuable contributor to the field of computer science and education technology.

Award and Recognition

Amel Sahli has been recognized for her outstanding contributions to the field of computer science and education. Notably, she participated in the “Inspiring Research & Innovation Using IEEE Publications” event, demonstrating her commitment to advancing research practices. Additionally, she attended the “23rd International Conference on Intelligent Systems Design and Applications,” where she engaged with leading experts and shared her insights. Her certifications from prestigious organizations, including Google and Microsoft, further attest to her dedication to continuous learning and professional development. Moreover, Sahli’s article on performance measurement in educational processes has been published in Procedia Computer Science, enhancing her visibility in academic circles. These recognitions not only reflect her hard work and innovation but also position her as a rising star in her field, earning her respect among peers and contributing to her eligibility for the Best Researcher Award.

Conclusion

In conclusion, Amel Sahli exemplifies the qualities sought in a candidate for the Best Researcher Award. Her academic journey, characterized by a robust educational background in computer science and information systems, has equipped her with the necessary tools to conduct meaningful research. Her focus on optimizing e-learning processes through the integration of AI and KPIs showcases her innovative approach to addressing contemporary educational challenges. Furthermore, her contributions to peer-reviewed journals and participation in international conferences illustrate her commitment to advancing knowledge in her field. Sahli’s diverse professional experiences, ranging from teaching to research, highlight her multifaceted skill set and adaptability. With her proficiency in multiple languages and technical expertise, she stands out as a collaborative researcher poised to make a lasting impact in education technology. Thus, Amel Sahli is not only a deserving nominee but also a potential leader in shaping the future of educational practices.

Publication Top Note

  • Conference Paper in Procedia Computer Science
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0
  • Conference Paper in Lecture Notes in Networks and Systems
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0