Guoxing Li | Energy | Best Researcher Award

Dr. Guoxing Li | Energy | Best Researcher Award

Chang’an University, China

Guoxing Li is an emerging researcher specializing in sustainable energy systems, with particular expertise in hydrogen production, combustion chemistry, and supercritical water processes. After obtaining his PhD from Xi’an Jiaotong University in July 2022, he began his academic career as a lecturer at the School of Energy and Electrical Engineering, Chang’an University. His research has made significant contributions to the understanding of reaction kinetics and combustion behavior in complex energy systems, focusing on both theoretical and experimental approaches. Guoxing Li has published extensively in high-impact international journals and has collaborated with leading scholars in the field. His work stands out for its combination of computational modeling, kinetic analysis, and innovative designs for energy conversion processes, which offer solutions for cleaner and more efficient energy production. His research is highly relevant in the global transition towards sustainable and low-carbon energy systems. Guoxing Li’s scientific rigor, growing leadership, and impactful research output position him as a rising talent in the energy research community. His continuous efforts are paving the way for advancements in hydrogen utilization and supercritical water technologies, which hold great promise for addressing current energy and environmental challenges.

Professional Profile

Education

Guoxing Li earned his PhD degree from Xi’an Jiaotong University, one of China’s premier engineering institutions, in July 2022. His doctoral studies focused on advanced combustion chemistry, reaction kinetics, and the utilization of supercritical water in energy applications. Throughout his academic journey, he developed a strong foundation in chemical engineering, thermodynamics, and computational modeling, which became the backbone of his research expertise. During his time at Xi’an Jiaotong University, Guoxing Li worked closely with renowned faculty and engaged in collaborative projects that shaped his deep understanding of energy systems. His education emphasized both theoretical learning and practical laboratory research, allowing him to master a range of scientific tools and techniques related to sustainable energy. His rigorous training has equipped him to design, analyze, and optimize complex chemical reactions for cleaner energy production. The multidisciplinary nature of his doctoral work has enabled him to address real-world energy challenges from both a chemical and engineering perspective. Guoxing Li’s academic background continues to influence his current research and teaching, fostering a blend of scientific inquiry and practical application that benefits both his students and the broader research community.

Professional Experience

Guoxing Li began his professional career as a lecturer at the School of Energy and Electrical Engineering, Chang’an University, shortly after completing his doctoral studies in 2022. In this role, he has been actively involved in both teaching and research, contributing to the academic growth of students while advancing his own investigations into sustainable energy systems. His teaching responsibilities include subjects related to energy conversion, combustion chemistry, and environmental protection technologies, where he integrates his research findings into the classroom. Professionally, Guoxing Li has made significant contributions to the development of supercritical water oxidation processes, kinetic modeling of hydrogen combustion, and innovative solutions for chemical reaction systems. His career is marked by strong collaborations with international experts and consistent publication in top-tier journals, which demonstrate his ability to produce high-quality, impactful research. His professional journey is characterized by steady growth, scientific integrity, and a focus on addressing energy-related environmental challenges. As a young academic, he is building a reputation for bridging the gap between theoretical modeling and practical energy solutions, contributing not only to academia but also to the potential advancement of industrial applications in the field of sustainable energy.

Research Interests

Guoxing Li’s research interests are centered on sustainable energy systems, with a particular focus on hydrogen production, combustion chemistry, and the application of supercritical water technologies. He is passionate about advancing the understanding of oxidation kinetics in hydrogen and hydrocarbon-based fuels under supercritical conditions, which is essential for developing efficient and clean energy conversion processes. His work often integrates computational methods, such as ReaxFF molecular dynamics simulations and detailed kinetic modeling, to explore reaction mechanisms at a fundamental level. Guoxing Li also investigates hydrothermal flames, water gas shift reactions, and the oxidative degradation of pollutants in supercritical water, contributing to both energy generation and environmental protection. His interdisciplinary approach allows him to address complex energy challenges from both chemical and engineering perspectives. By focusing on clean combustion and innovative reactor designs, his research aims to reduce greenhouse gas emissions and promote sustainable hydrogen utilization. He is particularly interested in the future applications of supercritical water reactors for waste treatment and energy recovery, as well as the role of hydrogen as a key player in decarbonizing the energy sector. Guoxing Li’s forward-thinking research is aligned with global energy transition goals and climate action priorities.

Research Skills

Guoxing Li possesses a comprehensive set of research skills that enable him to tackle complex energy and combustion-related challenges effectively. His expertise in kinetic modeling is one of his core strengths, particularly in developing detailed reaction mechanisms for hydrogen oxidation and hydrocarbon combustion under supercritical water conditions. He is proficient in advanced computational simulation tools, including ReaxFF molecular dynamics and Density Functional Theory (DFT) methods, which he uses to predict and analyze chemical reaction behaviors at both macroscopic and molecular levels. Additionally, Guoxing Li has extensive hands-on experience in experimental design, reactor operation, and supercritical water processing, allowing him to validate his computational models with laboratory results. He is skilled in data analysis, thermodynamic calculations, and chemical kinetics, and adept at using specialized software for energy system modeling. His ability to integrate simulation with practical experimentation distinguishes his work and enhances its scientific credibility. Guoxing Li also demonstrates strong capabilities in scientific writing, project management, and interdisciplinary collaboration, which contribute to his growing impact in the research community. These skills collectively support his goal of developing innovative, efficient, and environmentally friendly energy solutions.

Awards and Honors

Although specific awards and honors for Guoxing Li have not been explicitly listed, his publication record and collaborative work with internationally recognized researchers reflect a high level of academic recognition. His consistent contributions to top-tier journals such as Energy & Fuels, Fuel, Process Safety and Environmental Protection, Journal of Cleaner Production, and Renewable and Sustainable Energy Reviews demonstrate his research excellence and growing influence in the field of sustainable energy. His involvement in cutting-edge research topics such as hydrogen combustion, supercritical water technologies, and clean energy conversion processes positions him as a rising talent with strong prospects for future academic and professional accolades. His articles often address innovative solutions to energy and environmental problems, which likely contribute to positive peer recognition and opportunities for further research collaborations. As Guoxing Li’s career progresses, his current trajectory suggests he will be a strong candidate for future research awards, fellowships, and leadership roles in energy-focused academic societies. His potential for receiving awards lies in his ability to translate complex chemical processes into practical, impactful energy solutions, advancing both scientific knowledge and environmental sustainability.

Conclusion

Guoxing Li is an accomplished early-career researcher whose contributions to the field of sustainable energy are both timely and impactful. His work on hydrogen combustion, kinetic modeling, and supercritical water oxidation addresses some of the most critical challenges in clean energy development and environmental protection. Guoxing Li’s ability to combine computational simulations with experimental validation showcases his scientific rigor and versatility. His educational background, professional growth, and consistently strong research output indicate a deep commitment to advancing knowledge in sustainable energy systems. Although there is room to expand his interdisciplinary collaborations and industrial applications, his current trajectory positions him as a future leader in the field. His research is not only academically significant but also holds the potential for real-world impact in the global transition to low-carbon and hydrogen-based energy solutions. Guoxing Li’s achievements thus far make him a highly suitable candidate for further recognition, including prestigious research awards. His continued dedication to innovation, scientific integrity, and energy sustainability will undoubtedly contribute to his long-term success and influence in both the academic and industrial energy sectors.

Publications Top Notes

1. Recent Progress and Prospects of Hydrogen Combustion Chemistry in the Gas Phase

  • Type: Review

2. Recent Progress and Prospects of Hydrothermal Flames for Efficient and Clean Energy Conversion

  • Type: Review

Bala Bhaskar Duddeti | Electrical and Electronics | Best Academic Researcher Award

Mr. Bala Bhaskar Duddeti | Electrical and Electronics | Best Academic Researcher Award

Assistant Professor at Sasi Institute of Technology and Engineering, India

Dr. Bala Bhaskar Duddeti currently serves as a Research Assistant Professor in the Department of Electrical and Electronics Engineering at Sasi Institute of Technology and Engineering, Tadepalligudem. With over a decade of academic and research experience, his core expertise lies in control systems, model order reduction, and intelligent control strategies for electric vehicles and power systems. Throughout his career, Dr. Duddeti has remained committed to bridging the gap between theoretical advancements and their industrial applications, specifically focusing on simplifying complex dynamic systems for effective control implementation.

Professional Profile

Educational Background

Dr. Duddeti holds a Doctorate in Electrical Engineering with a specialization in control systems from the National Institute of Technology, Rourkela, where he focused on “Model Order Reduction Methods: Improvements and Applications.” Prior to this, he completed his Master of Engineering in Electrical Engineering (Control Systems) from Andhra University with a high distinction, and earned his Bachelor of Technology degree from RVR & JC College of Engineering. His academic journey reflects a steady commitment to mastering advanced control and modeling techniques in electrical engineering.

Professional Experience

Dr. Duddeti began his academic career as an Assistant Professor at Gayatri Vidya Parishad College of Engineering (2011–2019), where he taught courses such as control systems, DSP, and network analysis, and held key responsibilities like being a member of the Board of Studies and the NBA accreditation committee. He later pursued his doctoral research at NIT Rourkela from 2019 to 2024, during which he developed reduced-order modeling strategies for complex systems relevant to electric vehicles and renewable energy. In June 2024, he joined Sasi Institute of Technology and Engineering as a Research Assistant Professor, focusing on research-led teaching and interdisciplinary collaboration.

Research Interests

Dr. Duddeti’s primary research interests include model order reduction of large-scale systems, artificial intelligence-based control strategies for power electronics, fractional order system approximation, electric vehicle modeling, and reduced controller design. His work finds applications in simplifying complex system dynamics, improving simulation efficiency, and enabling effective controller synthesis, particularly in power systems, renewable energy grids, and automotive systems.

Awards and Recognition

Dr. Duddeti has received numerous accolades in recognition of his scholarly contributions. Notably, he was awarded the prestigious “BRST Research Scholar” title by the Nature Science Foundation for the academic year 2024–2025. He is a lifetime member of reputed international research bodies such as IAENG and ISRD. Additionally, he has been honored with MHRD scholarships for both his master’s and doctoral studies and has served as a peer reviewer for esteemed journals like IEEE Access, Scientific Reports, ISA Transactions, and Springer journals, affirming his reputation as a subject matter expert in his domain.

Select Publications

Among his extensive list of scientific contributions, the following seven represent key milestones in his research:

  1. Duddeti, B.B., Naskar, A.K. (2025). Improved Method for Order Reduction in Practical LTI Systems and PID Controller Architecture, Circuits Syst Signal Process. (Accepted) — cited for its optimization of control system design.

  2. Duddeti, B.B., Naskar, A.K., Meena, V.P. (2025). Constrained search space selection based optimization approach, Scientific Reports, 15, 7999 — cited for advancing power system approximation techniques.

  3. Duddeti, B.B. (2025). A New Modified Clustering Technique for Order Reduction, Circuits Syst Signal Process, 44, 3027–3067 — recognized for its novel reduction algorithms.

  4. Duddeti, B.B. (2024). Model Order Reduction Strategy for LTI Systems, Circuits Syst Signal Process — acknowledged for bridging theory and controller design.

  5. Duddeti, B. B., Naskar, A. K. (2024). Model reduction for large-scale dynamical systems, Sādhanā, Springer, 49(164) — cited for industrial relevance.

  6. Duddeti, B. B., Subhashini, K.R. (2023). Balanced truncation and PSO for order reduction, Circuits Syst Signal Process, 42, 4506–4552 — significant for integrating metaheuristics.

  7. Duddeti, B.B. (2023). Fractional Order Systems Using Balanced Truncation, Circuits Syst Signal Process, 42, 5893–5923 — widely referenced for its contribution to fractional control.

Each of these works has received citations from fellow researchers, indicating the value and impact of Dr. Duddeti’s contributions in the global research community.

Conclusion

Dr. Bala Bhaskar Duddeti exemplifies academic excellence and impactful research through his pioneering work in control systems and model order reduction. His continuous contributions to scholarly literature, dedication to teaching, and active role in collaborative research make him a fitting nominee for a prestigious academic award. With a clear vision to enhance system efficiency in real-world applications and a strong foundation in theoretical development, Dr. Duddeti is not only a deserving candidate for this award but also a leading figure contributing to the future of intelligent control and automation technologies.

Saeed Shahrokhian | Energy | Best Researcher Award

Prof Dr. Saeed Shahrokhian | Energy | Best Researcher Award

Academic Staff, Sharif University of Technology, Iran

Dr. Saeed Shahrokhian is a highly accomplished professor in the Department of Chemistry at Sharif University of Technology (SUT), Tehran, Iran. With a distinguished academic background including a Ph.D. from Isfahan University, he has been a key figure at SUT since 2000, progressing from Assistant to Full Professor. His research focuses on the design and application of chemically modified electrodes, nanostructured materials, electrochemical energy storage devices, and biosensors for cancer biomarker detection. Dr. Shahrokhian has received numerous accolades, including the Superior Educational Master and Distinguished Researcher awards from SUT, as well as recognition from Iran’s Ministry of Science. His research excellence is reflected in his impressive H-index of 62 and inclusion among the top 1% of highly cited international scientists. With a vast body of published work and ongoing contributions to cutting-edge electrochemical research, Dr. Shahrokhian stands out as a strong candidate for the Research for Best Researcher Award.

Profile

Education

Dr. Saeed Shahrokhian has an impressive educational background that has greatly shaped his career in chemistry. He earned his B.Sc. in Chemistry from Isfahan University in 1990, followed by his M.Sc. from the same institution in 1994. Dr. Shahrokhian completed his Ph.D. at Isfahan University in 1999, where his research laid the foundation for his future contributions to analytical chemistry. His academic journey was marked by rigorous study and a focus on developing innovative approaches to chemical sensors and electrochemical energy conversion. His deep understanding of chemistry, combined with his commitment to research excellence, has contributed significantly to his esteemed career as a professor at Sharif University of Technology. This robust academic background provided Dr. Shahrokhian with the tools and knowledge to become a leading expert in his field, contributing to advancements in nanostructured materials, biosensors, and electrochemical systems.

Professional Experience

Dr. Saeed Shahrokhian is a Full Professor in the Department of Chemistry at Sharif University of Technology, where he has held positions since 2000. His professional journey began as an Assistant Professor from 2000 to 2004, followed by an Associate Professor role until 2008. Since June 2008, he has served as a Full Professor, reflecting his sustained excellence in academic research and teaching. Dr. Shahrokhian’s expertise spans electrochemistry, with a focus on the design, construction, and application of chemically modified electrodes, nano-structured materials, and electrochemical energy conversion devices. He has made significant contributions to capacitive deionization and the development of electrochemical biosensors for cancer biomarkers and pathogenic bacteria. His work is recognized globally, as evidenced by his numerous awards, including being named a highly cited researcher by ISI and Scopus. His professional experience highlights his leadership in advancing scientific knowledge and innovation in the field of chemistry.

Research Interests

Dr. Saeed Shahrokhian’s research interests lie at the intersection of electrochemistry, materials science, and biosensors. His work primarily focuses on the design, construction, and application of chemically modified electrodes (CMEs), with an emphasis on leveraging nano-structured materials to enhance electrode performance. He is particularly interested in electrochemical energy conversion and storage devices, capacitive deionization, and the development of aptamer-based electrochemical biosensors for detecting cancer biomarkers and pathogenic bacteria. Additionally, Dr. Shahrokhian explores the application of nanocomposite materials for surface modification of electrodes, especially in electrocatalytic water splitting, and carrier-based potentiometric ion sensors. His research contributes significantly to the advancement of analytical techniques, fostering innovations that have broad implications in environmental monitoring, healthcare, and energy storage systems. Dr. Shahrokhian’s diverse research portfolio reflects his commitment to addressing both fundamental scientific questions and practical challenges through interdisciplinary approaches.

Research Skills

Dr. Saeed Shahrokhian, a highly accomplished researcher at the Department of Chemistry, Sharif University of Technology, exhibits exceptional research skills in the realm of electrochemical sciences. His expertise lies in the design and development of chemically modified electrodes (CMEs), with a focus on applying nanostructured materials to enhance electrochemical energy conversion and storage devices. His proficiency in capacitive deionization, coupled with his innovative work in aptamer-based electrochemical biosensors for cancer biomarkers and pathogenic bacteria detection, showcases his interdisciplinary approach. Additionally, Dr. Shahrokhian’s skill in the development of nanocomposite materials for surface modification of electrodes in electrocatalytic water splitting further highlights his contributions to sustainable energy solutions. His extensive knowledge in potentiometric ion sensors and his ability to integrate cutting-edge technologies into practical applications reinforce his status as a leading researcher. These advanced research skills make him a strong candidate for the Research for Best Researcher Award.

Awards and Honors

Dr. Saeed Shahrokhian, a highly accomplished researcher from the Department of Chemistry at Sharif University of Technology, has earned numerous prestigious awards and honors throughout his career. He has been recognized as the Distinguished Researcher of the Chemistry Department multiple times, including in 2004, 2008, 2014, and 2020. In addition, Dr. Shahrokhian was named Superior Educational Master for various academic years, such as 2003-2004, 2010-2011, and 2014-2015. His significant contributions to science have also been acknowledged at the national level, as he was named Distinguished Researcher in Basic Science by the Ministry of Science, Research, and Technology in 2012. Notably, he is a 1% Highly Cited International Scientist (ISI Web of Knowledge, 2012-2024) and a 2% Highly Cited Scientist (Scopus, 2021-2024). His extensive research and influence in the field have led him to be a Highly Cited Researcher at Sharif University in both 2017 and 2022.