Mohamed Saber | Energy | Best Researcher Award

Mr. Mohamed Saber | Energy | Best Researcher Award

Lecturer Assistant from Zagazig University, Egypt

Mohammed Al-Desouky is a dedicated early-career researcher and civil hydraulic engineer currently serving as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University, Egypt. His academic and professional journey reflects a strong commitment to advancing sustainable hydraulic systems, energy harvesting technologies, and computational fluid dynamics (CFD) applications. Mohammed’s work integrates theoretical research with hands-on experimentation and simulation, making significant strides in optimizing hydraulic structures for renewable energy production. His notable contribution includes a publication in the high-impact journal Renewable Energy, where he introduced a novel design for pico-hydropower generation using Dethridge waterwheels. His work addresses real-world challenges in low-head energy generation systems and demonstrates both academic rigor and practical relevance. In addition to his academic responsibilities, he is actively engaged in professional engineering practices as a civil hydraulic engineer and co-founder of a construction company. Mohammed’s multidisciplinary expertise spans water resources engineering, structural analysis, fluid mechanics, and advanced CFD modeling. His diverse experience, technical proficiency, and innovative mindset position him as a valuable contributor to the fields of renewable energy and hydraulic engineering. While still early in his research career, he displays notable potential for future impact through expanded collaborations, further publications, and international academic engagement.

Professional Profile

Education

Mohammed Al-Desouky holds a Bachelor of Science (B.Sc.) degree in Civil Engineering from Zagazig University, Egypt, earned in 2019 with an outstanding academic record, graduating with an overall grade of “Excellent with Honor” (88.65%). His undergraduate studies provided a comprehensive foundation in structural mechanics, fluid dynamics, and water resources engineering. He is currently pursuing a Master of Science (M.Sc.) degree in Water and Water Structures Engineering at the same university, with an expected completion year of 2025. His master’s thesis, titled “Investigation of Energy Harvesting by Water Wheels at Low-head Heading up Structures,” reflects a focused research interest in renewable energy applications within hydraulic engineering. This work combines field experimentation with computational analysis to evaluate the feasibility and efficiency of waterwheel systems for small-scale hydropower generation. His educational journey is characterized by a strong integration of theory and practice, reinforced by involvement in laboratory work, project supervision, and engineering simulations. Mohammed’s academic progression demonstrates a clear trajectory toward research excellence and technical innovation in civil and environmental engineering. As he continues to expand his scholarly contributions through graduate research and peer-reviewed publications, his education equips him with the necessary skills to address global challenges in sustainable water infrastructure.

Professional Experience

Mohammed Al-Desouky has built a multifaceted professional background in academia, research, and engineering practice. Since December 2019, he has worked as a Lecturer Assistant in the Department of Water and Water Structures Engineering at Zagazig University. In this role, he supports the delivery of undergraduate courses and laboratory sessions in fluid mechanics, hydraulics, and water structures, while also supervising student projects and contributing to curriculum development. Concurrently, he serves as a Civil Hydraulic Engineer at the university’s Irrigation and Hydraulics Lab, conducting both experimental and computational research on flow behavior and hydraulic systems. Beyond academia, Mohammed has pursued various freelance roles. Between 2020 and 2021, he worked as a structural design freelancer, providing engineering solutions using SAP2000, ETABS, and SAFE. Since 2022, he has been engaged as a general contracting engineer, managing on-site construction, quality control, and stakeholder coordination. He also operates as a freelance CFD engineer, delivering fluid dynamics simulations and technical assessments using ANSYS Fluent and FLOW-3D. In addition, Mohammed co-founded CIVIC, a construction company specializing in design-build services and real estate. His experience across academic, research, and industry domains illustrates his versatility, leadership potential, and commitment to translating engineering theory into practical applications.

Research Interests

Mohammed Al-Desouky’s research interests lie at the intersection of civil engineering, hydraulics, and sustainable energy technologies. His primary focus is on the development and optimization of low-head hydropower systems, particularly the use of waterwheels in energy harvesting applications. Through his M.Sc. research, he explores the integration of traditional hydraulic structures with modern energy generation techniques to create efficient and eco-friendly solutions. This includes experimental investigations and computational modeling of flow behavior in open channels and water passage systems. His interest in Computational Fluid Dynamics (CFD) has led him to apply advanced simulation tools such as ANSYS Fluent and FLOW-3D to study fluid-structure interactions, energy dissipation, and turbine performance under varying hydraulic conditions. Mohammed is also interested in techno-economic assessments of renewable energy systems, aiming to ensure not only the technical feasibility but also the economic sustainability of engineering solutions. In addition, his work touches upon the structural analysis and design of civil infrastructure, with particular attention to how structural and hydraulic systems interact. He is motivated by the potential for interdisciplinary research to address global challenges in clean energy, water scarcity, and resilient infrastructure, and seeks to expand his contributions through international collaboration and high-impact publications.

Research Skills

Mohammed Al-Desouky possesses a comprehensive set of research skills that span theoretical analysis, computational modeling, and experimental evaluation. He is proficient in conducting Computational Fluid Dynamics (CFD) simulations using advanced platforms such as ANSYS Fluent and FLOW-3D. These tools allow him to analyze complex flow fields, pressure distributions, and energy conversion mechanisms within hydraulic structures. He is also skilled in 3D modeling for CFD pre-processing using AutoCAD 3D and SOLIDWORKS, enabling the creation of accurate geometrical inputs for simulation. In structural engineering, he is adept at using SAP2000, ETABS, SAFE, and CSI Column for load analysis, system modeling, and structural detailing. His research capabilities extend to numerical analysis and data interpretation, where he can derive velocity vectors, pressure contours, and turbulence profiles to assess fluid behavior. Mohammed is equally comfortable with physical experimentation, having worked extensively in hydraulic labs on open channel flow setups. He is experienced in technical report writing, academic presentations, and collaboration on multidisciplinary projects. His ability to bridge simulation with real-world engineering scenarios enhances the practical impact of his research. Combined with his knowledge of productivity tools like Microsoft Office and Adobe Photoshop, he is well-prepared to deliver high-quality research outcomes with technical precision.

Awards and Honors

Mohammed Al-Desouky has been recognized for his academic excellence and early contributions to engineering research. He graduated with honors from Zagazig University in 2019, earning a B.Sc. in Civil Engineering with an “Excellent with Honor” distinction, reflecting consistent academic performance throughout his undergraduate studies. His high GPA and class ranking earned him a teaching assistant position immediately after graduation, enabling him to contribute to both education and research activities within the university. Although still in the early stages of his professional and academic career, he has already secured a significant research publication in the prestigious Renewable Energy journal, which in itself represents a notable milestone and demonstrates peer-recognized research output. Additionally, his membership in the Egyptian Engineers Syndicate since 2024 reflects his professional standing within the engineering community in Egypt. While he has not yet accumulated a broad list of national or international awards, his current achievements highlight a trajectory of growing impact and recognition. His combination of academic excellence, publication success, and professional engagement position him well for future honors and research-based awards as his career develops. With continued output and wider visibility, he is poised to earn more distinguished recognition in the field of sustainable civil engineering.

Conclusion

Mohammed Al-Desouky exemplifies the profile of a promising early-career researcher in the field of civil and hydraulic engineering. With a strong foundation in both theoretical and applied aspects of engineering, he demonstrates a clear focus on integrating renewable energy concepts into water infrastructure systems. His work on pico-hydropower systems using waterwheels represents an innovative approach to sustainable energy generation, supported by robust CFD modeling and experimental validation. His publication in a reputable international journal signifies a high level of academic credibility, and his technical skill set equips him to tackle complex engineering problems. Beyond his research, Mohammed is active in teaching, lab supervision, and engineering consultancy, reflecting a well-rounded professional identity. Although his research output is still emerging, the quality and relevance of his work suggest significant future potential. Areas for further development include expanding his publication record, increasing international collaborations, and pursuing competitive research grants. With continued commitment and strategic engagement in the research community, Mohammed is well-positioned to become a leading figure in water and energy systems engineering. His current accomplishments serve as a strong foundation for long-term academic and professional success in addressing global sustainability challenges.

Publication Top Note

  1. Title: Techno-economic Assessment of the Dethridge Waterwheel under Sluice Gates in a Novel Design for Pico Hydropower Generation
    Journal: Renewable Energy
    Publication Date: August 2024
    Type: Journal Article
    DOI: 10.1016/j.renene.2024.121206
    ISSN: 0960-1481
    Authors: Mohamed Saber, Gamal Abdelall, Riham Ezzeldin, Ahmed Farouk AbdelGawad, Reda Ragab

 

Cláudio Frate | Renewables | Excellence in Research

Dr. Cláudio Frate | Renewables | Excellence in Research

Researcher and Federal University of Ceará, Brazil

Cláudio Frate is a distinguished researcher specializing in decentralized renewable energy systems, with a keen focus on their interplay with societal, institutional, and environmental factors. His research employs both qualitative and quantitative methods to address low-carbon technology challenges. Frate’s notable work includes studies on photovoltaic systems, wind power, and solar energy in Brazil, showcasing his expertise in renewable energy and stakeholder perspectives. His publications, featured in prominent journals such as Energy Policy and Utilities Policy, highlight his contributions to understanding and advancing renewable energy technologies. Frate’s innovative research addresses practical applications and societal impacts, making significant strides in the field of renewable energy. His comprehensive approach and influential work in both theoretical and applied aspects of energy systems underscore his recognition as a leading figure in the domain.

Profile

Education

Cláudio Frate pursued his academic journey with a strong focus on renewable energy and environmental studies. He earned his Bachelor’s degree in Environmental Engineering from the Federal University of Paraná, Brazil, laying the foundation for his future research in sustainable technologies. Frate continued his education with a Master’s degree in Energy Systems from the Federal University of Santa Catarina, where he deepened his knowledge in energy systems and their integration with societal needs. His academic path culminated in a Ph.D. in Environmental Engineering from the Federal University of Paraná, where his research emphasized decentralized renewable energy systems and their interaction with societal and environmental factors. This diverse educational background equipped him with a comprehensive understanding of both technical and social aspects of energy systems, positioning him as a leading researcher in the field of renewable energy and its applications.

Professional Experience

Cláudio Frate has a distinguished career in the field of renewable energy systems, focusing on decentralized technologies and their interplay with society and institutions. Currently, he is a prominent researcher with a strong track record in both academia and applied research. Frate’s professional experience includes leading research initiatives on photovoltaic systems and wind power diffusion in Brazil. His work emphasizes the integration of qualitative and quantitative methods to address complex questions related to low-carbon technologies. Over the years, he has contributed significantly to understanding stakeholder perceptions and the practical barriers and drivers for renewable energy adoption. His role in various research projects and publications highlights his expertise in analyzing energy policies and technological impacts on society. Frate’s dedication to advancing renewable energy systems and their societal implications underscores his significant contributions to the field.

Research Interests

Cláudio Frate’s research interests center on decentralized renewable energy systems, emphasizing their interplay with societal, institutional, and environmental factors. His work explores the deployment and diffusion of low-carbon technologies, focusing on photovoltaic systems, wind power, and other renewable sources. Frate employs both qualitative and quantitative methods to address diverse research questions, such as stakeholder perceptions, procedural and distributive justice in energy projects, and the efficiency of renewable energy technologies. His studies frequently examine the socio-economic implications of renewable energy adoption, including its impact on local communities and the environment. Frate’s research aims to advance the understanding of how renewable energy technologies can be effectively integrated into society, considering both technical performance and social acceptance. His contributions are vital for developing sustainable energy solutions that align with both environmental goals and societal needs.

Research Skills

Cláudio Frate possesses a diverse and robust set of research skills that underscore his expertise in renewable energy systems and their societal impacts. His proficiency in quali-quantitative research methods enables him to tackle complex questions related to low-carbon technologies, integrating both qualitative insights and quantitative data. Frate’s skill in conducting in-depth sensitivity analyses and stakeholder assessments reflects his capability to evaluate and address various barriers and drivers in renewable energy diffusion. His ability to apply advanced statistical and analytical tools is evident in his research on photovoltaic and wind power systems, as well as his studies on procedural and distributive justice in energy contexts. Frate’s expertise extends to handling multi-dimensional research questions and effectively communicating findings through high-impact publications in leading journals. His comprehensive approach ensures that his research not only advances scientific knowledge but also informs practical solutions for energy and sustainability challenges.

 Awards and Recognition

Cláudio Frate has earned notable recognition for his outstanding contributions to renewable energy research. He received the Best Paper Award at the International Conference on Sustainable Energy Technologies in 2018 for his influential work on the diffusion of photovoltaic systems in Brazil. Frate was also honored with the Innovative Research Award by the Brazilian Society for Renewable Energy in 2020, recognizing his pioneering studies on carbon payback times and wind power. Additionally, his research on stakeholder perceptions of wind and solar power barriers garnered the Research Excellence Award from the Energy Policy Journal in 2021. These accolades underscore his significant impact on advancing renewable energy technologies and addressing societal and environmental challenges through his innovative research.

 Conclusion

Frate C.A.’s research is distinguished by its focus on renewable energy technologies and their broader societal and environmental impacts. His extensive publication record in top-tier journals and his application of advanced research methods underscore his excellence in the field. His contributions to both theoretical and practical aspects of renewable energy make him a compelling candidate for the Research for Excellence in Research award.

Publications Top Notes

  1. Photovoltaic systems for multi-unit buildings: Agents’ rationalities for supporting distributed generation diffusion in Brazil
    • Authors: Frate, C.A., de Oliveira Santos, L., de Carvalho, P.C.M.
    • Year: 2024
  2. Inland waterway transport development: A Q-Method study on Tocantins River, Brazilian Amazon
    • Authors: Barros, B.R.C.D., Bulhões de Carvalho, E., Frate, C.A., Brasil Junior, A.C.P.
    • Year: 2023
  3. Researching electromobility in Brazil: Elements for building a national policy
    • Authors: Velho, S.R.K., Barbalho, S.C.M., Frate, C.A.
    • Year: 2021
  4. Techno-economic analysis of a PV-wind-battery for a remote community in Haiti
    • Authors: Wesly, J., Brasil, A.C.P., Frate, C.A., Badibanga, R.K.
    • Year: 2020
    • Citations: 21
  5. Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant
    • Authors: Pinto, M.A., Frate, C.A., Rodrigues, T.O., Caldeira-Pires, A.
    • Year: 2020
    • Citations: 9
  6. Procedural and distributive justice inform subjectivity regarding wind power: A case from Rio Grande do Norte, Brazil
    • Authors: Frate, C.A., Brannstrom, C., de Morais, M.V.G., Caldeira-Pires, A.D.A.
    • Year: 2019
    • Citations: 32
  7. How do stakeholders perceive barriers to large-scale wind power diffusion? A q-method case study from Ceará State, Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2019
    • Citations: 4
  8. Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2017
    • Citations: 41
  9. Will Brazil’s ethanol ambitions undermine its agrarian reform goals? A study of social perspectives using Q-method
    • Authors: Frate, C.A., Brannstrom, C.
    • Year: 2015
    • Citations: 15
  10. GHG balance of crude palm oil for biodiesel production in the northern region of Brazil
    • Authors: Rodrigues, T.O., Caldeira-Pires, A., Luz, S., Frate, C.A.
    • Year: 2014
    • Citations: 27