Parveen Saini | Materials Science | Best Researcher Award

Dr. Parveen Saini | Materials Science | Best Researcher Award 

Sr. Principal Scientist and Professor AcSIR, at CSIR National Physical Laboratory New Delhi, India.

Dr. Parveen Saini is a Sr. Principal Scientist at the CSIR-National Physical Laboratory in New Delhi, India. He leads the Conjugated Polymers, Graphene Technology, and Waste Management Lab within the Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division. With a strong academic background in polymer science and material science, Dr. Saini has developed innovative research in areas including conductive polymers, graphene technology, and sustainable waste management solutions ♻️. His contributions have earned him recognition in engineering sciences, particularly for developing advanced materials with applications in EMI shielding, sustainable coatings, and nanotechnology. His work reflects a commitment to both industrial innovation and environmental sustainability 🌍, and he continues to guide research at CSIR-NPL, with his findings being highly influential in both scientific and industrial domains.

Profile

Education 🎓

Dr. Saini began his academic journey at Delhi College of Engineering, University of Delhi, where he earned his B.Tech. in Polymer Science and Chemical Technology in 2002. Driven by his interest in materials science, he went on to complete his Ph.D. at the Indian Institute of Technology (IIT), Delhi, in 2012, specializing in conducting polymers. His Ph.D. research provided critical insights into material properties that have since informed his subsequent work in advanced polymeric and graphene-based technologies. This robust educational foundation equipped Dr. Saini with the knowledge and skills to lead cutting-edge research in material science, establishing him as a prominent figure in both the academic and industrial fields of polymer and nanotechnology.

Experience 💼

Dr. Saini’s professional journey began as a Graduate Engineer Trainee at Shriram Institute for Industrial Research, where he worked in the Rubber, Plastics, and Textile Lab. In 2004, he joined the CSIR-National Physical Laboratory, where he quickly advanced through various roles, starting as a Junior Scientist in the Polymeric & Soft Materials Section, then progressing to Scientist and Senior Scientist in the Materials Physics and Engineering Division. Since 2021, he has served as Sr. Principal Scientist, overseeing the Advanced Materials and Devices Metrology Division. Over his extensive career, Dr. Saini has been at the forefront of research in materials science, pioneering techniques in polymer development, waste management, and graphene technology for enhanced industrial applications.

Research Interests 🔍

Dr. Saini’s research is centered on the development of advanced materials, particularly in the realms of conjugated polymers, graphene technology, and waste management. His interests span the synthesis and application of conductive polymers for electromagnetic interference (EMI) shielding, sustainable coatings for corrosion resistance, and recycling methods for waste solar modules. Dr. Saini also explores innovative uses of graphene for energy storage and environmental sustainability, aiming to create materials that address industrial needs while promoting eco-friendly practices. His work on nanocomposites and sustainable materials highlights a commitment to improving material resilience and reducing environmental impact, making significant contributions to both industrial technology and green innovation 🌱.

Awards 🏆

In 2013, Dr. Parveen Saini received the prestigious CSIR Young Scientist Award in the area of Engineering Sciences, recognizing his pioneering contributions to material sciences. This honor reflects his influential work in developing novel conductive polymers and graphene-based materials with applications in EMI shielding and sustainable coatings. Dr. Saini’s award-winning research is known for its practical industrial applications, particularly in enhancing material durability and eco-friendliness. His accomplishments in the field have positioned him as a leading figure in advanced materials science, with his innovative approaches influencing the direction of polymer research and development in India and globally.

Publications 📚

Dr. Saini has authored numerous influential papers in high-impact scientific journals. Here are some of his notable publications:

    • Enhanced Anticorrosive Behavior of Waste Tea Bags Derived Nanocrystalline Cellulose Incorporated Polyaniline for Protection of Mild Steel Under Aggressive Saline Environment
      • Journal: Transactions of the Indian Institute of Metals
      • Year: 2024
      • Citations: 0
      • Summary: This study investigates the anticorrosive properties of polyaniline (PANI) composites incorporating nanocrystalline cellulose (NCC) derived from waste tea bags. The material demonstrates significant potential for protecting mild steel in saline conditions.
    • Extraction and Analysis of Back-Sheet Layer from Waste Silicon Solar Modules
      • Journal: Chemical Reports
      • Year: 2022
      • Citations: 1
      • Summary: This paper focuses on the extraction and analysis of back-sheet layers from waste silicon solar modules, addressing waste management and material recovery in photovoltaic industries.
    • Fe3O4/Graphene-Oxide/Chitosan Hybrid Aerogel Based High-Performance Supercapacitor: Effect of Aqueous Electrolytes on Storage Capacity & Cell Stability
      • Journal: Journal of Energy Storage
      • Year: 2022
      • Citations: 28
      • Summary: This research explores a Fe3O4/graphene oxide/chitosan hybrid aerogel for use in supercapacitors, emphasizing how aqueous electrolytes impact storage capacity and cell stability.
    • Historical Review of Advanced Materials for Electromagnetic Interference (EMI) Shielding: Conjugated Polymers, Carbon Nanotubes, Graphene-Based Composites
      • Journal: Indian Journal of Pure and Applied Physics
      • Year: 2019
      • Citations: 19
      • Summary: A comprehensive review of materials used in electromagnetic interference (EMI) shielding, particularly focusing on conjugated polymers, carbon nanotubes, and graphene composites.
    • Excellent Electromagnetic Interference Shielding and Mechanical Properties of High-Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder
      • Journal: Carbon
      • Year: 2015
      • Citations: 192
      • Summary: This study presents a high-performance EMI shielding material developed using carbon nanotube/polymer composites. The twin-screw extruder technique enhances both mechanical properties and shielding effectiveness.

Conclusion

Dr. Parveen Saini is a highly accomplished scientist with substantial contributions in materials science and engineering, particularly in the fields of conjugated polymers, graphene, and waste management technologies. His portfolio of publications, patents, and professional achievements makes him an excellent candidate for the Best Researcher Award. His innovative work and societal impact through SSR initiatives reflect his commitment not only to scientific excellence but also to addressing critical societal needs. Expanding international collaborations and exploring further sustainable materials applications could enhance his already impressive career trajectory.

 

Yongzhi Wang | Information Security | Best Scholar Award

Dr. Yongzhi Wang | Information Security | Best Scholar Award

Assistant Professor of Texas A&M University-Corpus Christi, United States .

Dr. Yongzhi Wang is an accomplished computer scientist and educator with a robust background in cloud computing, cybersecurity, and blockchain technologies. He currently serves as an Assistant Professor at Texas A&M University at Corpus Christi, where he conducts cutting-edge research, teaches computer science courses, and mentors students in academic and research pursuits. Dr. Wang’s academic journey includes significant roles at Park University and Xidian University, where he contributed to research initiatives and academic programs. He holds a Ph.D. and M.S. in Computer Science from Florida International University, with a focus on secure outsourced computing frameworks in cloud environments. Throughout his career, Dr. Wang has received prestigious awards, including the Distinguished Faculty Scholar Award and Best Paper Award, recognizing his exceptional scholarship and research contributions. His research interests encompass cloud computing security, blockchain applications, cybersecurity, and virtualized lab environments for computer education. Dr. Wang’s passion for advancing secure computing technologies and nurturing future computer scientists underscores his leadership and impact in the field of computer science.

Professional Profiles:

Education

Dr. Yongzhi Wang has pursued an extensive academic journey, culminating in advanced degrees in computer science from prestigious institutions. He earned his Doctor of Philosophy (Ph.D.) and Master of Science (M.S.) degrees in Computer Science from Florida International University in Miami, Florida, U.S.A., with a focus on secure outsourced computing frameworks in cloud environments. Dr. Wang also holds a Master of Engineering (M.Eng.) in Computer Science from Xidian University in China and a Bachelor of Engineering (B.Eng.) in Computer Science from the same institution. Throughout his academic career, Dr. Wang demonstrated exceptional academic prowess, reflected in his high academic achievements with a GPA of 3.91 for both his Ph.D. and M.S. degrees. His educational background underscores his expertise in computer science, particularly in areas related to cloud computing, cybersecurity, and advanced technologies. Dr. Wang’s academic foundation has positioned him as a leading researcher and educator in the field of computer science.

Professional Experience

Dr. Yongzhi Wang has amassed a wealth of professional experience across academia, research, and industry, reflecting his deep expertise in computer science and related disciplines. He currently serves as an Assistant Professor at Texas A&M University at Corpus Christi, where he conducts cutting-edge research, teaches computer science courses, and mentors students in academic and research endeavors. Prior to this role, Dr. Wang held positions as an Associate Professor and Assistant Professor at Park University, contributing significantly to research initiatives and academic programs. Before his academic appointments, Dr. Wang served as an Assistant Professor at Xidian University in China, where he conducted research, taught courses, and supervised graduate students. His professional journey also includes roles as a Research Assistant and Teaching Assistant at Florida International University and as a Staff Software Engineer at IBM, where he applied his technical expertise in software development and project management. Dr. Wang’s diverse professional background underscores his leadership, dedication, and impact in advancing computer science education, research, and innovation.

Research Interest

Dr. Yongzhi Wang’s research interests span several critical areas in computer science and related disciplines. His primary focus includes cloud computing and security, where he explores secure computing frameworks and protocols to address data privacy and integrity challenges in cloud environments. Dr. Wang is also engaged in research on blockchain technologies, investigating their applications in enhancing security and transparency across various industries. Another significant aspect of Dr. Wang’s research is cybersecurity, encompassing threat detection, risk management, and intrusion detection systems to safeguard critical infrastructures from cyber threats. He also delves into big data and data privacy, developing techniques for preserving data privacy and ensuring the integrity of sensitive information in large-scale data environments. Moreover, Dr. Wang’s interest extends to virtualized lab environments for computer education, aiming to enhance practical learning experiences and accessibility to computing resources. Through his research, Dr. Wang contributes to advancing secure and efficient computing technologies, addressing contemporary challenges in the digital age.

Award and Honors

Dr. Yongzhi Wang’s exemplary contributions to computer science have been recognized through prestigious awards and honors throughout his career. Notably, his research article was acknowledged as a Trending Article in IEEE Transactions on Computers, reflecting the relevance and impact of his work in the field. He was also honored with the Distinguished Faculty Scholar Award at Park University, recognizing his outstanding scholarship and academic contributions. In addition, Dr. Wang received the Best Paper Award at the 2017 International Conference on Networking and Network Applications for his significant research achievements. His excellence in teaching was acknowledged with a second-place finish in the Faculty Teaching Competition at Xidian University. Furthermore, he was awarded the Dissertation Year Fellowship at Florida International University in recognition of his exceptional doctoral research. These accolades highlight Dr. Wang’s dedication to advancing computer science through innovative research, teaching excellence, and scholarly pursuits, solidifying his reputation as a leader in the field.

Research Skills

Dr. Yongzhi Wang’s distinguished career in computer science has been marked by several prestigious awards and honors that underscore his outstanding contributions to the field. Notably, his research article was recognized as a Trending Article in IEEE Transactions on Computers, demonstrating the impact and relevance of his work within the academic community. Additionally, Dr. Wang received the esteemed Distinguished Faculty Scholar Award at Park University, acknowledging his exceptional scholarship and academic leadership. Further highlighting his research excellence, Dr. Wang was honored with the Best Paper Award at the 2017 International Conference on Networking and Network Applications for his significant contributions to the field. His dedication to teaching was also celebrated with a second-place finish in the Faculty Teaching Competition at Xidian University. Moreover, his exceptional doctoral research was recognized with the Dissertation Year Fellowship at Florida International University. These accolades reflect Dr. Wang’s commitment to advancing computer science through innovative research, teaching excellence, and scholarly achievements, positioning him as a distinguished leader in the field.

Publications

  1. Microthings: A generic IoT architecture for flexible data aggregation and scalable service cooperation
    Authors: Y. Shen, T. Zhang, Y. Wang, H. Wang, X. Jiang
    Year: 2017
    Citations: 76
  2. Viaf: Verification-based integrity assurance framework for MapReduce
    Authors: Y. Wang, J. Wei
    Year: 2011
    Citations: 76
  3. Secure -NN Query on Encrypted Cloud Data with Multiple Keys
    Authors: K. Cheng, L. Wang, Y. Shen, H. Wang, Y. Wang, X. Jiang, H. Zhong
    Year: 2017
    Citations: 71
  4. Special issue on security and privacy in network computing
    Authors: H. Wang, Y. Wang, T. Taleb, X. Jiang
    Year: 2020
    Citations: 69
  5. MTMR: Ensuring MapReduce computation integrity with Merkle tree-based verifications
    Authors: Y. Wang, Y. Shen, H. Wang, J. Cao, X. Jiang
    Year: 2016
    Citations: 46
  6. Result integrity check for MapReduce computation on hybrid clouds
    Authors: Y. Wang, J. Wei, M. Srivatsa
    Year: 2013
    Citations: 30
  7. IntegrityMR: Integrity assurance framework for big data analytics and management applications
    Authors: Y. Wang, J. Wei, M. Srivatsa, Y. Duan, W. Du
    Year: 2013
    Citations: 28
  8. CryptSQLite: SQLite with high data security
    Authors: Y. Wang, Y. Shen, C. Su, J. Ma, L. Liu, X. Dong
    Year: 2019
    Citations: 19
  9. Strongly secure and efficient range queries in cloud databases under multiple keys
    Authors: K. Cheng, Y. Shen, Y. Wang, L. Wang, J. Ma, X. Jiang, C. Su
    Year: 2019
    Citations: 18
  10. Trustworthy service composition with secure data transmission in sensor networks
    Authors: T. Zhang, L. Zheng, Y. Wang, Y. Shen, N. Xi, J. Ma, J. Yong
    Year: 2018
    Citations: 15

 

Malik Ashtar | Optoelectronic Materials | Best Researcher Award

Dr. Malik Ashtar | Optoelectronic Materials | Best Researcher Award

Postdoc Fellow of Jiangsu University, China .

Dr. Malik Ashtar is a skilled researcher specializing in condensed matter physics and materials science. He earned his Ph.D. in Condensed Matter Physics from Huazhong University of Science and Technology (HUST), focusing on rare-earth-based frustrated magnets. Dr. Ashtar’s research interests include geometrically frustrated magnetic quantum systems, correlated electron materials, and optoelectronic devices. Currently a post-doctoral fellow at Jiangsu University, Dr. Ashtar is enhancing the performance of ferroelectric-based photodetectors for self-powered operation. He received prestigious awards such as the China Government Scholarship for academic excellence. Dr. Ashtar’s expertise spans experimental techniques, magnetic and optical measurements, computational modeling, and data analysis. With a passion for scientific exploration and a commitment to advancing knowledge, Dr. Ashtar contributes significantly to the field of condensed matter physics, bridging fundamental research with practical applications in materials science.

Professional Profiles:

Education

Dr. Malik Ashtar has achieved significant milestones in his academic journey, culminating in a Ph.D. in Condensed Matter Physics from Huazhong University of Science and Technology (HUST) completed between 2017 and 2021. His doctoral research centered on the synthesis, structure, and magnetic properties of novel rare-earth-based frustrated magnets, contributing to the advancement of magnetic materials science. Prior to his Ph.D., Dr. Ashtar earned a Master of Science degree in Condensed Matter Physics from Air University Islamabad, where he conducted research under the guidance of Prof. Dr. Asghari Maqsood. His educational background also includes a Master of Science in General Physics from Abdul Wali Khan University Mardan and a Bachelor of Science degree from the University of Peshawar. Dr. Ashtar’s academic trajectory reflects his specialization and expertise in condensed matter physics, particularly in the areas of magnetic quantum systems and correlated electron materials.

Professional Experience

Dr. Malik Ashtar has accumulated valuable professional experience in the field of condensed matter physics through his research positions and academic roles. Currently serving as a post-doctoral fellow in the Department of Physics and Electronic Engineering at Jiangsu University (since 2022), Dr. Ashtar focuses on enhancing the performance of ferroelectric-based photodetectors for self-powered operation under the supervision of Prof. Cao Dawie. Previously, he served as a graduate research assistant at Air University Islamabad (2014-2015), conducting research under Prof. Asghari Maqsood in the area of condensed matter physics, likely specializing in geometrically frustrated magnetic quantum systems and correlated electron materials. Dr. Ashtar’s professional journey underscores his expertise in optoelectronic materials and devices, as well as his dedication to advancing scientific knowledge through research and academic pursuits.

Research Interest

Dr. Malik Ashtar’s research interests encompass a diverse range of topics within condensed matter physics and optoelectronic materials. He is particularly focused on studying geometrically frustrated magnetic quantum systems to understand unique magnetic behaviors arising from competing interactions. Additionally, Dr. Ashtar explores the magnetocaloric effect in rare-earth based magnetic materials for potential applications in energy-efficient cooling technologies. His research extends to correlated quantum spin systems, metallic magnetic materials, and multiferroic materials exhibiting coupled magnetic and ferroelectric properties. Currently, he is dedicated to enhancing the performance of ferroelectric-based photodetectors for self-powered operation, aiming to optimize their sensitivity and efficiency for optical sensing applications. Dr. Ashtar’s interdisciplinary approach integrates theoretical investigations, materials synthesis, and advanced characterization techniques, contributing to the advancement of fundamental understanding and technological development in condensed matter physics and materials science.

Award and Honors

Dr. Malik Ashtar has received notable awards and honors, including the China Government Scholarship (CGS/CSC) for his doctoral studies at Huazhong University of Science and Technology (HUST), showcasing his academic excellence and research potential. He was also recognized with Academic Excellence Awards during his doctoral tenure at HUST. Prior to his Ph.D., Dr. Ashtar received a Postgraduate Scholarship from Air University Islamabad for his outstanding performance in the Master’s program, where he was awarded a Gold Medal for academic excellence. These accolades highlight Dr. Ashtar’s exceptional dedication to condensed matter physics and optoelectronic materials research. His achievements underscore his commitment to advancing scientific knowledge and academic excellence. Dr. Ashtar’s contributions to the field are recognized both nationally and internationally, reflecting his leadership and expertise in the realm of condensed matter physics and materials science.

Research Skills

Dr. Malik Ashtar possesses a wide range of research skills essential for conducting innovative studies in condensed matter physics and materials science. He is proficient in advanced experimental techniques, including X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), for structural characterization of materials. Dr. Ashtar is skilled in magnetic measurements using tools such as the Physical Property Measurement System (PPMS) and SQUID magnetometer, allowing precise investigation of magnetic properties at low temperatures. He also has expertise in optical measurements using UV-Vis-NIR spectrophotometry and source-measure units for studying optical properties. In addition to experimental skills, Dr. Ashtar is proficient in computational techniques, utilizing VASP for first principle calculations and simulation of material properties. His strong data analysis capabilities using software like GSAS, Materials Studio, and Origin enable thorough interpretation and presentation of research findings. Dr. Ashtar’s comprehensive skill set empowers him to tackle complex research challenges and contribute to advancements in condensed matter physics through interdisciplinary collaborations and innovative problem-solving approaches.

Publications

  1. Publication Title: “Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications”
    • Authors: H Zhang, MA Marwat, B Xie, M Ashtar, K Liu, Y Zhu, L Zhang, P Fan, …
    • Journal: ACS applied materials & interfaces 12 (1), 1-37
    • Year: 2019
    • Citations: 168
  2. Publication Title: “Advanced catalysts for photoelectrochemical water splitting”
    • Authors: MA Marwat, M Humayun, MW Afridi, H Zhang, MR Abdul Karim, M Ashtar, …
    • Journal: ACS Applied Energy Materials 4 (11), 12007-12031
    • Year: 2021
    • Citations: 96
  3. Publication Title: “Largely enhanced discharge energy density in linear polymer nanocomposites by designing a sandwich structure”
    • Authors: MA Marwat, B Xie, Y Zhu, P Fan, W Ma, H Liu, M Ashtar, J Xiao, …
    • Journal: Composites Part A: Applied Science and Manufacturing 121, 115-122
    • Year: 2019
    • Citations: 74
  4. Publication Title: “Sandwich structure-assisted significantly improved discharge energy density in linear polymer nanocomposites with high thermal stability”
    • Authors: MA Marwat, B Xie, Y Zhu, P Fan, K Liu, M Shen, M Ashtar, S Kongparakul, …
    • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects 581, 123802
    • Year: 2019
    • Citations: 44
  5. Publication Title: “Effect of chromium substitution on the dielectric properties of mixed Ni-Zn ferrite prepared by WOWS sol–gel technique”
    • Authors: M Ashtar, A Munir, M Anis-ur-Rehman, A Maqsood
    • Journal: Materials Research Bulletin 79, 14-21
    • Year: 2016
    • Citations: 43
  6. Publication Title: “High remnant polarization, high dielectric constant and impedance performance of Nb/In Co-doped Bi0. 49La0. 01Na0. 49Li0. 01TiO3-δ ceramics”
    • Authors: MA Marwat, B Xie, M Ashtar, Y Zhu, P Fan, H Zhang
    • Journal: Ceramics International 44 (6), 6843-6850
    • Year: 2018
    • Citations: 27
  7. Publication Title: “A New Family of Disorder-Free Rare-Earth-Based Kagome Lattice Magnets: Structure and Magnetic Characterizations of RE3BWO9 (RE = Pr, Nd, Gd–Ho …”
    • Authors: M Ashtar, J Guo, Z Wan, Y Wang, G Gong, Y Liu, Y Su, Z Tian
    • Journal: Inorganic Chemistry 59 (8), 5368-5376
    • Year: 2020
    • Citations: 26
  8. Publication Title: “REZnAl 11 O 19 (RE= Pr, Nd, Sm–Tb): a new family of ideal 2D triangular lattice frustrated magnets”
    • Authors: M Ashtar, MA Marwat, YX Gao, ZT Zhang, L Pi, SL Yuan, ZM Tian
    • Journal: Journal of Materials Chemistry C 7 (32), 10073-10081
    • Year: 2019
    • Citations: 24
  9. Publication Title: “Structure and Magnetic Properties of Melilite-Type Compounds RE2Be2GeO7 (RE = Pr, Nd, Gd–Yb) with Rare-Earth Ions on Shastry–Sutherland Lattice”
    • Authors: ZT Malik Ashtar, Yuming Bai, Longmeng Xu, Zongtang Wan, Zijun Wei, Yong Liu …
    • Journal: Inorganic Chemistry 60 (6), 3626–3634
    • Year: 2021
    • Citations: 16
  10. Publication Title: “Field pulse induced magnetic memory effect at room temperature in exchange coupled NiFe2O4/NiO nanocomposites”
    • Authors: L Xu, Y Gao, A Malik, Y Liu, G Gong, Y Wang, Z Tian, S Yuan
    • Journal: Journal of Magnetism and Magnetic Materials 469, 504-509
    • Year: 2019
    • Citations: 13