Syed Shazaib Shah | Renewable Energy | Young Scientist Award

Syed Shazaib Shah | Renewable Energy | Young Scientist Award

Postgraduate Student, Beihang University, China.

Syed Shazaib Shah is an enthusiastic and motivated engineer with a strong commitment to advancing the fields of power engineering and renewable energy. His academic journey, marked by impressive research and significant industry experience, reflects his dedication to solving complex engineering problems and contributing to innovative solutions. Shazaib’s pursuit of knowledge and excellence has positioned him as a promising young scientist eager to collaborate with esteemed faculty and peers in the dynamic landscape of energy and engineering.

Profile

ORCID

Education📝

Shazaib holds a Master of Engineering in Power Engineering and Engineering Thermophysics from Beihang University, China, where he is currently furthering his studies (2021-2024). He previously earned his Bachelor of Science in Mechanical Engineering from the University of Engineering and Technology Lahore, Pakistan (2016-2020). His educational background has equipped him with a solid foundation in engineering principles, advanced computational methods, and deep learning applications. Throughout his academic career, he has demonstrated a strong focus on research, particularly in areas related to renewable energy and predictive maintenance.

Experience👨‍🏫

Shazaib has gained valuable industry experience through various roles that complement his academic pursuits. He served as a Production Engineer at Synthetic Products Enterprises Limited, where he directed machinery maintenance and improvements. Later, he advanced to the position of Assistant Head of Quality, managing quality control processes and engaging with multinational clients to enhance product quality and testing standards. His practical experience in power generation, including a month-long internship at the Northern Power Generation Company Limited, allowed him to collaborate with site engineers and gain hands-on knowledge of complex systems such as boilers and steam turbines.

Research Interest🔬 

Shazaib’s research interests lie primarily in renewable energy systems, specifically focusing on wind turbines and predictive maintenance using deep learning techniques. His master thesis project on Remaining Useful Life (RUL) estimation for wind turbines underscores his commitment to advancing predictive maintenance strategies in the energy sector. Additionally, he has worked on geometric optimization of gas turbine blade cooling passages, utilizing computational fluid dynamics (CFD) to enhance performance. Shazaib is particularly interested in exploring control optimization and smart systems integration for renewable energy technologies.

Awards and Honors🏆

Throughout his academic and professional journey, Shazaib has received several prestigious awards that highlight his innovative spirit and dedication to excellence. He was honored with the ASME Innovative Idea Award in 2018 during his time at UET Lahore, showcasing his ability to think creatively and develop impactful engineering solutions. Furthermore, he received the Takmeel-e Pakistan Modern Trends Debate Award in the same year, reflecting his strong communication skills. His achievements also include being awarded the CSC Scholarship from the Chinese government, enabling him to pursue his master’s degree in China, and obtaining professional engineering certification from the Pakistan Engineering Council.

Skills🛠️

Syed Shazaib Shah possesses a diverse skill set that enhances his capability as an engineer and researcher. He is proficient in various engineering software, including SolidWorks, AutoCAD, Ansys, and specialized tools like dt-Bladed and Simpack, essential for simulation and modeling in renewable energy applications. His programming skills in Python facilitate the development of neural networks for predictive maintenance, showcasing his technical versatility. Additionally, Shazaib’s excellent communication skills in English allow him to effectively convey complex engineering concepts to diverse audiences. His strong analytical and problem-solving abilities, coupled with a commitment to continuous learning, make him a valuable asset in any engineering context.

Conclusion 🔍 

Engr. Shazaib Shah exemplifies the qualities sought after for the Research for Young Scientist Award. His innovative research, collaborative efforts, technical skills, and commitment to academic excellence position him as a promising young scientist. By addressing the areas for improvement, he can further enhance his candidacy and contribute meaningfully to advancements in engineering and technology. Overall, he is a commendable candidate for the award, reflecting the future potential of young researchers in his field.

Publication Top Notes

Title: RUL Forecasting for Wind Turbines
Authors: Syed Shazaib Shah, Tan Daoliang, Chandan Kumar Sah
Year: 2024
Citation: Shah, S. S., Daoliang, T., & Kumar Sah, C. (2024). RUL Forecasting for Wind Turbines. [Journal/Conference Name]. Retrieved from [URL or DOI if available].

Title: RUL Forecasting for Wind Turbines (Poster)
Authors: Syed Shazaib Shah
Year: 2024
Citation: Shah, S. S. (2024). RUL Forecasting for Wind Turbines (Poster). [Event Name]. Retrieved from [URL or DOI if available].

Title: Geometric Optimization of a Gas Turbine Blade Cooling Passage Using CFD
Authors: Syed Shazaib Shah
Year: 2020
Citation: Shah, S. S. (2020). Geometric Optimization of a Gas Turbine Blade Cooling Passage Using CFD. [Thesis/Institution Name], Beihang University, Beijing, China. Retrieved from [URL or DOI if available].

Oksana Cherednichenko | Environmental Science | Best Researcher Award

Dr. Oksana Cherednichenko | Environmental Science | Best Researcher Award

Head of Genetic Monitoring Laboratory at Institute of genetics and physiology, Kazakhstan.

Oksana Cherednichenko is a distinguished geneticist specializing in human and animal cytogenetics, ecological genetics, radiobiology, and radioecology. She currently serves as the Head of the Genetic Monitoring Laboratory at the Institute of Genetics and Physiology in Almaty, Kazakhstan. With over 29 years of scientific experience, she has contributed significantly to understanding the impacts of radiation on human and animal genetics, focusing on adaptation mechanisms and biodosimetry. Her research explores various radiation effects, including ionizing and non-ionizing radiation, and their implications on human health. Cherednichenko’s expertise extends to managing national and international research projects, where she has developed models and methods for assessing radiation exposure and individual radiosensitivity. Her work is well-recognized, with over 140 publications, participation in several prestigious research grants, and collaborations that have advanced the field of genetic monitoring and environmental safety.

Professional Profile

Education

Oksana Cherednichenko completed her education at Al-Farabi Kazakh State University, earning her degree in Biology in 1992. She further pursued postgraduate studies at the Institute of Microbiology and Virology from 1992 to 1995. During this time, she conducted groundbreaking research on the mutagenic potential of the influenza virus, culminating in her thesis defense in 1998. This academic foundation equipped her with a robust understanding of genetic mechanisms, cytogenetic methodologies, and ecological impacts on biological systems. Cherednichenko’s education laid the groundwork for her successful career, allowing her to contribute to various research projects and initiatives focused on genetic monitoring and environmental health in Kazakhstan.

Professional Experience

Oksana Cherednichenko has an extensive professional background, spanning nearly three decades in the field of genetics. She has worked at the Institute of Genetics and Physiology (formerly the Institute of General Genetics and Cytology) since 1995, where she currently serves as the Head of the Genetic Monitoring Laboratory. Throughout her career, Cherednichenko has led numerous national and international research projects, focusing on the cytogenetic effects of ionizing radiation and environmental pollutants. Her role involves managing grants, coordinating research efforts, and supervising master’s theses and diploma works in biology. She has contributed significantly to the scientific community through her involvement in various research collaborations and her commitment to advancing knowledge in genetics and environmental science.

Research Interests

Cherednichenko’s research interests lie primarily in the fields of cytogenetics, ecological genetics, and radiobiology. She focuses on studying the genetic effects of environmental factors, particularly ionizing radiation, on human and animal populations. Her work includes investigating the mechanisms of radioadaptive responses, assessing individual radiosensitivity, and evaluating the impacts of low doses of radiation and chemical substances on genetic stability. Additionally, she is involved in cytogenetic monitoring of wildlife and humans using advanced cytomic analyses. Her research contributes valuable insights into the consequences of environmental exposure, supporting public health initiatives and conservation efforts in Kazakhstan and beyond.

Research Skills

Oksana Cherednichenko possesses a diverse range of research skills that enhance her contributions to the field of genetics. Her expertise includes advanced cytogenetic techniques, biodosimetry, and environmental monitoring, allowing her to assess the genetic consequences of radiation and chemical exposure. She is skilled in designing and conducting in vivo and in vitro studies, as well as implementing various cytomic analyses to evaluate chromosomal and nuclear abnormalities. Cherednichenko’s ability to manage and lead research projects, along with her experience in grant writing and collaboration, positions her as a key figure in genetic research. Her proficiency in data analysis and interpretation further supports her commitment to advancing scientific understanding in her areas of focus.

Awards and Honors

Throughout her distinguished career, Oksana Cherednichenko has received several accolades recognizing her contributions to science and education. She was honored with the state scientific scholarship from the Ministry of Education and Science of the Republic of Kazakhstan for talented young scientists from 1997 to 1999. Additionally, she has been awarded the “Algys” diploma and two “Kurmet” diplomas from the Ministry of Education and Science for her significant contributions to the development of education and science in Kazakhstan. Cherednichenko has authored over 140 scientific publications, demonstrating her commitment to advancing knowledge in her field and inspiring future generations of scientists through her mentorship and research initiatives.

Conclusion:

Oksana Cherednichenko is a highly suitable candidate for the Best Researcher Award, given her extensive experience, diverse research interests, and leadership in the field of genetic monitoring. Her work has made significant contributions to understanding the effects of radiation and environmental stressors on human and animal health. While her citation impact could be improved, her dedication to advancing science in Kazakhstan and her international collaborations make her a strong contender for the award.

Publication Top Noted

  1. Eco-toxicological effects assessment: comparative characteristics of environmental conditions and status of vertebrate indicator species in the “Dnepr” launch vehicle accident zone
    Authors: Cherednichenko, O., Chirikova, M., Magda, I., Pilyugina, A., Azizbekova, D.
    Year: 2024
  2. Trends in the cytogenetic and immunologic status of healthy persons; Kazakhstan, 2007–2022
    Authors: Cherednichenko, O., Demchenko, G., Kapysheva, U., Kozhaniyazova, U., Zhaksymov, B.
    Year: 2024
  3. Cytome analysis (micronuclei and nuclear anomalies) in bioindication of environmental pollution in animals with nuclear erythrocytes
    Authors: Cherednichenko, O., Magda, I., Nuraliyev, S., Pilyugina, A., Azizbekova, D.
    Year: 2024
  4. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study
    Authors: Cherednichenko, O., Pilyugina, A., Nuraliev, S., Azizbekova, D.
    Year: 2024
  5. Сytogenetical bioindication of pesticidal contamination
    Authors: Cherednichenko, O., Pilyugina, A., Nuraliev, S.
    Year: 2022
  6. Chronic human exposure to ionizing radiation: Individual variability of chromosomal aberration frequencies and G0 radiosensitivities
    Authors: Cherednichenko, O., Pilyugina, A., Nuraliev, S.
    Year: 2022
  7. Studying the mutagenic activity of drinking water and soil samples selected from Kentau and adjacent territories
    Authors: Cherednichenko, O., Nuraliev, S., Berkinbaev, G., Pilugina, A., Baigushikova, G.
    Year: 2021
  8. Ecological risk assessment and long-term environmental pollution caused by obsolete undisposed organochlorine pesticides
    Authors: Mit, N., Cherednichenko, O., Mussayeva, A., Bekmanov, B., Djansugurova, L.
    Year: 2021
  9. Assessment of the genotoxicity of water and soil in the places of storage of reserves of old pesticides by Allium-test
    Authors: Cherednichenko, O., Nuraliev, S., Bekmanov, B., Dzhansugurova, L., Baigushikova, G.
    Year: 2020
  10. The effects of DNA repair polymorphisms on chromosome aberrations in the population of Kazakhstan
    Authors: Djansugurova, L., Altynova, N., Cherednichenko, O., Khussainova, E., Dubrova, Y.E.
    Year: 2020

 

 

 

Yunfei Han | Greenhouse Gas | Best Researcher Award

Dr. Yunfei Han | Greenhouse Gas | Best Researcher Award

Student at University of Science and Technology of China, China

Yunfei Han is a dedicated researcher specializing in satellite-based greenhouse gas monitoring and detection technologies. At 30 years old, Yunfei has already contributed significantly to environmental science through his work with advanced instrumentation on the GaoFen-5 satellite series. A party member from Anhui, Yunfei possesses strong analytical skills and a hands-on approach to research. He is detail-oriented, responsible, and highly motivated, with a deep passion for problem-solving and innovation. With a background in both physics and automation, he has excelled in high-level collaborative research projects, earning prestigious awards and publishing in renowned journals. Yunfei is constantly pushing himself to make daily progress, driven by perseverance and a thirst for learning. His research has the potential to make substantial contributions to environmental monitoring and sustainability.

Professional Profile

Education

Yunfei Han has pursued a rigorous academic path, beginning with a bachelor’s degree in Automation from Anhui Normal University, completed in July 2016. Following this, he earned a second bachelor’s degree in Detection Technology and Automation Equipment from the University of Science and Technology of China in June 2019. Yunfei then continued his studies at the same university, where he has been working toward a Master’s degree in Physics since June 2019. His education provided him with a strong theoretical background, particularly in the areas of detection technologies and instrumentation, which has equipped him for his advanced research into greenhouse gas monitoring. Yunfei’s commitment to his education and continual learning has allowed him to develop the scientific foundation necessary for tackling complex research challenges.

Professional Experience

Throughout his career, Yunfei Han has demonstrated a deep commitment to research and innovation, particularly in the field of environmental monitoring. His professional experience centers around his work on the GaoFen-5B satellite, where he has played a key role in the development of advanced greenhouse gas monitoring instruments. Yunfei has worked extensively on the on-orbit spectral calibration and instrumental line shape functions, showcasing his technical proficiency in cutting-edge satellite technologies. His research also involves extensive data processing and retrieval technology, contributing to significant national projects, including the National High-Resolution Earth Observation Program. In addition to his research, Yunfei has been involved in various collaborative projects, where he worked with multidisciplinary teams to advance satellite-based environmental technologies.

Research Interests

Yunfei Han’s research interests focus on the development of advanced detection technologies for satellite-based environmental monitoring. His primary area of expertise lies in the monitoring of greenhouse gases through hyperspectral and remote sensing technologies. Yunfei is particularly interested in refining on-orbit calibration methods to improve the precision of satellite instruments, which are critical for accurate environmental assessments. His research also explores data retrieval technologies for satellites, with a specific focus on enhancing the performance of the GaoFen-5 satellite series. By leveraging his background in automation and physics, Yunfei aims to develop cutting-edge instruments that contribute to global efforts in climate change mitigation. His passion for this field is driven by a strong sense of social responsibility and the desire to tackle environmental challenges through innovation.

Research Skills

Yunfei Han is skilled in a variety of technical and research methodologies that are essential for advanced environmental monitoring. He has extensive expertise in the design and calibration of satellite-based instruments, particularly those used for detecting greenhouse gases. His work on the GaoFen-5B satellite has honed his skills in on-orbit spectral calibration and the development of instrumental line shape functions, both crucial for ensuring the accuracy of satellite data. Yunfei is also proficient in hyperspectral data processing and retrieval technologies, which are key components in satellite-based environmental monitoring systems. Additionally, he is adept at using office automation software and has strong analytical abilities that allow him to solve complex technical problems efficiently. His hands-on approach and willingness to take on challenges make him a versatile and innovative researcher.

Awards & Honors

Yunfei Han’s contributions to the field of environmental monitoring have been recognized through various awards and honors. In 2023, he received the Provincial and Ministerial Second Prize for his work on the National High-Resolution Earth Observation Program, where his efforts contributed to the development of hyperspectral greenhouse gas payload data processing and retrieval technology. His research on the GaoFen-5 satellite has also been published in prestigious journals like Applied Optics and Remote Sensing, further solidifying his reputation as a promising researcher in his field. Yunfei’s work on high-profile national projects demonstrates his ability to contribute to significant advancements in satellite technologies, and his dedication to pushing the boundaries of environmental research continues to earn him recognition.

Conclusion

Yunfei Han is a highly suitable candidate for the Best Researcher Award, especially within the field of environmental monitoring and satellite instrumentation. His strong academic background, impactful publications, and recognition through prestigious awards make him a compelling candidate. However, to further strengthen his case, he could benefit from showcasing more leadership in research projects and expanding the breadth of his research. His dedication to progress, problem-solving, and meeting challenges will serve him well in future research endeavors.

Publication Top Note

  • Research on Calculation Method of On-Orbit Instrumental Line Shape Function for the Greenhouse Gases Monitoring Instrument on the GaoFen-5B Satellite
    • Authors: Han, Y., Shi, H., Luo, H., Xiong, W., Hou, C.
    • Year: 2024
    • Journal: Remote Sensing, 16(12), 2171
  • A Novel Framework for Mixed Noise Removal From Greenhouse Gases Monitoring Instrument (GMI) Interferogram Images on GF5-02 Satellite
    • Authors: Zhu, F., Shi, H., Xiong, W., Sun, X., Wu, S.
    • Year: 2024
    • Journal: IEEE Transactions on Geoscience and Remote Sensing, 62, 5524515
  • Quantitative Analysis of Mixtures Based on Portable Spatial Heterodyne Raman Spectrometer
    • Authors: Bai, Y., Luo, H., Li, Z., Han, Y., Xiong, W.
    • Year: 2024
    • Journal: Analytical Letters, 57(13), 2018–2033
  • Greenhouse Gas Monitoring Instrument on the GF-5 Satellite-II: On-Orbit Spectral Calibration
    • Authors: Han, Y., Shi, H., Li, Z., Xiong, W., Hu, Z.
    • Year: 2023
    • Journal: Applied Optics, 62(22), 5839–5849
  • Greenhouse Gases Monitoring Instrument on a GF-5 Satellite-II: Correction of Spatial and Frequency-Dependent Phase Distortion
    • Authors: Wang, Q., Luo, H., Li, Z., Han, Y., Xiong, W.
    • Year: 2023
    • Journal: Optics Express, 31(2), 3028–3045
  • Correction of Invalid Data Based on Spatial Dimension Information of a Temporally and Spatially Modulated Spatial Heterodyne Interference Imaging Spectrometer
    • Authors: Ding, Y., Luo, H., Shi, H., Li, S., Xiong, W.
    • Year: 2021
    • Journal: Applied Optics, 60(22), 6614–6622
  • New Flat-Field Correction Method for Spatial Heterodyne Spectrometer
    • Authors: Ding, Y., Luo, H., Shi, H., Han, Y., Xiong, W.
    • Year: 2020
    • Journal

Ali OUBELKACEM | Energy | Best Researcher Award

Prof. Ali OUBELKACEM | Energy | Best Researcher Award

Professor at FS/UMI, Morocco

Prof. Ali Oubelkacem is a distinguished academic in the Department of Computer Science at Université Moulay Ismail, Meknès, Morocco. He holds a Doctorate in Computer Science and a Master’s degree from INSA Lyon, specializing in Information Systems and Networks. With a career spanning over two decades, he has contributed significantly to research in material physics, magnetism, numerical scientific computing, and deep learning, particularly in energy applications. His involvement in various national and international research projects, including studies on nanostructured systems and the impact of technology on environmental issues, underscores his commitment to advancing scientific knowledge. Prof. Oubelakcem has presented at numerous international conferences and has published extensively in peer-reviewed journals, showcasing his expertise in perovskite solar cells and magnetic materials. His academic leadership is complemented by his role in training future scientists and his active participation in educational technology initiatives.

Professional Profile

Education

Prof. Ali Oubelkacem holds a robust academic background in the fields of computer science and physics. He earned his Doctorate in Science with a focus on Computer Physics from Université Moulay Ismail in 2004, achieving the distinction of Très honorable. Prior to this, he completed a Master’s Degree in Specialized Computer Science at INSA Lyon in collaboration with the École Nationale de l’Industrie Minérale in Rabat in 2005, where he specialized in Information Systems and Networks, graduating with A.Bien. His foundational education includes a Diploma in Advanced Studies in Mechanics, Energy, and Thermodynamics from Université Abdelmalek Essaâdi in Tétouan in 2000, and a Master’s Degree in Specialized Science in Mechanics from Université Cadi Ayyad in 1998, both with A.Bien. Prof. Oubelkacem’s extensive education has provided him with a solid foundation for his research and teaching career in computer science and materials physics.

Professional Experience

Prof. Ali Oubelkacem is a distinguished academic and researcher at the Département d’Informatique, Faculté des Sciences, Université Moulay Ismail in Meknès, Morocco. He has held the position of Professor of Higher Education since 2010, contributing significantly to the field of computer science. With a robust academic background, including a Doctorate in Computational Physics and a Specialized Master’s in Computer Science, he specializes in materials physics, magnetism, and deep learning applied to energy systems. His professional journey includes various roles, such as a trainer at the Institut Spécialisé Industriel de Mohammedia, where he taught modules related to information systems and networks. Prof. Oubelkacem is also an active member of several research teams and has participated in numerous national and international research projects. His involvement in organizing conferences and publishing research papers highlights his commitment to advancing knowledge in his field.

Research Interests

Prof. Ali Oubelkacem specializes in various fields of research, including the physics of materials and magnetism, scientific numerical calculations, and deep learning applications in energy domains. His work focuses on the modeling of nanostructured systems, emphasizing the magnetic properties and behavior of innovative materials. He has been actively involved in numerous national and international research projects, including the use of information and communication technologies (ICT) for the analysis and modeling of marine acidification. Prof. Oubelkacem has also explored the application of machine learning techniques to optimize photovoltaic parameters, contributing to advancements in renewable energy technologies. His extensive publication record in international journals highlights his commitment to advancing scientific knowledge in materials science, particularly in the development of perovskite solar cells and magnetic materials. Through his research, he aims to bridge theoretical concepts with practical applications, fostering innovation in both academia and industry.

Awards and Honors

Prof. Ali Oubelkacem has garnered recognition for his significant contributions to the field of computer science and material physics. He has been awarded multiple grants for his research projects, including funding for his participation in international collaborations such as the “I-WALAMAR” project with German research institutions. His dedication to academic excellence is further demonstrated through his active involvement in numerous international conferences, where he has not only presented his findings but also contributed to the advancement of knowledge in his areas of expertise. In addition to his research accomplishments, Prof. Oubelkacem is known for his commitment to teaching and mentoring students, inspiring the next generation of scientists and researchers. His work has been acknowledged through various publication accolades in reputable journals, highlighting his innovative approach in areas such as deep learning and material magnetism. These achievements underscore Prof. Oubelkacem’s stature as a leading researcher in his field.

Conclusion

Pr. Ali Oubelkacem demonstrates a robust profile as a researcher with significant contributions to the fields of material physics and informatics. His strengths in academic qualifications, professional experience, research contributions, publications, and conference engagement position him as a suitable candidate for the Best Researcher Award. By addressing areas for improvement, particularly in enhancing the societal impact of his research and expanding his collaborative efforts, he could further amplify his contributions to the scientific community. His commitment to ongoing professional development and involvement in national and international projects underscores his potential to continue making valuable contributions to his field.

Publication Top Note

  1. Effects of moringa (Moringa oleifera) leaf powder supplementation on growth performance, haematobiochemical parameters and gene expression profile of stinging catfish, Heteropneustes fossilis
    • Authors: Sharker, M.R., Hasan, K.R., Alam, M.A., Islam, M.M., Haque, S.A.
    • Year: 2024
    • Journal: Aquaculture Reports
    • Volume/Page: 39, 102388
    • Citations: 0
  2. Diversity pattern of ichthyofaunal assemblage in South-central coastal region of Bangladesh
    • Authors: Sharker, M.R., Kabir, M.A., Choi, S.D., Rahman, M.M., Shamuel, T.A.
    • Year: 2024
    • Journal: European Zoological Journal
    • Volume/Issue/Page: 91(2), pp. 830–841
    • Citations: 0
  3. Nutritional composition of available freshwater fish species from homestead ponds of Patuakhali, Bangladesh
    • Authors: Sumi, K.R., Sharker, M.R., Rubel, M., Islam, M.S.
    • Year: 2023
    • Journal: Food Chemistry Advances
    • Volume/Page: 3, 100454
    • Citations: 2
  4. Nutritional profiling of some selected commercially important freshwater and marine water fishes of Bangladesh
    • Authors: Ullah, M.R., Rahman, M.A., Haque, M.N., Islam, M.M., Alam, M.A.
    • Year: 2022
    • Journal: Heliyon
    • Volume/Issue/Page: 8(10), e10825
    • Citations: 8
  5. Non-Financial and Financial Factors Influencing the Mode of Life of the Gher Farmers from the Western Coastal Areas of Bangladesh
    • Authors: Roy, P., Choi, S.D., Nadia, Z.M., Kamrujjaman, M., Sharker, M.R.
    • Year: 2022
    • Journal: Egyptian Journal of Aquatic Biology and Fisheries
    • Volume/Issue/Page: 26(2), pp. 555–576
    • Citations: 0
  6. Twoblotch ponyfish Nuchequula blochii (Valenciennes, 1835) in the Sundarban Reserve Forest habitat of Bangladesh: Second record and establishment probability
    • Authors: Hanif, M.A., Hossen, S., Sharker, M.R., Siddik, M.A.B.
    • Year: 2021
    • Journal: Lakes and Reservoirs: Science, Policy and Management for Sustainable Use
    • Volume/Issue/Page: 26(3), e12368
    • Citations: 0
  7. Construction of a Genetic Linkage Map Based on SNP Markers, QTL Mapping and Detection of Candidate Genes of Growth-Related Traits in Pacific Abalone Using Genotyping-by-Sequencing
    • Authors: Kho, K.H., Sukhan, Z.P., Hossen, S., Jung, H.-J., Nou, I.-S.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 713783
    • Citations: 8
  8. Effective accumulative temperature affects gonadal maturation by controlling expression of GnRH, GnRH receptor, serotonin receptor and APGWamide gene in Pacific abalone, Haliotis discus hannai during broodstock conditioning in hatcheries
    • Authors: Sukhan, Z.P., Cho, Y., Sharker, M.R., Rha, S.-J., Kho, K.H.
    • Year: 2021
    • Journal: Journal of Thermal Biology
    • Volume/Page: 100, 103037
    • Citations: 11
  9. Thermal Stress Affects Gonadal Maturation by Regulating GnRH, GnRH Receptor, APGWamide, and Serotonin Receptor Gene Expression in Male Pacific Abalone, Haliotis discus hannai During Breeding Season
    • Authors: Sukhan, Z.P., Sharker, M.R., Cho, Y., Choi, K.S., Kho, K.H.
    • Year: 2021
    • Journal: Frontiers in Marine Science
    • Volume/Page: 8, 664426
    • Citations: 10
  10. First record of whitespot sandsmelt, Parapercis alboguttata (Günther, 1872) from the southeast coast of Bangladesh
    • Authors: Hanif, M.A., Siddik, M.A.B., Sharker, M.R.
    • Year: 2021
    • Journal: Indian Journal of Geo-Marine Sciences
    • Volume/Issue/Page: 50(6), pp. 498–501
    • Citations: 0

 

Adefarati Oloruntoba | Energy| Best Researcher Award

Dr. Adefarati Oloruntoba | Energy| Best Researcher Award

Postdoctoral Associate at University of Calgary, Canada.

Dr. Adefarati Oloruntoba is a distinguished expert in clean energy and environmental research, boasting over 7 years of experience in innovative advancements in chemical processes and environmental solutions. He holds a PhD in Power Engineering and Thermophysics and has published more than 20 scholarly articles in prominent journals. His expertise encompasses renewable energy, environmental impact assessment, and low-carbon fuel development. Currently a Postdoctoral Associate at the University of Calgary, Dr. Oloruntoba employs advanced modelling tools to analyze the environmental impact of renewable natural gas and collaborates with industry partners on significant LNG projects. He has received multiple accolades, including the Energy Scholar of the Year and Outstanding Graduate Award, highlighting his exceptional contributions to the field. With strong leadership skills and a commitment to teaching and mentoring, Dr. Oloruntoba is dedicated to advancing sustainable energy solutions and engaging with stakeholders to influence climate policy effectively.

Profile👤

Education📝

Adefarati Oloruntoba has an impressive educational background that reflects a strong commitment to advancing knowledge in energy and environmental fields. He obtained a PhD in Power Engineering and Thermophysics, specializing in process intensification, from the China University of Petroleum in 2023. Prior to that, he earned a Master of Science in Energy and Environment from the University of Leeds, UK, in 2018, where he gained foundational knowledge in sustainable energy solutions. He also completed a Bachelor of Science in Industrial Chemistry at the University of Abuja, Nigeria. Additionally, Oloruntoba furthered his expertise by participating in a 50 ECTS PhD course in sustainable biomass resources and technology pathways for biogas and biorefineries at Aalborg University, Denmark, in 2019. Most recently, he received a Certificate in University Teaching and Learning from the University of Calgary in 2024, highlighting his dedication to effective teaching and knowledge dissemination.

Experience👨‍🏫

Adefarati Oloruntoba possesses over seven years of extensive experience in clean energy and environmental research. Currently serving as a Postdoctoral Associate at the University of Calgary, he specializes in analyzing the environmental impact of renewable natural gas fuels and optimizing biomass gasification for bioLNG production. His previous role as a CFD Process Technologist at China University of Petroleum involved managing process improvement projects, leading to significant cost savings and efficiency increases in oil refining. Oloruntoba has also worked as a Process Technologist at NABDA, where he developed proposals for hydrogen fuel projects and provided training on renewable energy technologies. With over 20 publications, his research contributions span areas such as low-carbon fuels and environmental impact assessments, showcasing his expertise in chemical processes and climate policy. Oloruntoba’s effective communication and leadership skills have enabled him to mentor students and collaborate successfully with industry partners, making him a key figure in advancing sustainable energy solutions.

Research Interest🔬 

Adefarati Oloruntoba’s research interests center on advancing clean energy technologies and environmental sustainability. With a robust foundation in power engineering and thermophysics, Adefarati focuses on the development of low-carbon fuels and innovative chemical processes that minimize environmental impact. His work encompasses life cycle assessment (LCA) and environmental impact evaluations of emerging energy technologies, emphasizing their role in climate policy and renewable energy systems. He is particularly interested in the application of computational fluid dynamics (CFD) simulations to optimize chemical processes and enhance reactor design. Additionally, Adefarati aims to explore the potential of biomass resources for sustainable energy production, advocating for policy frameworks that support cleaner energy transitions. His commitment to knowledge dissemination is evident in his teaching and mentoring efforts, as he strives to engage stakeholders in meaningful discussions about the implications of clean energy solutions on society and the environment.

Awards and Honors🏆

Adefarati Oloruntoba has garnered numerous awards and honors throughout his academic and professional journey, reflecting his dedication to clean energy and environmental research. Notably, he received the Hargreaves Research Project Award from the University of Leeds in 2017, acknowledging his innovative contributions in energy and environmental studies. In 2020, he was named the Energy Scholar of the Year, a recognition that celebrates his outstanding achievements in the energy sector. His commitment to academic excellence was further recognized with the Outstanding Graduate Award for both 2021 and 2022 from the China University of Petroleum, highlighting his exceptional performance during his PhD program. Additionally, he received the Excellent Volunteering Award and a Bronze Award for Volunteering from the UK Foreign Commonwealth Office, showcasing his commitment to community engagement and service. These accolades not only reflect his scholarly contributions but also his dedication to advancing sustainable practices in the energy industry.

Skills🛠️

Adefarati Oloruntoba possesses a diverse skill set that makes him a valuable asset in the fields of clean energy and environmental research. His expertise in renewable energy technologies and environmental impact assessment equips him to develop innovative solutions for sustainability challenges. Oloruntoba’s proficiency in computational fluid dynamics (CFD) simulations and data analysis allows him to model complex systems and optimize chemical processes effectively. With over 20 published research papers, he demonstrates strong analytical skills and a commitment to advancing scientific knowledge. His communication skills are exceptional, enabling him to articulate complex ideas clearly and engage with various stakeholders, including industry partners and policymakers. Oloruntoba’s leadership experience is evident in his ability to manage multidisciplinary teams and mentor emerging professionals. Additionally, his background in teaching and effective project management highlights his dedication to knowledge dissemination and collaboration. Overall, Adefarati Oloruntoba’s comprehensive skill set positions him as a leading expert in his field.

Conclusion 🔍 

Adefarati Oloruntoba exemplifies the ideal candidate for the Research for Best Scholar Award, showcasing a remarkable commitment to advancing clean energy and environmental solutions. With over 7 years of research experience and 20+ publications, Oloruntoba has significantly contributed to the fields of renewable energy, climate policy, and environmental impact assessments. His impressive educational background, including a PhD in Power Engineering and Thermophysics, coupled with a strong track record of leadership and project management, underscores his capability to drive innovative research initiatives. Additionally, Oloruntoba’s effective communication skills enable him to engage with diverse stakeholders, fostering collaboration and enhancing the societal impact of his work. While he has already made significant strides, further international collaboration and public engagement could amplify his contributions even more. Overall, Adefarati Oloruntoba’s dedication, expertise, and innovative spirit make him a deserving recipient of the Research for Best Scholar Award.

Publication Top Notes
  • Heavy Metal Contamination in Soils, Water, and Food in Nigeria from 2000–2019: A Systematic Review on Methods, Pollution Level and Policy Implications
    • Authors: Oloruntoba, A., Omoniyi, A.O., Shittu, Z.A., Ajala, R.O., Kolawole, S.A.
    • Year: 2024
    • Citations: 1
  • Investigating choking phenomena in CFB risers under different operating parameters
    • Authors: Xiao, H., Ke, X., Oloruntoba, A., Zhang, Y., Liu, C.
    • Year: 2024
    • Citations: 0
  • Improving the precision of solids velocity measurement in gas-solid fluidized beds with a hybrid machine learning model
    • Authors: Xiao, H., Oloruntoba, A., Ke, X., Zhang, Y., Wang, J.
    • Year: 2024
    • Citations: 3
  • Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas
    • Authors: Xu, C., Zhang, Y., Peng, Y.-L., Oloruntoba, A., Jiang, S.
    • Year: 2024
    • Citations: 3
  • Experimental Study on Back-Flushing Characteristics of an In-Vessel Filtration System in Fischer-Tropsch Slurry Reactors
    • Authors: Gu, P., Zhang, Y., Du, H., Oloruntoba, A.
    • Year: 2023
    • Citations: 1
  • Performance evaluation of gas maldistribution mitigation via baffle installation: Computational study using ozone decomposition in low-velocity dense fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Li, S.
    • Year: 2023
    • Citations: 6
  • Effects of Gas Condition and Baffle Installation on Bed Hydrodynamics in FCC Regenerators
    • Authors: Oloruntoba, A., Zhang, Y.-M., Mukhtar, Y.M.F.
    • Year: 2023
    • Citations: 0
  • An environmentally friendly turnkey method to determine pore volume of powdered catalysts
    • Authors: Jiang, Q., Olarte, M., Guo, Y., Ren, F., Song, H.
    • Year: 2022
    • Citations: 0
  • Hydrodynamics-reaction-coupled simulations in a low-scale batch FCC regenerator: Comparison between an annular and a free-bubbling fluidized beds
    • Authors: Oloruntoba, A., Zhang, Y., Xiao, H.
    • Year: 2022
    • Citations: 5
  • State-of-the-Art Review of Fluid Catalytic Cracking (FCC) Catalyst Regeneration Intensification Technologies
    • Authors: Oloruntoba, A., Zhang, Y., Hsu, C.S.
    • Year: 2022
    • Citations: 2

MOHD YUSUF KHAN | Clean Energy | Best Researcher Award

Assoc Prof Dr. MOHD YUSUF KHAN | Clean Energy | Best Researcher Award

Assoc Prof Dr. MOHD YUSUF KHAN, King Fahd University of Petroleum and Minerals, Saudi Arabia

Assoc. Prof. Dr. Mohd Yusuf Khan is a distinguished academic at King Fahd University of Petroleum and Minerals (KFUPM) in Saudi Arabia, where he specializes in clean energy technologies and sustainable practices. With extensive experience in research and development, Dr. Khan has significantly contributed to advancing hydrogen technologies and carbon management through his work at the University Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM). His academic journey includes notable positions as a Research Scientist and a Post-doctoral Fellow, during which he has published numerous articles in reputable journals. Dr. Khan is committed to fostering innovation in the clean energy sector and is dedicated to educating the next generation of engineers and scientists.

Profile:

Academics:

Assoc. Prof. Dr. Mohd Yusuf Khan is currently a faculty member at King Fahd University of Petroleum and Minerals, Saudi Arabia. He holds a Ph.D. in Chemical Engineering with a specialization in Polymer Science/Engineering from Yeungnam University, South Korea, under the guidance of Prof. Seok Kyun Noh. His doctoral research focused on Fe (III)-Mediated MMA Polymerization without any external initiator, graduating with an impressive GPA of 4.37/4.5. Dr. Khan also holds a Master of Science degree in Industrial Chemistry from Aligarh Muslim University, where he was awarded a Gold Medal for academic excellence, and a Bachelor’s degree in the same specialization from the same institution.

Dr. Khan’s expertise spans polymer science, chemical engineering, and industrial chemistry, contributing to advancements in sustainable materials and energy solutions.

Professional Experiences:

Assoc. Prof. Dr. Mohd Yusuf Khan is a dedicated research scientist currently serving at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, in the Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM). Since 2021, he has held the position of Research Scientist-II, following a five-year tenure as Research Scientist-III at the same center. Prior to KFUPM, Dr. Khan gained international experience as a Post-doctoral Fellow at both the Center of Excellence in Nanotechnology at KFUPM and Soongsil University in South Korea. He also worked in the industry as a Production Officer at LUPIN Pharma Pvt. Ltd., Bhopal, India.

Awards:

Assoc. Prof. Dr. Mohd Yusuf Khan, currently at King Fahd University of Petroleum and Minerals, Saudi Arabia, has earned numerous accolades throughout his academic and professional career. He was awarded the prestigious BK (Brain Korea)-21 fellowship (2008-2012) for his Ph.D. in South Korea. His innovative research has led to recognition at major events, including the 25th ITEX 2014 for a photothermoelectric air duct system and the ITEX 2023 Appreciation Award for mentoring a gold-winning student at Asia’s leading technology exhibition. Dr. Khan also received the Best Paper Award in 2020 for research on biomass-derived carbon nanosheets, as well as multiple honors for his contributions to polymer science and industrial chemistry. He earned a Gold Medal in his M.Sc. for academic excellence at Aligarh Muslim University.

Publication Top Notes:

Steam reforming of dodecane using Ni-red mud catalyst: A sustainable approach for hydrogen production

Authors: Alfuhaid, L.T., Nasser, G.A., Alabdulhadi, R.A., Yamani, Z.H., Helal, A.

Year: 2024

Journal: International Journal of Hydrogen Energy, 2024, 86, pp. 177–184

Citations: 0

Fabrication and characterization of rippled graphene/LDPE composites with enhanced hydrogen barrier properties

Authors: Alkrunz, M., Shajahan, S., Elkaffas, R., Zweiri, Y., Abdul Samad, Y.

Year: 2024

Journal: International Journal of Hydrogen Energy, 2024, 85, pp. 794–803

Citations: 0

Effect of Synthetic Methodology on the Physicochemical Attributes and Electrocatalytic Activity of NiAl-LDHs for the Oxygen Evolution Reaction

Authors: Hanif, A., Khan, M.Y., Ehsan, M.A., Abdul Aziz, M., Khan, A.

Year: 2024

Journal: Chemistry – An Asian Journal, 2024, 19(16), e202300625

Citations: 1

Tailored design of CO2-selective mixed-matrix membranes using nitrile-functionalized COFs as 2D nanofillers

Authors: Hoque, B., Khan, M.Y., Hanif, A., Usman, M., Drmosh, Q.A.

Year: 2024

Journal: Journal of Environmental Chemical Engineering, 2024, 12(3), 112695

Citations: 3

Thermally Stable and High-Surface-Area Triptycene and Phenanthroline-Based Microporous Polymer for Selective CO2 Capture over CH4 and N2

Authors: Ansari, M., Rehman, A.N., Khan, A., Khan, M.Y.

Year: 2024

Journal: ACS Applied Polymer Materials, 2024, 6(7), pp. 3996–4004

Citations: 1

Amino acid-assisted effect on hydrate-based CO2 storage in porous media with brine

Authors: Rehman, A.N., Bavoh, C.B., Khan, M.Y., Lal, B.

Year: 2024

Journal: RSC Advances, 2024, 14(13), pp. 9339–9350

Citations: 0

Nb2O5/BiOCl composite as a visible-light-active photocatalyst for the removal of RhB dye and photoelectrochemical studies

Authors: Zulkiflee, A., Mansoob Khan, M., Yusuf Khan, M., Khan, A., Hilni Harunsani, M.

Year: 2024

Journal: Journal of Photochemistry and Photobiology A: Chemistry, 2024, 446, 115177

Citations: 11

Printing Parameter Optimization of Additive Manufactured PLA Using Taguchi Design of Experiment

Authors: Ahmed, B.A., Nadeem, U., Hakeem, A.S., Younas, M., Saeed, H.A.

Year: 2023

Journal: Polymers, 2023, 15(22), 4370

Citations: 0

Sn-doped BiOCl for photoelectrochemical activities and photocatalytic dye degradation under visible light

Authors: Zulkiflee, A., Khan, M.M., Khan, A., Dafalla, H.D.M., Harunsani, M.H.

Year: 2023

Journal: Heliyon, 2023, 9(11), e21270

Citations: 7

CO2 Adsorption on Biomass-Derived Carbons from Albizia procera Leaves: Effects of Synthesis Strategies

Authors: Hanif, A., Aziz, M.A., Helal, A., Theravalappil, R., Khan, M.Y.

Year: 2023

Journal: ACS Omega, 2023, 8(39), pp. 36228–36236

Citations: 2

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Dr. Ridha Boudhiaf | Energy | Best Scholar Award

Assistant Professor at Higher Institute of Biotechnology of Sfax, Tunisia

Dr. Ridha Boudhiaf is an Assistant Professor of Chemical Engineering at the Higher Institute of Biotechnology of Sfax, Tunisia. He holds a Ph.D. in Chemical Engineering from the National Engineering School of Gabès, specializing in solar energy conversion, storage, and solar pond systems. His research focuses on numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, particularly in solar energy applications such as solar stills and salt-gradient solar ponds. Dr. Boudhiaf has published extensively in reputable scientific journals, including Energy Conversion and Management and Energies, and has presented his work at international conferences. His expertise includes numerical simulation tools like Ansys Fluent and programming languages such as Matlab and Fortran. With a strong academic background, Dr. Boudhiaf has contributed significantly to advancing renewable energy technologies and thermal energy storage systems through both his research and teaching. He is actively involved in mentoring students and collaborating on various research projects.

Profile:

Education

Dr. Ridha Boudhiaf has a strong academic background in Chemical Engineering with a focus on processes and renewable energy. He earned his Doctorate in Chemical Engineering-Processes from the National Engineering School of Gabès, University of Gabès, Tunisia, in November 2013, graduating with high honors and the jury’s commendation. Prior to this, he obtained a Master’s degree in Chemical Engineering-Processes from the same institution in November 2006, where he also achieved a distinction of “Very Good.” His academic journey began with a Bachelor’s degree in Chemical Engineering-Processes in July 1996, following his completion of specialized studies in the field in 2002. Throughout his education, Dr. Boudhiaf demonstrated a consistent focus on energy conversion, thermal processes, and the application of chemical engineering to energy storage systems, specifically in the context of solar energy. His rigorous education laid the foundation for his subsequent research and professional contributions in renewable energy systems.

Professional Experiences 

Dr. Ridha Boudhiaf is a highly experienced academic with a robust background in Chemical Engineering and Process Systems. Currently serving as a Maître-Assistant at the Higher Institute of Biotechnology of Sfax (ISBS) since January 2015, he has held several notable positions throughout his career. He worked as a Maître-Technologue at the Higher Institute of Technological Studies of Sfax in 2014 and as a Technologue at the Higher Institute of Technological Studies of Gafsa from 2003 to 2013. Prior to that, Dr. Boudhiaf served as an Assistant Technologist at the Higher Institute of Technological Studies of Zaghouan in 2002-2003. His industrial experience includes a role as a production engineer at the Tuniso-Algerian White Cement Company (SOTACIB) in Fériana from 1999 to 2000. With a strong focus on solar energy research, Dr. Boudhiaf’s expertise encompasses numerical modeling, thermal performance studies, and energy conversion systems.

Research Interests

Dr. Ridha Boudhiaf’s research interests are primarily centered around the field of solar energy conversion, storage, and its applications in thermal systems. His work focuses on the thermal and hydrodynamic performance of solar thermal collectors and solar distillers with various geometries. Dr. Boudhiaf also explores the use of numerical modeling, particularly employing Navier-Stokes equations for Newtonian and incompressible fluids, to simulate the behavior of solar ponds. His expertise extends to the study of salt-gradient solar ponds, investigating the intricate heat and mass transfer mechanisms, with an emphasis on optimizing solar energy storage. Furthermore, his research delves into the influence of buoyancy and Rayleigh numbers on fluid flow stability within solar ponds. Dr. Boudhiaf also contributes to understanding entropy production in thermosolutal convection systems with Dufour effects, aiming to enhance the efficiency of solar energy systems through improved design and optimization techniques.

Research Skills

Dr. Ridha Boudhiaf possesses extensive research skills in the field of chemical engineering, particularly in solar energy conversion, storage, and thermal system optimization. His expertise includes the numerical modeling of thermal, hydrodynamic, and mass transfer phenomena, with a focus on solar ponds and energy storage systems. Dr. Boudhiaf is skilled in the simulation of complex fluid behavior using software tools like Ansys Fluent, Matlab, and Fortran, enabling him to develop precise models for studying convection and thermal diffusion. His research extends to investigating the thermosolutal convection with the Dufour effect, contributing valuable insights into entropy production in thermal systems. Dr. Boudhiaf has a strong foundation in both experimental and theoretical approaches, having published several peer-reviewed articles on fluid mechanics, heat transfer, and renewable energy systems. His ability to integrate numerical analysis with practical applications makes him a proficient researcher in sustainable energy technologies.

Award And Recognition 

Dr. Ridha Boudhiaf is an accomplished researcher and academic, recognized for his significant contributions to the field of Chemical Engineering and Solar Energy Systems. His work on hydrodynamic, heat, and mass transfer in solar ponds has garnered international attention, leading to several publications in esteemed scientific journals, including Energy Conversion and Management and Energies. Dr. Boudhiaf’s innovative research on the optimization of energy storage systems and the numerical modeling of solar ponds has earned him invitations to present at numerous international conferences. His contributions to the scientific community extend beyond research, as he has actively mentored students and collaborated on projects with leading institutions. His dedication to advancing the understanding of solar energy technologies has positioned him as a respected figure in his field, with accolades reflecting his commitment to both academic excellence and practical applications of renewable energy systems.

Conclusion

Dr. Ridha Boudhiaf demonstrates a high level of scholarly achievement, particularly in the fields of chemical engineering and renewable energy. His focus on solar energy systems is timely and important in the context of global energy challenges. To further strengthen his candidacy for the Research for Best Scholar Award, he could explore interdisciplinary research and expand his collaboration efforts. Nonetheless, his contributions to solar energy research are significant, making him a suitable candidate for the award.

Publication Top Notes
  1. Numerical Study of the Air Outlet Effect Inside a Living Room Connected to an Aerovoltaic Solar Air Heater
    Authors: Driss, S., Boudhiaf, R., Hmid, A., Kammoun, I.K., Abid, M.S.
    Year: 2024
  2. Experimental analysis of triangular solar distiller with a new form of absorber
    Authors: Boudhiaf, R., Kessentini, S., Driss, Z., Abid, M.S., Aissa, A.
    Year: 2024
  3. Illizi city sand impact on the output of a conventional solar still
    Authors: Khamaia, D., Boudhiaf, R., Khechekhouche, A., Driss, Z.
    Year: 2022
  4. Transient hydrodynamic, heat and mass transfer in a salinity gradient solar pond: A numerical study
    Authors: Boudhiaf, R., Baccar, M.
    Year: 2014
  5. A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond
    Authors: Boudhiaf, R., Moussa, A.B., Baccar, M.
    Year: 2012

 

 

S. Mojtaba Varedi-Koulaei | Engineering | Best Researcher Award | 12980

Dr. S. Mojtaba Varedi-Koulaei | Engineering | Best Researcher Award

Faculty of Mechanical Engineering , Iran.

Dr. S. Mojtaba Varedi-Koulaei is an Associate Professor in the Faculty of Mechanical Engineering at Shahrood University of Technology. He completed his PhD in Mechanical Engineering (Applied Design) in 2015 from Babol Noshirvani University of Technology, where he was supervised by Dr. H. Mohammadi Daniali. His doctoral thesis focused on the optimal design of parallel mechanisms considering joints clearances, a subject that highlights his strong expertise in mechanical design. Throughout his academic career, he has made significant contributions to fields like machine learning, neural networks, robotics, and optimization, gaining recognition for his innovative approach to solving complex engineering problems.

Profile

Education

Dr. Varedi-Koulaei holds a PhD in Mechanical Engineering from Babol Noshirvani University of Technology, where he graduated with an impressive GPA of 18.99/20 (3.79/4.00). His research during this period primarily revolved around designing optimal parallel mechanisms. He also earned his M.Sc. in Mechanical Engineering from the University of Mazandaran in 2008, with a GPA of 18.03/20 (3.61/4.00). His master’s thesis explored the analytical-numerical solutions of the forward and inverse kinematic equations of robots, further cementing his interest and skills in robotic mechanisms. His educational journey began with a B.Sc. in Mechanical Engineering, also from the University of Mazandaran, where he graduated in 2006 with a GPA of 17.00/20 (3.4/4.00). His final project involved designing systems for transferring objects in a production line, showcasing his practical engineering skills early on.

Professional Experience

In terms of work experience, Dr. Varedi-Koulaei has been an Associate Professor at Shahrood University of Technology, where he continues to advance the field of mechanical engineering. His role includes not only teaching but also supervising students on various research projects, particularly in applied design, robotics, and optimization. His expertise extends to guiding graduate students in their thesis work, building upon his strong background in both theoretical and practical aspects of mechanical engineering.

 

Membership

Dr. Varedi-Koulaei is also an active member of several professional associations in the field of mechanical engineering, through which he continues to contribute to global research discussions. He regularly shares his work on platforms like Google Scholar and ResearchGate, connecting with a broader academic and professional audience.

 

Research focuses

Dr. Varedi-Koulaei’s research focuses on several key areas, including parallel robots, mechanism design and synthesis, and the application of machine learning and neural networks to optimize mechanical systems. His work in these areas has resulted in numerous publications and ongoing projects, contributing to advancements in both academia and industry.

Award and Recognition

Among his awards and honors, Dr. Varedi-Koulaei is recognized for his high academic achievements, particularly his outstanding GPA during his PhD studies. His innovative research on optimizing mechanical systems and robotic design has earned him respect in the academic community, and he is regarded as a key contributor in his field.

 

Teaching experience

In his teaching experience, Dr. Varedi-Koulaei has taught a range of subjects, including dynamics, dynamics of machinery, mechanism design, robotics, advanced mathematics, mechatronics, neural networks, optimization, and advanced dynamics. His courses are known for their practical applications and integration of cutting-edge research, which reflects his expertise in the field of mechanical engineering.

 

Publication Top Notes

  1. Title: Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment
    • Authors: M. Kaur, M. Kaur, V.K. Sharma
    • Journal: Advances in Colloid and Interface Science
    • Year: 2018
    • Volume: 259
    • Pages: 44-64
    • Citations: 376
  2. Title: All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers
    • Authors: M. Kaur, S. Ishii, S.L. Shinde, T. Nagao
    • Journal: ACS Sustainable Chemistry & Engineering
    • Year: 2017
    • Volume: 5 (10)
    • Pages: 8523-8528
    • Citations: 153
  3. Title: Heteroatom-doped graphene as sensing materials: A mini review
    • Authors: S. Kaushal, M. Kaur, N. Kaur, V. Kumari, P.P. Singh
    • Journal: RSC Advances
    • Year: 2020
    • Volume: 10 (48)
    • Pages: 28608-28629
    • Citations: 112
  4. Title: All‐Ceramic Solar‐Driven Water Purifier Based on Anodized Aluminum Oxide and Plasmonic Titanium Nitride
    • Authors: M. Kaur, S. Ishii, S.L. Shinde, T. Nagao
    • Journal: Advanced Sustainable Systems
    • Year: 2019
    • Volume: 3 (2)
    • Article ID: 1800112
    • Citations: 83
  5. Title: Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors
    • Authors: A. Kaur, K. Pandey, R. Kaur, N. Vashishat, M. Kaur
    • Journal: Chemosensors
    • Year: 2022
    • Volume: 10 (9)
    • Article ID: 367
    • Citations: 57
  6. Title: Synthesis and characterization of graphene oxide using modified Hummer’s method
    • Authors: M. Kaur, H. Kaur, D. Kukkar
    • Journal: AIP Conference Proceedings
    • Year: 2018
    • Volume: 1953 (1)
    • Citations: 44
  7. Title: Boron-and phosphorous-doped graphene nanosheets and quantum dots as sensors and catalysts in environmental applications: A review
    • Authors: M. Kaur, M.K. Ubhi, J.K. Grewal, V.K. Sharma
    • Journal: Environmental Chemistry Letters
    • Year: 2021
    • Volume: 19 (6)
    • Pages: 4375-4392
    • Citations: 34
  8. Title: Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects
    • Authors: D. Vashisht, E. Sharma, M. Kaur, A. Vashisht, S.K. Mehta, K. Singh
    • Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2020
    • Volume: 228
    • Article ID: 117773
    • Citations: 31
  9. Title: Marimo-bead-supported core–shell nanocomposites of titanium nitride and chromium-doped titanium dioxide as a highly efficient water-floatable green photocatalyst
    • Authors: M. Kaur, S.L. Shinde, S. Ishii, W. Jevasuwan, N. Fukata, M.W. Yu, Y. Li, J. Ye, …
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2020
    • Volume: 12 (28)
    • Pages: 31327-31339
    • Citations: 27
  10. Title: Hydropower generation by transpiration from microporous alumina
    • Authors: M. Kaur, S. Ishii, R. Nozaki, T. Nagao
    • Journal: Scientific Reports
    • Year: 2021
    • Volume: 11 (1)
    • Article ID: 10954
    • Citations: 17

Manpreet Kaur | Sustainable Energy | Best Researcher Award

Dr. Manpreet Kaur | Sustainable Energy | Best Researcher Award

Post Doctoral Researcher of University of Calgary, Canada.

Manpreet Kaur, PhD, is a Postdoctoral Research Associate and Sessional Instructor at the University of Calgary’s Department of Chemical and Petroleum Engineering. Her research focuses on advancing energy conversion and storage technologies through metal-semiconductor nanostructures. She has a strong background in electrochemistry, nano-material synthesis, and plasmonic catalysis, having worked internationally at institutions such as the Regional Centre of Advanced Technologies and Materials (Czech Republic), the University of Turin, and the National Institute for Materials Science (Japan). Dr. Kaur’s work includes the development of core-shell nanomaterials for fuel cells and sensors, catalytic processes for methane and nitrogen upcycling, and hybrid nanostructures for energy applications. She has received several accolades, including the Young Scientist Award from the Japan Society of Vacuum and Surface Science and multiple best presentation awards. Her teaching experience spans courses in engineering materials and nanomaterials.

Profile

Education

Manpreet Kaur completed her Ph.D. in Materials Science with a focus on Condensed Matter Physics at Hokkaido University, Japan, from October 2016 to September 2019. Her doctoral research concentrated on photothermal and photoelectric conversion using plasmonic nanomaterials for water purification and splitting. Prior to this, she earned a Master of Nanotechnology Engineering (a 5-year integrated program) from Sri Guru Granth Sahib World University, Punjab, India, graduating in 2016 with a CGPA of 8.4/10. Her master’s thesis focused on titanium nitride (TiN) nanoparticles for energy harvesting applications. This strong educational foundation provided her with extensive knowledge and expertise in materials science, nanotechnology, and their applications in energy and environmental technologies.

Professional Experience

Dr. Manpreet Kaur is a distinguished Postdoctoral Research Associate at the University of Calgary’s Department of Chemical and Petroleum Engineering, specializing in advanced energy conversion and storage technologies. Her current research involves designing and synthesizing nanomaterials for applications in fuel cells, sensors, and batteries, focusing on core-shell and hybrid nanostructures. Prior to this role, Dr. Kaur conducted postdoctoral research at the Regional Centre of Advanced Technologies and Materials in the Czech Republic and the University of Turin, where she explored catalytic processes and quantum dot synthesis. She also worked at the National Institute for Materials Science in Japan, investigating plasmonic nanomaterials for energy harvesting. Dr. Kaur’s earlier experience includes a role as a Junior Researcher at the same institute, where she studied photothermal effects in nanocomposites. Her extensive experience spans various research environments and advanced techniques, underscoring her expertise in materials science and energy applications.

Research Interest

Manpreet Kaur’s research interests revolve around advancing energy conversion and storage technologies through innovative material science. Her work focuses on electrochemistry and nanomaterial synthesis, particularly in developing and optimizing metal-semiconductor nanostructures for energy applications. She investigates core-shell nanomaterials and hybrid nanostructures for use in polymer electrolyte fuel cells, electrolysers, and batteries, aiming to enhance their performance and efficiency. Additionally, her research explores electro- and photocatalytic processes to convert methane and nitrogen into valuable chemicals and fuels. She is also involved in the synthesis of advanced materials such as graphene and MXenes for various applications, including ammonia and methanol production. Kaur’s expertise extends to plasmonic catalysis and the use of quantum dots in selective catalytic oxidation, contributing to more sustainable and efficient energy systems. Her work integrates theoretical and practical approaches to address global energy challenges.

Research Skills

Manpreet Kaur, PhD, exhibits a robust set of research skills crucial for advancing the field of materials science and energy conversion. Her expertise in electrochemistry and nano-materials synthesis is demonstrated through her work with core-shell nanomaterials and hybrid nanostructures, essential for applications in fuel cells, electrolysers, and sensors. Proficient in electrochemical measurements using techniques such as Rotating Disk Electrode (RDE) and gas chromatography–mass spectrometry (GC–MS), she excels in analyzing volatile components and optimizing catalytic reactions. Her skills extend to cleanroom techniques including reactive ion etching and chemical vapor deposition, supporting her research on plasmonic materials and photovoltaics. Additionally, Manpreet is adept in software tools like RSOFT and COMSOL for electromagnetic and energy transfer simulations. Her extensive training in synthesis methods, including wet-chemical and solvothermal techniques, underscores her versatility in developing advanced materials for energy and environmental applications.

Award and Recognition

Dr. Manpreet Kaur has received notable accolades throughout her career, reflecting her significant contributions to materials science and energy research. She was honored with the “Young Researcher Presentation Award” at the 11th Indian Scientist Association in Japan for her work on plasmonic core-shell nanocomposites in 2020. Additionally, she received the Young Scientist Award from the Japan Society of Vacuum and Surface Science in 2020 for her advancements in solar energy harvesting devices. Her achievements also include the Best Oral Presentation Award at the 9th ISAJ symposium and the Excellent Poster Presentation Award at the 10th International MANA Symposium. Dr. Kaur’s innovative work has been highlighted in media, such as TV Tokyo’s World Business Satellite. She has also secured significant research funding, including for seawater desalination and plasma-assisted ammonia production, underscoring her impactful contributions to her field.

Conclusion

Manpreet Kaur is a highly qualified candidate for the Research for Best Researcher Award. Her innovative research, strong publication record, and international experience demonstrate her significant contributions to her field. Addressing the areas for improvement could further enhance her impact and recognition in the scientific community. Overall, Kaur’s achievements and dedication to advancing sustainable technologies make her a strong contender for this award.

Publication Top Notes

  1. Title: Nitrogen-doped graphene and graphene quantum dots: A review on synthesis and applications in energy, sensors and environment
    • Authors: M. Kaur, M. Kaur, V.K. Sharma
    • Journal: Advances in Colloid and Interface Science
    • Year: 2018
    • Volume: 259
    • Pages: 44-64
    • Citations: 376
  2. Title: All-ceramic microfibrous solar steam generator: TiN plasmonic nanoparticle-loaded transparent microfibers
    • Authors: M. Kaur, S. Ishii, S.L. Shinde, T. Nagao
    • Journal: ACS Sustainable Chemistry & Engineering
    • Year: 2017
    • Volume: 5 (10)
    • Pages: 8523-8528
    • Citations: 153
  3. Title: Heteroatom-doped graphene as sensing materials: A mini review
    • Authors: S. Kaushal, M. Kaur, N. Kaur, V. Kumari, P.P. Singh
    • Journal: RSC Advances
    • Year: 2020
    • Volume: 10 (48)
    • Pages: 28608-28629
    • Citations: 112
  4. Title: All‐Ceramic Solar‐Driven Water Purifier Based on Anodized Aluminum Oxide and Plasmonic Titanium Nitride
    • Authors: M. Kaur, S. Ishii, S.L. Shinde, T. Nagao
    • Journal: Advanced Sustainable Systems
    • Year: 2019
    • Volume: 3 (2)
    • Article ID: 1800112
    • Citations: 83
  5. Title: Nanocomposites of carbon quantum dots and graphene quantum dots: Environmental applications as sensors
    • Authors: A. Kaur, K. Pandey, R. Kaur, N. Vashishat, M. Kaur
    • Journal: Chemosensors
    • Year: 2022
    • Volume: 10 (9)
    • Article ID: 367
    • Citations: 57
  6. Title: Synthesis and characterization of graphene oxide using modified Hummer’s method
    • Authors: M. Kaur, H. Kaur, D. Kukkar
    • Journal: AIP Conference Proceedings
    • Year: 2018
    • Volume: 1953 (1)
    • Citations: 44
  7. Title: Boron-and phosphorous-doped graphene nanosheets and quantum dots as sensors and catalysts in environmental applications: A review
    • Authors: M. Kaur, M.K. Ubhi, J.K. Grewal, V.K. Sharma
    • Journal: Environmental Chemistry Letters
    • Year: 2021
    • Volume: 19 (6)
    • Pages: 4375-4392
    • Citations: 34
  8. Title: Solvothermal assisted phosphate functionalized graphitic carbon nitride quantum dots for optical sensing of Fe ions and its thermodynamic aspects
    • Authors: D. Vashisht, E. Sharma, M. Kaur, A. Vashisht, S.K. Mehta, K. Singh
    • Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2020
    • Volume: 228
    • Article ID: 117773
    • Citations: 31
  9. Title: Marimo-bead-supported core–shell nanocomposites of titanium nitride and chromium-doped titanium dioxide as a highly efficient water-floatable green photocatalyst
    • Authors: M. Kaur, S.L. Shinde, S. Ishii, W. Jevasuwan, N. Fukata, M.W. Yu, Y. Li, J. Ye, …
    • Journal: ACS Applied Materials & Interfaces
    • Year: 2020
    • Volume: 12 (28)
    • Pages: 31327-31339
    • Citations: 27
  10. Title: Hydropower generation by transpiration from microporous alumina
    • Authors: M. Kaur, S. Ishii, R. Nozaki, T. Nagao
    • Journal: Scientific Reports
    • Year: 2021
    • Volume: 11 (1)
    • Article ID: 10954
    • Citations: 17

Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Dr. Alexander Gusev | Hydrogen Energy | Environmental Engineering Impact Award

Scientific Director, Professor at Fermaltech Montenegro Limited, Montenegro

Alexander L. Gusev is a distinguished academic and researcher in hydrogen energy and environmental engineering, serving as an academician at the European Academy of Natural Sciences and a professor at multiple institutions including STC “TATA” and the Institute of Hydrogen Economics. Renowned for his contributions to hydrogen safety and alternative energy, he is among the top-cited scientists in his field and has authored over 500 scientific works. Gusev’s expertise spans hydrogen technologies, cryogenics, and nanomaterials, with notable innovations in extinguishing large fires using cryogenic gases and developing advanced hydrogen storage systems. His leadership in organizing international scientific forums and his role as an expert on various governmental programs highlight his impact on the field. Gusev’s accolades include the K.E. Tsiolkovsky Medal and recognition from several scientific and technological societies. His work continues to shape advancements in energy efficiency and environmental safety.

Profile

Education

Alexander L. Gusev’s educational background is distinguished and comprehensive. He began his academic journey at the Physics and Mathematics School in Frunze, USSR, from 1968 to 1978, followed by studies at the Correspondence School of Physics and Mathematics at Moscow Institute of Physics and Technology in 1977-1978. He pursued higher education at the Military Engineering Institute named after A.F. Mozhajskij, graduating in 1983 with a focus on solid-state physics, chemistry, thermodynamics, and space technology. Gusev continued his advanced studies with postgraduate work from 1989 to 1995 at NPO “Cryogenmash,” where he specialized in hydrogen technologies and cryogenics, earning accolades for his thesis on large-scale cryo vacuum systems. His commitment to continuous learning is reflected in additional refresher courses in German and English language skills, enhancing his professional and international capabilities.

Professional Experience

Alexander L. Gusev is a distinguished academic and researcher with extensive experience in alternative energy and ecology. He serves as the head of the Department of Alternative Energy and Ecology at the European Academy of Natural Sciences in Hanover, Germany, and holds professorships at STC “TATA” and the Institute of Hydrogen Economics. Gusev has a notable background in hydrogen technologies, ranking fifth globally in hydrogen safety research according to Google Scholar. His career includes significant contributions to the development of cryogenic systems and hydrogen energy technologies, with over 70 patents and more than 500 scientific works to his name. He has led and participated in over 25 R&D projects, including groundbreaking work on large-scale cryo vacuum systems and hydrogen fuel technologies. Gusev’s expertise extends to the organization of major international scientific forums and collaboration with leading global institutions such as Toyota, Bayer, and NASA.

Research Interest

Alexander L. Gusev is renowned for his research in hydrogen energy technologies and their environmental impact. His work focuses on the development and application of hydrogen production from both renewable and non-renewable sources, emphasizing environmentally friendly methods and energy efficiency. Gusev’s research encompasses hydrogen safety, fuel cells, and advanced materials such as nanocatalysts and porous materials for energy applications. He has made significant contributions to cryogenic and vacuum technologies, particularly in the storage and transportation of hydrogen. His interests also include the integration of alternative energy systems and ecological considerations in energy use. Gusev’s innovative projects extend to large-scale technological solutions, such as extinguishing technological fires using cryogenic gases and developing hydrogen recombiners. His research aims to enhance sustainable energy practices and address environmental challenges through advanced scientific and technical solutions.

Research Skills

Alexander L. Gusev possesses extensive research skills in the field of hydrogen energy and environmental engineering. His expertise spans a range of critical areas, including hydrogen production from renewable sources, energy storage and transportation, and advanced cryogenic technologies. Gusev’s proficiency in hydrogen safety and its applications is reflected in his significant contributions to the development of hydrogen energy technologies, such as cryogenic systems and hydrogen fuel cells. He excels in material characterization and nanotechnology, with a particular focus on nanocatalysts and gas adsorption. His skills also extend to designing and implementing innovative solutions for environmental safety, including large-scale fire suppression and cryogenic vacuum systems. Gusev’s extensive experience in leading international research projects and his role in developing standards for hydrogen technologies further highlight his advanced capabilities in scientific research and technological innovation.

Award and Recognition

Alexander L. Gusev is a distinguished scientist renowned for his contributions to alternative energy and hydrogen technologies. He has earned significant accolades, including the prestigious K. E. Tsiolkovsky Medal for his advancements in cosmonautics and recognition as a Veteran of Nuclear Energy and Industry by Rosatom. Gusev’s work in hydrogen safety and cryogenics has positioned him as a leading figure globally, ranking fifth in hydrogen safety research according to Google Scholar. His innovative approaches have garnered over 70 patents and numerous international awards. He has also been honored as an Academician of both the European Academy of Natural Sciences and the Serbian Royal Academy of Science and Art. Gusev’s visionary leadership in developing eco-friendly energy solutions and his role in major international scientific events underscore his exceptional impact on the field of environmental engineering and energy technologies.

Conclusion

Alexander L. Gusev is a highly suitable candidate for the Research for Environmental Engineering Impact Award due to his extensive expertise, significant contributions to hydrogen energy technologies, and broad recognition in the field. His innovative solutions and leadership in international scientific events reflect his commitment to advancing environmental engineering. By expanding his focus to emerging environmental issues and increasing public engagement, Gusev could further enhance his impact and contributions to the field.

Publication Top Notes

  • Title: Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia
    • Authors: SZ Zhiznin, VM Timokhov, AL Gusev
    • Year: 2020
    • Journal: International Journal of Hydrogen Energy
    • Volume: 45
    • Issue: 56
    • Pages: 31353–31366
    • Citations: 133
  • Title: Economics of Secondary Renewable Energy Sources with Hydrogen Generation
    • Authors: SZ Zhiznin, S Vassilev, AL Gusev
    • Year: 2019
    • Journal: International Journal of Hydrogen Energy
    • Volume: 44
    • Issue: 23
    • Pages: 11385–11393
    • Citations: 73
  • Title: Algorithm for Optimal Pairing of RES and Hydrogen Energy Storage Systems
    • Authors: AS Ufa, R.A. Malkova, Y.Y. Gusev, A.L. Ruban, N.Y. Vasilev
    • Year: 2021
    • Journal: International Journal of Hydrogen Energy
    • Pages: 33659–33669
    • Citations: 55
  • Title: Hydrogen Production by Low-Temperature Plasma Decomposition of Liquids
    • Authors: NA Bulychev, MA Kazaryan, AS Averyushkin, AA Chernov, AL Gusev
    • Year: 2017
    • Journal: International Journal of Hydrogen Energy
    • Volume: 42
    • Issue: 33
    • Pages: 20934–20938
    • Citations: 55
  • Title: Economics of Hydrogen Energy of Green Transition in the World and Russia. Part I
    • Authors: ALG SZ Zhiznin, VM Timokhov
    • Year: 2022
    • Journal: International Journal of Hydrogen Energy
    • Status: In Print
    • Citations: 54*
  • Title: Thermodynamic Peculiarities of Low-Temperature Regeneration of Cryosorption Devices in Heat-Insulation Cavities of Hydrogenous Cryogenic Tanks
    • Authors: AL Gusev
    • Year: 2001
    • Journal: International Journal of Hydrogen Energy
    • Volume: 26
    • Issue: 8
    • Pages: 863–871
    • Citations: 39
  • Title: Cleaning System for Corrosive Gases and Hydrogen
    • Authors: AL Gusev
    • Year: 2009
    • Journal: Chemical and Petroleum Engineering
    • Volume: 45
    • Issue: 9
    • Page: 640
    • Citations: 37
  • Title: Hydrogen Sensor for Cryogenic Vacuum Objects
    • Authors: AL Gusev, VM Belousov, IV Bacherikova, LV Lyashenko, EV Rozhkova
    • Year: 2002
    • Journal: Hydrogen Materials Science and Chemistry of Metal Hydrides
    • Pages: 41–47
    • Citations: 35
  • Title: О Механизме Анодного Окисления Алюминия В Водных Растворах Электролитов (On the Mechanism of Anodic Oxidation of Aluminum in Aqueous Electrolyte Solutions)
    • Authors: ИЛ Батаронов, АЛ Гусев, ЮВ Литвинов, ЕЛ Харченко, ЮН Шалимов
    • Year: 2007
    • Journal: Альтернативная Энергетика И Экология
    • Pages: 118–126
    • Citations: 34
  • Title: Main Environmental Problems in Nizhny Novgorod Region and Ways to Transition to a Hydrogen Economy
    • Author: AL Gusev
    • Year: 2006
    • Journal: International Scientific Journal for Alternative Energy and Ecology (ISJAEE)
    • Citations: 33