Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. Qichuan Tian | Computer Science | Best Researcher Award

Prof. Dr. at  Beijing University of Civil Engineering and Architecture, China

Qichuan Tian, born in 1971, is a distinguished professor and technical expert specializing in artificial intelligence, pattern recognition, and computer vision. He holds a Ph.D. in Engineering from Northwestern Polytechnical University (2006) and currently serves as a professor and master’s supervisor at Beijing University of Civil Engineering and Architecture (BUCEA). As the Director of the Department of Artificial Intelligence at the School of Intelligent Science and Technology, he leads research in biometrics, human-computer interaction, and deep learning. He is a member of multiple prestigious organizations, including the National Information Technology Standardization Technical Committee and the Chinese Society of Biomedical Engineering. His career spans academia and industry, with significant contributions in developing national standards, publishing books, and mentoring graduate students. Tian has also played a key role in over 20 research projects funded by national and provincial foundations, solidifying his reputation as a thought leader in AI and computational sciences.

Professional Profile

Education

Qichuan Tian has an extensive academic background in engineering. He obtained his Bachelor of Engineering (1993) and Master of Engineering (1996) from Taiyuan University of Science and Technology. In 2006, he completed his Doctor of Engineering at Northwestern Polytechnical University, specializing in artificial intelligence and computer vision. His academic training laid a strong foundation for his later contributions to AI, biometrics, and deep learning. His studies focused on integrating computational intelligence into practical applications, a theme that continues to define his research and professional endeavors.

Professional Experience

Tian has a diverse career in academia and research. Since 2012, he has served as the Head of the Department of Artificial Intelligence at BUCEA, where he spearheads innovative AI programs. From 2009 to 2010, he was a Visiting Scholar at Auburn University, USA, gaining international exposure in computer science. Between 2006 and 2008, he conducted postdoctoral research at Tianjin University. Previously, he held various roles at Taiyuan University of Science and Technology (1993–2012), where he advanced from Assistant Professor to Associate Professor and later became the Chief Leader of Circuits and Systems. His leadership has been instrumental in shaping AI research and education in China.

Research Interests

Tian’s research interests focus on artificial intelligence, pattern recognition, image processing, and deep learning. He specializes in biometric recognition, computer vision, and human-computer natural interaction. His work extends to security authentication, big data analysis, and IoT-based embedded systems. Tian has published over 100 journal and conference papers, authored six books, and contributed significantly to national standards in AI applications. His interdisciplinary research bridges theoretical advancements with practical AI implementations, making substantial contributions to the field.

Research Skills

With expertise in artificial intelligence and computer vision, Tian possesses strong research skills in deep learning algorithms, biometric recognition systems, and real-time image processing. He has successfully led projects in autonomous driving, green building AI integration, and complex object detection. His experience includes handling large-scale datasets, implementing machine learning frameworks, and designing AI-driven applications. Additionally, he has obtained over 50 invention patents and software copyrights, showcasing his ability to translate theoretical research into impactful technological innovations.

Awards and Honors

Tian’s contributions to academia and AI research have earned him multiple accolades. In 2024, he was recognized among CNKI’s Highly Cited Scholars (Top 5). He received the First Prize for Teaching Achievements at BUCEA in 2021 and was honored for developing a National First-Class Blended Online and Offline Course in 2020. Additionally, he was awarded the Outstanding Master’s Thesis Advisor Award in 2012. His accolades highlight his commitment to education, research, and AI-driven innovations, reinforcing his influence in the field of intelligent science and technology.

Conclusion

Qichuan Tian is a prominent scholar and AI expert dedicated to advancing artificial intelligence and biometric research. His leadership in academia, combined with his extensive research portfolio, underscores his impact on technological advancements in pattern recognition, computer vision, and human-computer interaction. With a career spanning over two decades, Tian has played a pivotal role in shaping AI education, national standards, and industry collaborations. His legacy continues to influence emerging AI technologies and inspire the next generation of researchers in intelligent computing.

Publications Top Notes

  • Title: An improved framework for breast ultrasound image segmentation with multiple branches depth perception and layer compression residual module

    • Authors: K. Cui, Qichuan Tian, Haoji Wang, Chuan Ma
    • Year: 2025
  • Title: Mobile Robot Path Planning Algorithm Based on NSGA-II

    • Authors: Sitong Liu, Qichuan Tian, Chaolin Tang
    • Year: 2024
    • Citations: 1
  • Title: OcularSeg: Accurate and Efficient Multi-Modal Ocular Segmentation in Non-Constrained Scenarios

    • Authors: Yixin Zhang, Caiyong Wang, Haiqing Li, Qichuan Tian, Guangzhe Zhao
    • Year: 2024
  • Title: Convolutional Neural Network–Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism

    • Authors: Chaolin Tang, Dong Zhang, Qichuan Tian
    • Year: 2023
    • Citations: 4

 

 

 

Dagne Walle | Computer Science | Best Scholar Award

Mr. Dagne Walle | Computer Science | Best Scholar Award

Haramaya at Haramaya university, Ethiopia

Dagne Walle Girmaw is a lecturer, researcher, and programmer at Haramaya University in Ethiopia, with a strong academic background in Information Technology. His expertise lies in applying machine learning and deep learning techniques to solve critical challenges in agriculture. Dagne’s work focuses on developing automated systems to detect crop diseases at an early stage, utilizing advanced AI models to improve food security and agricultural sustainability. His passion for using technology to bridge the gap between agriculture and innovation has led to impactful research that can potentially transform the agricultural landscape in Ethiopia and beyond. Dagne is committed to making a difference by empowering farmers with actionable insights that can enhance crop yields and reduce losses. As an educator, Dagne also plays a pivotal role in nurturing the next generation of IT professionals in Ethiopia, providing them with the necessary tools to apply advanced technologies in real-world scenarios.

Professional Profile

Education:

Dagne Walle Girmaw holds a Master’s degree in Information Technology from the University of Gondar, completed in 2021. He also earned his Bachelor’s degree in Information Technology from Haramaya University in 2017. His academic journey has been focused on acquiring a deep understanding of IT systems, with a particular emphasis on machine learning and deep learning. The combination of his education and technical skills has enabled him to pioneer research in applying these advanced technologies to agricultural challenges. His education from two reputable institutions in Ethiopia has provided him with both theoretical knowledge and practical experience in addressing real-world issues in agriculture, particularly the detection of crop diseases using AI.

Professional Experience:

Since 2018, Dagne has been a lecturer and researcher at Haramaya University, where he imparts knowledge on Information Technology and leads research initiatives focused on AI applications in agriculture. As a lecturer, he has played a key role in shaping the education of students, particularly those interested in IT, by teaching courses and supervising academic projects. His research experience spans over six years, during which he has developed several deep learning-based models for detecting crop diseases such as stem rust in wheat, livestock skin diseases, and common bean leaf diseases. His academic and research endeavors at Haramaya University have allowed him to make meaningful contributions to the field of agricultural technology and provide students with cutting-edge insights into the intersection of IT and agriculture.

Research Interest:

Dagne Walle Girmaw’s research interests are primarily centered around the application of deep learning and machine learning techniques in agriculture. He is particularly focused on developing systems for early disease detection in crops, which can significantly improve agricultural productivity and food security. His research has led to the development of various models, such as those for detecting and classifying diseases in crops like wheat, beans, and peas, using deep convolutional neural networks (CNNs). Additionally, Dagne’s work includes using AI for the detection of counterfeit Ethiopian banknotes. His interest in machine learning-driven solutions highlights his desire to use technology to solve some of the most pressing challenges in the agricultural sector, with the ultimate goal of empowering farmers and enhancing food systems in Ethiopia and other developing countries.

Research Skills:

Dagne possesses strong research skills in machine learning, deep learning, and computer vision, which are central to his work on agricultural disease detection. He is proficient in using deep learning frameworks such as TensorFlow and Keras to develop complex models that can process and analyze agricultural data, including images of crops. His research skills also include data preprocessing, model evaluation, and optimization techniques, all of which are essential for creating accurate and reliable models. Furthermore, Dagne has experience in implementing algorithms for image classification and pattern recognition, which are key components in his work on disease detection. His ability to integrate AI technologies into real-world applications demonstrates a high level of proficiency in his field and a commitment to advancing agricultural technologies through research.

Awards and Honors:

Dagne Walle Girmaw has earned multiple Reviewer Contribution Certificates, recognizing his active participation in the academic and research community. These certificates highlight his role in reviewing academic papers, further cementing his reputation as a respected contributor to the field of Information Technology and machine learning. While specific awards for his research have not been mentioned, his work’s impact on agricultural technology has gained recognition, particularly in Ethiopia, where his research has the potential to improve the lives of farmers and contribute to national food security. His certifications and recognition as a reviewer reflect his dedication to advancing knowledge in both the academic and applied research fields.

Conclusion:

Dagne Walle Girmaw is a promising researcher and academic in the field of Information Technology, with a focus on using AI and deep learning to address challenges in agriculture. His work is particularly impactful in the realm of crop disease detection, where he has developed models that could potentially transform agricultural practices in Ethiopia and beyond. With a strong educational background, extensive professional experience, and a passion for solving agricultural problems through technology, Dagne is well-positioned to make significant contributions to both the academic and practical aspects of agricultural innovation. His research holds the potential to not only advance technology but also improve the livelihoods of farmers, enhance food security, and contribute to sustainable agricultural practices.

Publication Top Notes

  1. Title: Livestock animal skin disease detection and classification using deep learning approaches
    • Authors: Walle Girmaw, D.
    • Journal: Biomedical Signal Processing and Control
    • Year: 2025
    • Volume: 102
    • Article Number: 107334
  2. Title: Deep convolutional neural network model for classifying common bean leaf diseases
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: Discover Artificial Intelligence
    • Year: 2024
    • Volume: 4(1)
    • Article Number: 96
  3. Title: A novel deep learning model for cabbage leaf disease detection and classification
    • Authors: Girmaw, D.W., Salau, A.O., Mamo, B.S., Molla, T.L.
    • Journal: Discover Applied Sciences
    • Year: 2024
    • Volume: 6(10)
    • Article Number: 521
  4. Title: Field pea leaf disease classification using a deep learning approach
    • Authors: Girmaw, D.W., Muluneh, T.W.
    • Journal: PLoS ONE
    • Year: 2024
    • Volume: 19(7)
    • Article Number: e0307747
  5. Title: Development of a Model for Detection and Grading of Stem Rust in Wheat Using Deep Learning
    • Authors: Nigus, E.A., Taye, G.B., Girmaw, D.W., Salau, A.O.
    • Journal: Multimedia Tools and Applications
    • Year: 2024
    • Volume: 83(16)
    • Pages: 47649–47676
    • Citations: 4