Jidong Jia | Engineering | Best Researcher Award

Dr. Jidong Jia | Engineering | Best Researcher Award

Hebei University of Technology, China

Jidong Jia is a dedicated and innovative researcher specializing in the fields of intelligent robotics, robot dynamics, human-robot interaction, and adaptive wall-climbing robots. His research has significantly contributed to the development of precise dynamic modeling, intelligent perception, and safety control mechanisms in collaborative robotics. Dr. Jia’s work addresses essential challenges in robot stability, safe human-machine interaction, and intelligent robotic operations in complex environments. His ability to integrate multi-objective optimization, neural network compensation, and dynamic identification methods into practical robotic systems makes his research highly impactful and relevant. Dr. Jia has published extensively in high-impact international journals and conferences, with notable works focusing on magnetic-wheeled wall-climbing robots, dynamic parameter identification, obstacle avoidance, and coupling dynamics in mobile manipulators. His academic excellence has been consistently recognized through prestigious awards, including the Wiley China Excellent Author Program and the Outstanding Doctoral Dissertation Award from Hebei University of Technology. Through his research, Dr. Jia is contributing to advancing intelligent robot design, improving safety in human-robot collaboration, and enhancing robotic performance in real-world applications. His innovative thinking and continuous pursuit of technological breakthroughs highlight his potential to be a leading figure in the robotics community.

Professional Profile

Education

Jidong Jia has pursued a comprehensive educational journey in mechanical engineering and robotics at prestigious Chinese institutions. He began his academic path at Shandong University, where he earned his Bachelor of Science in Mechanical Engineering from September 2010 to June 2014. During this period, he developed a strong foundation in mechanical systems and engineering design. He continued his higher education at the Hebei University of Technology, where he completed an integrated MD-PhD program in Mechanical Engineering from September 2015 to January 2022. This intensive program allowed him to specialize further in intelligent robotic systems, collaborative robot dynamics, and safe human-robot interactions. Complementing his doctoral studies, Dr. Jia participated in a Joint Doctoral Training program at Harbin Institute of Technology (C9 League) from September 2017 to January 2022, focusing on cutting-edge technologies in robot modeling, disturbance estimation, and control mechanisms. His education provided him with a unique interdisciplinary skill set, blending theoretical knowledge with practical research applications. This strong academic background has equipped Dr. Jia with the expertise to address complex challenges in robot dynamics, intelligent operations, and adaptive mechanisms, positioning him to make significant contributions to the robotics field.

Professional Experience

Throughout his academic career, Jidong Jia has gained substantial professional experience through extensive research, development, and collaborative projects within the field of robotics. His research at the Hebei University of Technology and Harbin Institute of Technology focused on developing precise robot dynamic models, safe human-robot interaction mechanisms, and intelligent control systems. Dr. Jia’s hands-on experience includes the design of magnetic-wheeled wall-climbing robots, the creation of adaptive climbing mechanisms, and the implementation of dynamic force estimation and control systems for collaborative robots. His work is highly application-driven, addressing real-world challenges such as facade maintenance, unstructured terrain operations, and obstacle navigation in complex environments. Dr. Jia has led the development of robotic systems that incorporate deep visual reinforcement learning, artificial potential field-based motion planning, and dynamic stability evaluation methods. His involvement in multiple funded research projects and contributions to high-impact journals and international conferences reflect his growing influence in the robotics research community. Dr. Jia’s ability to balance theoretical development with practical engineering solutions has established him as a skilled and promising researcher in robot dynamics, intelligent systems, and safety-focused robotic operations.

Research Interest

Jidong Jia’s primary research interests lie in robot dynamics, human-robot interaction, intelligent robotic operations, and adaptive mechanism design. He focuses on solving critical challenges related to the precise dynamic modeling of collaborative robots, disturbance force estimation, and safe interaction control mechanisms in uncertain environments. His work addresses the growing demand for safety, precision, and adaptability in next-generation robotic systems, particularly those operating in human-centered and unstructured scenarios. Dr. Jia has extensively explored high-load wall-climbing robots, developing intelligent perception systems and control methods for robots navigating complex facades and obstacles. Additionally, his research emphasizes self-stabilizing control strategies and anti-overturning mechanisms for composite robots functioning in dynamic terrains. Dr. Jia’s interests also include robotic learning, neural network compensation, proprioceptive sensing, and dynamic force field mapping. His integration of artificial intelligence with mechanical design allows robots to perceive, adapt, and interact safely and efficiently. Moving forward, Dr. Jia aims to advance research in intelligent autonomous robots, hybrid control systems, and real-time adaptive robotic behaviors that contribute to the safe deployment of collaborative robots in various industrial and social applications.

Research Skills

Jidong Jia possesses a wide range of advanced research skills essential for cutting-edge developments in intelligent robotics. He has expertise in robotic system modeling, particularly in the precise identification of dynamic parameters under multiple uncertainties. Dr. Jia is proficient in developing hybrid dynamic models that incorporate neural network-based error compensation and has successfully proposed online identification and compensation approaches to enhance robotic performance. His skills extend to multi-objective optimization, control theory, and artificial potential field-based motion planning for obstacle avoidance. Dr. Jia is experienced in robotic perception systems, utilizing deep visual reinforcement learning to enable robots to autonomously perceive and navigate complex environments. He has demonstrated capabilities in designing adaptive mechanisms, magnetic-wheeled climbing robots, compliant suspension systems, and anti-overturning mobile manipulators. His technical proficiency includes the development of momentum-based disturbance observers, force-position hybrid control strategies, and proprioceptive sensing-based identification methods. Dr. Jia’s skill set reflects his ability to integrate mechanical engineering principles with intelligent control, simulation, and optimization technologies, allowing him to build safe, efficient, and adaptive robotic systems capable of complex real-world operations.

Awards and Honors

Jidong Jia has received several prestigious awards and honors in recognition of his outstanding academic achievements and research contributions. He was selected for the Wiley China Excellent Author Program in 2025, a distinction awarded to exceptional authors for impactful publications. His doctoral research was acknowledged with the Outstanding Doctoral Dissertation Award from Hebei University of Technology in 2023, underlining the significance of his contributions to robotics and dynamic modeling. In 2022, Dr. Jia’s work was further recognized with the Outstanding Paper Award from the Chinese Journal of Mechanical Engineering, reflecting his ability to produce influential and high-quality research. Earlier in his academic journey, he was awarded the National Scholarship in 2019 by the Ministry of Education of China, a highly competitive honor granted to the top 1% of students nationwide for academic excellence and research potential. These accolades not only validate Dr. Jia’s innovative work in robotics but also emphasize his consistent dedication to advancing knowledge and solving complex engineering problems. His recognition at national and international levels highlights his growing reputation as a talented and impactful researcher in the field.

Conclusion

In conclusion, Dr. Jidong Jia stands out as an accomplished and promising researcher whose contributions significantly advance the fields of intelligent robotics, dynamic modeling, and safe human-robot interactions. His comprehensive educational background, extensive research experience, and innovative problem-solving approach position him as a leader in designing adaptive, intelligent, and safety-conscious robotic systems. Dr. Jia has demonstrated excellence in both theoretical and applied aspects of robotics, contributing to the development of wall-climbing robots, compliant mechanisms, and dynamic anti-overturning solutions for mobile manipulators. His outstanding academic performance and numerous awards further validate his impact and potential. Moving forward, Dr. Jia’s work is expected to play a vital role in shaping the next generation of collaborative robotic systems capable of operating in complex, dynamic, and human-centric environments. By expanding his research through international collaborations and focusing on the translation of his innovations into industrial applications, he can further elevate his influence in the global robotics community. Dr. Jidong Jia’s impressive body of work and forward-thinking research agenda make him an excellent candidate for prestigious recognitions such as the Best Researcher Award.

Publication Top Notes

  1. Development of an Omnidirectional Mobile Passive‐Compliant Magnetic‐Wheeled Wall‐Climbing Robot for Variable Curvature Facades
    Authors: Pei Jia, Jidong Jia, Manhong Li, Minglu Zhang, Jie Zhao
    Year: 2025

  2. Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot
    Authors: Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
    Year: 2024

  3. Innovative Strain Measuring Device with Flex Sensor for Twisted and Coiled Actuator and Dexterous Hand Application
    Authors: Man Wang, Xiaojun Zhang, Minglu Zhang, Manhong Li, Chengwei Zhang, Jidong Jia
    Year: 2024

  4. Enhanced Robot Obstacle Avoidance Strategy: Efficient Distance Estimation and Collision Avoidance for Hidden Robots
    Authors: Xiaojun Zhang, Minglong Li, Jidong Jia, Lingyu Sun, Manhong Li, Minglu Zhang
    Year: 2024

  5. Magnetic Circuit Analysis of Halbach Array and Improvement of Permanent Magnetic Adsorption Device for Wall-Climbing Robot
    Authors: Shilong Jiao, Xiaojun Zhang, Xuan Zhang, Jidong Jia, Minglu Zhang
    Year: 2022

  6. Improved Dynamic Parameter Identification Method Relying on Proprioception for Manipulators
    Authors: Jidong Jia, Minglu Zhang, Changle Li, Chunyan Gao, Xizhe Zang, Jie Zhao
    Year: 2021

  7. Research Progress and Development Trend of the Safety of Human-Robot Interaction Technology
    Authors: Jidong Jia, Minglu Zhang
    Year: 2020

  8. Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design
    Authors: Jidong Jia, Minglu Zhang, Xizhe Zang, He Zhang, Jie Zhao
    Year: 2019

Seyed Sepehr Mohseni | Engineering | Best Researcher Award

Mr. Seyed Sepehr Mohseni | Engineering | Best Researcher Award

University of Tehran from Switzerland. 

Seyed Sepehr Mohseni is a biomedical engineer specializing in microfluidics, microfabrication, and biomechanics. With a keen interest in developing innovative microfluidic platforms for biological and clinical applications, his research addresses vital issues in cell sorting, cancer diagnostics, and organ-on-a-chip technologies. Having completed both his Bachelor’s and Master’s degrees with distinction in biomedical engineering, he has already contributed to several high-impact journal articles and conference presentations. His master’s thesis focused on the separation of circulating tumor cells (CTCs) using a novel arc-shaped microfluidic channel, which showcases his strength in problem-solving and innovation. Beyond academia, he has volunteered as a technical expert in the medical device field and worked on collaborative research projects involving cell culture and biosensor development. Seyed Sepehr’s combined academic excellence, laboratory expertise, and interdisciplinary research experience reflect his deep commitment to advancing biomedical technologies. His work not only aligns with current trends in healthcare engineering but also holds significant potential for clinical impact. As a young researcher with a growing international presence, he demonstrates strong potential for leadership in biomedical research. He is well-positioned for prestigious recognitions such as the Best Researcher Award, owing to his innovative contributions and academic accomplishments in a relatively short span.

Professional Profile

Education

Seyed Sepehr Mohseni holds a Master of Science in Biomedical Engineering with a specialization in Biomechanics from the University of Tehran, Iran. He pursued his postgraduate studies at the Faculty of New Sciences and Technologies, completing his degree in July 2021. His master’s thesis, titled “CTCs separation by an obstacles-embedded arc-shaped microfluidic channel”, was awarded an excellent grade of 20/20, under the supervision of Dr. Ali Abouei Mehrizi. He graduated with a total GPA of 18.03/20, reflecting consistent academic performance across advanced engineering courses, including finite element methods, continuum mechanics, and biological modeling. Prior to that, he earned his Bachelor of Science in Biomedical Engineering, also in Biomechanics, from the Science and Research Branch of Islamic Azad University in Tehran, graduating in 2017. He maintained a strong GPA of 18.51/20 and ranked second among his cohort. Throughout both degrees, Seyed Sepehr showed an aptitude for interdisciplinary learning, bridging biology with engineering fundamentals. His academic record is supported by top national rankings in university entrance examinations, highlighting his early dedication to academic excellence and biomedical innovation. These achievements laid the foundation for his advanced research in microfluidics and device development for healthcare applications.

Professional Experience

Seyed Sepehr Mohseni has amassed a diverse portfolio of professional and research-oriented experiences that complement his academic training. During his postgraduate studies, he actively contributed to laboratory-based research at the Bio-Microfluidics Lab at the University of Tehran. His responsibilities included hands-on work with microfluidic device fabrication, droplet generators, cell sorting platforms, and fluorescence microscopy. He also served as a teaching assistant across multiple core engineering courses, including finite element methods, biomechanics, and biological system simulations, under the mentorship of Dr. Ali Abouei Mehrizi. In addition to his academic roles, Seyed Sepehr has gained industry-relevant experience. From 2019 to 2023, he worked as a technical expert at Setareh Kimia Persian Engineering Company, where he specialized in calibrating medical and laboratory devices. He also served as a technical supervisor for medical equipment importers and manufacturers with the General Directorate of Medical Equipment in Iran. In 2023, he joined a project at Iran University of Medical Sciences, focusing on the isolation of circulating tumor cells from blood samples, further integrating clinical applications with his engineering expertise. This breadth of experience reflects his ability to bridge research, industry, and healthcare regulation—key elements of a well-rounded biomedical professional.

Research Interest

Seyed Sepehr Mohseni’s research interests are centered around the development and application of microfluidic technologies in biomedical engineering. He is particularly focused on microfabrication, organ-on-a-chip systems, and cell culture platforms, aiming to address challenges in diagnostics, therapeutic monitoring, and disease modeling. His graduate thesis on CTC separation using an arc-shaped deterministic lateral displacement microchannel highlights his interest in cancer research and lab-on-a-chip solutions for non-invasive diagnostics. His scientific curiosity extends to biosensing applications, including the use of porous silicon integrated microchannels and reflectometric interference Fourier transform spectroscopy. He is also interested in biomaterials and hydrogel-based tissue engineering, as demonstrated in collaborative projects involving VEGF delivery systems and bone regeneration scaffolds. Seyed Sepehr’s interdisciplinary perspective allows him to combine mechanical design principles with biological applications, making his research highly relevant to current needs in precision medicine. With a growing interest in organ-on-a-chip and microfluidics-enabled point-of-care testing, his long-term vision involves developing platforms that enhance personalized healthcare. His research is aligned with global trends in translational medicine, aiming to move scientific innovation from the lab bench to clinical practice. This strong alignment of technical knowledge with clinical relevance defines his growing impact in the biomedical field.

Research Skills

Seyed Sepehr Mohseni brings a comprehensive set of research skills that span both computational and experimental domains in biomedical engineering. He is highly proficient in using simulation and modeling software such as COMSOL Multiphysics, MATLAB, ABAQUS, and Ansys Fluent, which he applies in the design and analysis of microfluidic devices and biomechanical systems. His academic background is strengthened by a deep understanding of finite element methods, continuum mechanics, and biological system simulations. In the laboratory, Seyed Sepehr has advanced expertise in microfabrication techniques such as photolithography and soft lithography. He has operated and analyzed microfluidic systems involving droplet generation, micromixing, and cell separation. His work is supported by imaging techniques, including fluorescence and confocal microscopy, as well as experience in 3D bioprinting and mammalian cell culture. These laboratory skills were honed through years of hands-on experience in the Bio-Microfluidics Lab at the University of Tehran. Additionally, he is adept in data visualization and analysis software such as Origin, Tracker, and ImageJ/Fiji, along with graphic design tools like Adobe Photoshop and Illustrator. His interdisciplinary competence allows him to transition smoothly from computational modeling to experimental implementation, which is essential for innovative research in biomedical device development.

Awards and Honors

Seyed Sepehr Mohseni has received multiple academic distinctions that reflect his high level of competence and commitment to biomedical engineering. In 2021, he was ranked first among the 2018 M.Sc. entrants in Biomedical Engineering at the Faculty of New Sciences and Technologies, University of Tehran. This recognition is a testament to his consistent academic excellence and outstanding performance in research-based coursework and laboratory activities. Earlier in his academic journey, he achieved second rank among all undergraduate entrants in Biomedical Engineering at Islamic Azad University in 2014. More notably, in the same year, he was ranked in the top 1% of participants in Iran’s highly competitive national university entrance exam for M.Sc. programs in Mechanical Engineering. These achievements highlight his intellectual rigor and early promise as a future leader in engineering research. His consistent high GPA throughout his academic career and the excellent grade for his master’s thesis further reinforce his qualifications. These honors, combined with his publication record in high-impact journals and active involvement in innovative research, make him a strong candidate for recognition through awards such as the Best Researcher Award. They confirm both his academic credibility and his potential to contribute significantly to the field.

Conclusion

In conclusion, Seyed Sepehr Mohseni stands out as a dedicated and innovative biomedical researcher with a strong foundation in both theory and practical application. His focused research on microfluidic systems, cell sorting technologies, and biosensing reflects a clear vision for solving contemporary challenges in healthcare engineering. He has already made meaningful contributions to the field through his publications, laboratory innovations, and cross-disciplinary collaborations. While his professional experience is still developing, it includes diverse roles in teaching, laboratory research, and clinical collaboration—all of which enrich his research profile. His ability to integrate engineering design with biological functionality demonstrates a maturity of thought uncommon in early-career researchers. Although he is yet to pursue a doctoral degree or lead large-scale independent projects, his current trajectory strongly suggests readiness for further academic advancement and leadership roles in biomedical research. Seyed Sepehr’s academic performance, technical expertise, and innovative outlook make him an ideal candidate for competitive research honors. The Best Researcher Award would not only recognize his current accomplishments but also encourage and support a promising career that is likely to yield significant impact in translational medicine and biomedical device development.

Publications Top Notes

  • Title: Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue
    Authors: F. Moztarzadeh, M. Farokhi, A.A. Mehrizi, H. Basiri, S.S. Mohseni
    Journal: International Journal of Biological Macromolecules
    Volume/Page: 184, 29–41
    Year: 2021
    Citations: 60

  • Title: Machine learning-aided microdroplets breakup characteristic prediction in flow-focusing microdevices by incorporating variations of cross-flow tilt angles
    Authors: B. Talebjedi, A. Abouei Mehrizi, B. Talebjedi, S.S. Mohseni, N. Tasnim, …
    Journal: Langmuir
    Volume/Issue/Page: 38 (34), 10465–10477
    Year: 2022
    Citations: 14

  • Title: Microfluidic platforms for cell sorting
    Authors: F. Mirakhorli, S.S. Mohseni, S.R. Bazaz, A.A. Mehrizi, P.J. Ralph, M.E. Warkiani
    Journal: Sustainable Separation Engineering: Materials, Techniques and Process
    Year: 2022
    Citations: 12

  • Title: A Novel Strategy for Square-Wave Micromixers: A Survey of RBC Lysis for Further Biological Analysis
    Authors: A.H. Hazeri, A. Abouei Mehrizi, S.S. Mohseni, M. Ebrahimi Warkiani, …
    Journal: Industrial & Engineering Chemistry Research
    Volume/Issue/Page: 62 (40), 16215–16224
    Year: 2023
    Citations: 6

  • Title: Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles
    Authors: H. Basiri, S.S. Mohseni, A. Abouei Mehrizi, A. Rajabnejadkeleshteri, …
    Journal: Biomacromolecules
    Volume/Issue/Page: 22 (12), 5162–5172
    Year: 2021
    Citations: 4

  • Title: Flow rate controlling by capillary micropumps in open biomicrofluidic devices
    Authors: S. Fathi, S.S. Mohseni, A.A. Mehrizi
    Conference: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering
    Year: 2020
    Citations: 4

  • Title: A novel microfluidic platform for MCF-7 separation: Arc-shaped deterministic lateral displacement microchannel
    Authors: S.S. Mohseni, A.A. Mehrizi, S. Fathi
    Journal: Microchemical Journal
    Volume/Page: 211, 113076
    Year: 2025

Guocheng Qin | Engineering | Best Researcher Award

Mr. Guocheng Qin | Engineering | Best Researcher Award

Researcher from Chongqing Institute of Surveying and Monitoring for Planning and Natural Resources, China

Qin Cheng is a dedicated and innovative civil engineering researcher with a strong focus on integrating advanced digital technologies such as Building Information Modeling (BIM), 3D laser scanning, and Unmanned Aerial Vehicle (UAV) systems into modern construction and infrastructure projects. Born in March 1994, he has consistently demonstrated academic excellence, practical engineering insight, and a deep interest in smart city development and sustainable infrastructure. His work spans across both academic and applied settings, with a particular emphasis on intelligent monitoring systems, reverse modeling, and digital design optimization. He has contributed to various high-profile research initiatives and collaborative international projects, particularly during his tenure as a visiting scholar at the University of Louvain. Qin Cheng has also been actively involved in training graduate students, guiding technical design, and promoting intelligent construction practices. His experience working with institutions such as the Chongqing Leuven Institute of Smart City and Sustainable Development and contributions to international exhibitions like the China Intelligent Industry Expo reflect his ability to bridge academic research with real-world applications. With a clear commitment to advancing civil engineering practices through technology and innovation, Qin Cheng continues to emerge as a promising voice in the field of smart construction and structural engineering.

Professional Profile

Education

Qin Cheng’s academic journey in civil engineering began with a Bachelor of Engineering from Zhengzhou Institute of Technology and Business, where he studied from September 2013 to July 2017. Building on a solid undergraduate foundation, he pursued a Master of Engineering in Civil Engineering with a structural specialization at Chongqing Jiaotong University from September 2017 to July 2020. During his master’s studies, Qin demonstrated exceptional academic and research abilities, further enriching his education through international exposure. Between October 2018 and January 2019, he served as a visiting scholar at the University of Louvain in Belgium, engaging in scholarly exchanges focused on construction waste regeneration and sustainable urban development. This international experience broadened his perspective on global engineering practices and enhanced his research on smart city applications. His academic background is marked by strong technical competence in structural systems, intelligent monitoring, and construction digitization. Through both domestic and international institutions, Qin Cheng has built a strong academic profile grounded in research excellence, multidisciplinary learning, and hands-on application of modern civil engineering technologies.

Professional Experience

Qin Cheng has built a diverse portfolio of professional experience that merges academic research, international collaboration, and field application. One of his notable professional engagements was his time as a visiting scholar at the University of Louvain (October 2018 to January 2019), where he contributed to academic exchanges on sustainable urban development and construction waste regeneration. He also engaged with world-renowned engineering firms such as Jan de Nul Group to explore cutting-edge civil engineering practices. Qin served as a researcher at the Chongqing Leuven Institute of Smart City and Sustainable Development, where he played a key role in conducting technical breakthroughs in forward design, reverse modeling, and intelligent monitoring systems. His responsibilities included training graduate students in architectural information technology, guiding bridge reverse modeling projects in Norway, and participating in major events such as the China International Intelligent Industry Expo. His professional activities emphasize the integration of BIM and 3D technologies into infrastructure development. Through his involvement in large-scale projects such as the Taihong Yangtze River Bridge and the FAW-Volkswagen Digital Factory, Qin has effectively applied his academic expertise to real-world engineering challenges. His career path reflects a commitment to technological innovation, cross-border collaboration, and the advancement of intelligent infrastructure systems.

Research Interests

Qin Cheng’s research interests center on the integration of advanced digital technologies in civil engineering, with a particular focus on intelligent construction and infrastructure management. He is deeply engaged in developing and applying Building Information Modeling (BIM), 3D laser scanning, and UAV technologies to improve the design, monitoring, and maintenance of civil structures. His work explores how digital tools can optimize construction processes, enhance precision in modeling, and support virtual simulations for pre-assembly. Qin is also interested in reverse modeling techniques for complex structures, smart monitoring of bridges and buildings, and the use of point cloud data in structural analysis. His international collaborations have further shaped his interest in sustainable urban development, where he examines how smart technologies can be leveraged to build resilient, efficient cities. Through projects focused on highway management systems, digital curtain wall design, and large-scale bridge construction, he aims to create innovative solutions that address contemporary challenges in civil engineering. Qin’s research embodies a forward-thinking approach that blends theoretical modeling with practical application, striving to make infrastructure safer, more efficient, and more intelligent through continuous technological advancement.

Research Skills

Qin Cheng possesses a robust set of research skills that enable him to address complex challenges in civil and structural engineering through technological innovation. His core competencies include advanced proficiency in Building Information Modeling (BIM) and 3D laser scanning, which he has used extensively for deformation monitoring, digital pre-assembly, and reverse modeling of both buildings and bridges. He is skilled in UAV route planning and tilt photography for site inspections and large-scale mapping, showcasing his adaptability in remote sensing applications. His hands-on experience with point cloud data processing enables him to conduct accurate structural analysis and digital model construction. Qin is also proficient in integrating BIM with IoT systems for smart bridge management, combining sensor data with digital modeling for real-time infrastructure monitoring. In academic and collaborative environments, he has guided graduate students in technical training and project design, demonstrating strong mentorship capabilities. He is comfortable working across international platforms and has presented his work at major conferences. Qin’s methodological rigor, combined with his technical agility, allows him to innovate across design, monitoring, and operational aspects of civil engineering projects. His ability to apply research techniques to practical scenarios is a key strength in his professional and academic career.

Awards and Honors

Throughout his academic and early research career, Qin Cheng has received several prestigious awards and honors that reflect his dedication, excellence, and potential in the field of civil engineering. During his undergraduate studies, he was consistently recognized with merit-based scholarships, including the National Encouragement Scholarship and first-class and second-class academic scholarships. His excellence continued into his postgraduate years at Chongqing Jiaotong University, where he was awarded the Beijing CCCC Road Tong Million Scholarship and the first-class postgraduate scholarship. In 2020, he won the second prize in the “My College Life” competition and the third prize in the “Transportation BIM Engineering Innovation Award” from the China Highway Society. These accolades highlight both his academic achievements and his contributions to engineering innovation. His participation in various international academic events and his role in large-scale national infrastructure projects further affirm his growing reputation in the field. The consistent recognition of his work through these awards underscores his capability to combine theoretical knowledge with practical engineering excellence. These honors are a testament to his talent, perseverance, and impact in advancing intelligent construction technologies and modern infrastructure development.

Conclusion

In conclusion, Qin Cheng emerges as a highly motivated and capable young researcher with a strong foundation in civil engineering and a clear commitment to technological innovation in infrastructure development. His integration of BIM, 3D laser scanning, and UAV systems into design and monitoring processes showcases his forward-thinking approach and alignment with the needs of smart and sustainable urban construction. With a solid academic background, international experience, and a growing body of research publications, he brings both technical expertise and practical insight to the field. Although he currently holds a master’s degree, his trajectory suggests significant potential for further academic advancement and research leadership. He has demonstrated the ability to bridge academic research with real-world engineering applications, making valuable contributions to both scholarly and professional communities. While increasing publication in top-tier journals and engaging in patent development could further enhance his profile, Qin Cheng has already laid a strong foundation for a successful research career. He is a suitable and deserving candidate for recognition in early-stage researcher or emerging researcher award categories and has the capacity to evolve into a leading expert in smart construction and digital civil engineering in the years ahead.

Publications Top Notes

  1. Title: Automatic Construction of 3D Building Property Rights Model Based on Visual Programming Language in China
    Authors: Qin, Guocheng; Hu, Yuqing; Wang, Ling; Liu, Ke; Hou, Yimei
    Journal: Advances in Civil Engineering
    Year: 2024

MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Prof. MARIO ORESTES AGUIRRE GONZALEZ | Engineering | Best Researcher Award

Professor at Federal University of Rio Grande do Norte, Brazil

Mario Orestes Aguirre González is an accomplished academic and researcher in the field of production engineering, with expertise in product innovation, process optimization, and renewable energy systems. He holds a Ph.D. in Production Engineering with a focus on customer integration in product development from the Universidade Federal de São Carlos (UFSCar), Brazil. As an Associate Professor at the Federal University of Rio Grande do Norte (UFRN), he has significantly contributed to academic development and industry collaborations. Mario leads the CREATION research group, focusing on renewable energy value chains, including wind, solar, and hydrogen. His research is widely published in high-impact journals such as Journal of Cleaner Production and Energy Policy. He is also an active member of national and international energy committees, contributing to strategic initiatives in green hydrogen development.

Professional Profile

Education

Mario Orestes Aguirre González’s educational background is diverse and distinguished. He earned a Ph.D. in Production Engineering from UFSCar in 2010, specializing in customer integration in product development. Prior to that, he completed his Master’s degree in Production Engineering at UFRN in 2005, focusing on customer satisfaction and loyalty in the hospitality industry. He also holds a Bachelor’s degree in Industrial Engineering from the Universidad Nacional de Ingeniería, Peru, which he obtained in 2000. He has pursued specialized training in areas such as total quality management, innovation management, offshore renewable energy systems, and intellectual property. This robust educational foundation has equipped him with a multidisciplinary perspective essential for tackling complex challenges in engineering and innovation.

Professional Experience

Mario has held various impactful positions throughout his career. He is currently an Associate Professor at UFRN, where he teaches and conducts research in product engineering, innovation management, and global value chain coordination. He has previously served as President of the Institute for Innovation and Product Development Management (IGDP) and coordinated significant national conferences and workshops. Mario has also worked on industry-oriented projects with leading companies such as ABM, Vale, and Volkswagen, through the Materials Characterization and Development Center at UFSCar. His contributions extend to academic administration, serving as the vice-coordinator and coordinator of graduate programs at UFRN, and as an editor for Product: Management & Development.

Research Interests

Mario’s research interests are rooted in innovation, process optimization, and renewable energy systems. He is dedicated to advancing knowledge in global value chain integration for green technologies, with a particular focus on wind, solar, and hydrogen energy. His work explores product and process innovation, leveraging interdisciplinary approaches to optimize industrial and operational processes. Through his leadership of the CREATION research group, Mario investigates sustainable energy solutions, contributing to the development of efficient and innovative production systems. He is also committed to fostering the link between academia and industry, ensuring practical applicability and societal impact of his research.

Research Skills

Mario possesses extensive research skills in production and process engineering, including the development of reference models, customer integration, and quality management. He is proficient in utilizing advanced methodologies such as Six Sigma DMAIC, regression models, and risk analysis to drive innovation and efficiency. Mario’s technical expertise spans renewable energy technologies, such as offshore wind and solar power systems, as well as green hydrogen development. His skills in project management, interdisciplinary collaboration, and scholarly writing have enabled him to produce impactful research published in high-impact journals. Additionally, he has strong capabilities in mentoring graduate students and fostering industry-academic partnerships.

Awards and Honors

Mario’s academic and professional achievements have been recognized through numerous awards and honors. He is a CNPq Productivity Research Fellow (Level 2), highlighting his significant contributions to Brazilian research. He received scholarships from CAPES for his doctoral and master’s studies, reflecting his academic excellence. As President of the IGDP, he was instrumental in organizing national events that fostered innovation and collaboration. He has also been acknowledged for his pioneering efforts in renewable energy research, including his active role in the National Hydrogen Program. His diverse recognitions underscore his leadership, academic rigor, and commitment to advancing innovation in engineering.

Conclusion

Mario Orestes Aguirre González is a strong candidate for the Best Researcher Award. His extensive contributions to production engineering, renewable energy innovation, and academic leadership, combined with impactful publications and industry collaborations, make him a well-rounded and deserving nominee. Strategic efforts to enhance international engagement and intellectual property outputs could further elevate his profile in the global research community.

Publication Top Notes

  1. Offshore Wind Power Growth and Industrial Development in Emerging Markets
    • Authors: González, M.; Santiso, A.; Jones, D.; Vasconcelos, R.; Melo, D.
    • Year: 2024
    • Citations: 0
  2. Maturity Model for Sustainability Assessment of Chemical Analyses Laboratories in Public Higher Education Institutions
    • Authors: Souza, M.A.; González, M.O.A.; Pinho, A.L.S.D.
    • Year: 2024
    • Citations: 3
  3. Technology Mapping of Direct Seawater Electrolysis Through Patent Analysis
    • Authors: Medeiros Araújo de Moura, L.C.; Orestes Aguirre González, M.; de Oliveira Ferreira, P.; Gonçalves Vasconcelos Sampaio, P.
    • Year: 2024
    • Citations: 4
  4. Factors Influencing the Decision-Making Process at the End-of-Life Cycle of Onshore Wind Farms: A Systematic Review
    • Authors: Agra Neto, J.; González, M.O.A.; Castro, R.L.P.D.; Souza, L.H.D.; Cabral, E.L.D.S.
    • Year: 2024
    • Citations: 0
  5. Evaluation of Technological Development of Hydrogen Fuel Cells Based on Patent Analysis
    • Authors: Moura, L.; González, M.; Silva, J.; Ferreira, P.; Sampaio, P.
    • Year: 2024
    • Citations: 1
  6. Lean Development and Its Impacts on the Performance of New Product Processes: An Analysis of Innovative Brazilian Companies
    • Authors: de Toledo, J.C.; Pinheiro, L.M.P.; Poltronieri, C.F.; Barbalho, S.; González, M.O.A.
    • Year: 2023
    • Citations: 4
  7. Analysis of the Impact of Communication Campaigns Under the Project “Syphilis No”: A National Tool for Inducing and Promoting Health
    • Authors: Paiva, J.C.D.L.; Dias-Trindade, S.; Gonzalez, M.O.A.; Barbalho, I.M.P.; Valentim, R.A.D.M.
    • Year: 2022
    • Citations: 2
  8. Environmental Licensing for Offshore Wind Farms: Guidelines and Policy Implications for New Markets
    • Authors: Vasconcelos, R.M.D.; Silva, L.L.C.; González, M.O.A.; Santiso, A.M.; de Melo, D.C.
    • Year: 2022
    • Citations: 13
  9. A Review on Organic Photovoltaic Cell
    • Authors: Sampaio, P.G.V.; González, M.O.A.
    • Year: 2022
    • Citations: 28
  10. Contact Points Between Lean Six Sigma and Industry 4.0: A Systematic Review and Conceptual Framework
    • Authors: Sordan, J.E.; Oprime, P.C.; Pimenta, M.L.; Silva, S.L.; González, M.O.A.
    • Year: 2022
    • Citations: 31

 

Zhongwei Wu | Engineering | Best Researcher Award

Dr. Zhongwei Wu | Engineering | Best Researcher Award

Lecturer at Yangtze University, China

Dr. Zhongwei Wu is a Lecturer in the College of Petroleum Engineering at Yangtze University. He specializes in geo-energy development with a focus on shale and tight oil reservoirs, CO₂ flooding and storage, and big data applications in energy systems. With over four years of professional experience, he has made significant contributions to hydraulic fracturing and proppant transport models, providing theoretical support for efficient oil and gas extraction. Dr. Wu has managed 18 research projects worth $810,000, authored 26 SCI-indexed journal papers, and holds 20 patents. His research outputs have been cited over 110 times in the last three years. His work is recognized for its practical applications and academic rigor, making him a promising figure in petroleum engineering.

Professional Profile

Education

Dr. Zhongwei Wu holds a Bachelor of Petroleum Engineering from Yangtze University (2009–2013) and a Master’s in Oil and Natural Gas Engineering from China University of Geosciences, Beijing (2013–2016). He completed his Ph.D. in Oil and Gas Field Development Engineering at China University of Petroleum (East China) in 2020, during which he was a visiting doctoral researcher at the University of Alberta (2018–2019). His academic journey reflects a commitment to mastering advanced concepts in petroleum engineering and geo-energy systems.

Professional Experience

Dr. Wu’s career spans academia and research, beginning as a Post-doctoral Fellow at China University of Petroleum (East China) from 2020 to 2022. In November 2022, he joined Yangtze University as a Lecturer in the College of Petroleum Engineering. Over his career, he has led groundbreaking studies on hydraulic fracturing and effective utilization methods in shale/tight oil reservoirs. His consultancy work includes 17 industry-sponsored projects, reflecting his ability to integrate research with real-world applications. Dr. Wu has also served as an editor, reviewer, and conference committee member, contributing to advancing the petroleum engineering field.

Research Interests

Dr. Wu’s research focuses on geo-energy development, particularly shale/tight oil reservoirs and carbon capture, utilization, and storage (CCUS). His interests include optimizing hydraulic fracturing techniques, CO₂ flooding for enhanced oil recovery, and leveraging big data technologies for energy systems. His innovative models on fracture-proppant dynamics and effective utilization range have practical implications for improving oil and gas production efficiency. His work bridges theoretical advancements and industrial applications, driving sustainable energy development.

Research Skills

Dr. Wu demonstrates expertise in advanced modeling and simulation techniques for hydraulic fracturing and CO₂ flooding. He is skilled in designing and conducting laboratory experiments to validate theoretical frameworks. His proficiency in data analysis and big data applications enhances his ability to optimize energy systems. Additionally, his experience managing multi-million-dollar research projects highlights his project management and collaborative skills, ensuring impactful outcomes in petroleum engineering research.

Awards and Honors

Dr. Wu has received recognition for his outstanding contributions to petroleum engineering. He holds one institutional award and has established a functional MoU with a collaborating university, emphasizing his commitment to collaborative research. With over 110 citations in three years and a growing H-index of 12, his work is gaining increasing recognition in academia and industry. His innovations, backed by 20 patents and numerous publications, reflect his leadership in advancing geo-energy development technologies.

Conclusion

Zhongwei Wu stands out as a promising researcher in the field of geo-energy development and CCUS. His expertise in shale/tight oil reservoirs, coupled with significant contributions through patents, publications, and industry projects, solidifies his position as a strong contender for the Best Researcher Award. By addressing areas of improvement, particularly in international collaborations and visibility at scientific forums, he can further strengthen his candidature and global impact.

Publication Top Notes

  1. Influence of reservoir heterogeneity on immiscible water-alternating-CO2 flooding: A case study”
    • Authors: Jia, P.; Cui, C.; Wu, Z.; Yan, D.
    • Year: 2024
    • Journal: Energy Geoscience
    • Volume/Issue: 5(3), Article 100272
    • Citations: 1
  2. “A novel method to determine the optimal threshold of SEM images”
    • Authors: Zhang, Z.; Cui, C.; Wu, Z.
    • Year: 2024
    • Journal: Marine and Petroleum Geology
    • Volume: 163, Article 106804
    • Citations: 1
  3. “Screening and field application of microbial-flooding activator systems”
    • Authors: Yao, X.; Gai, L.; Feng, Y.; Ma, J.; Wu, Z.
    • Year: 2024
    • Journal: Energy Geoscience
    • Volume/Issue: 5(2), Article 100240
  4. “Forecasting of oil production driven by reservoir spatial–temporal data based on normalized mutual information and Seq2Seq-LSTM”
    • Authors: Cui, C.; Qian, Y.; Wu, Z.; Lu, S.; He, J.
    • Year: 2024
    • Journal: Energy Exploration and Exploitation
    • Volume/Issue: 42(2), pp. 444–461
    • Citations: 3
  5. “Simulation of the Microscopic Seepage Process of CO2 Storage in Saline Aquifers at the Pore Scale”
    • Authors: Cui, C.; Li, J.; Wu, Z.
    • Year: 2024
    • Journal: Energy and Fuels
    • Volume/Issue: 38(3), pp. 2084–2099
    • Citations: 2
  6. “Pressure Analysis of Vertical-Wells with the Hydraulic Fracturing Assisted Water Injection in Low-Permeability Hydrogen and Carbon Reservoirs”
    • Authors: Yu, Z.; Liu, S.; Tang, J.; Du, J.; Wu, Z.
    • Year: 2024
    • Journal: ACS Omega
  7. “The Imbibition Mechanism and the Calculation Method of Maximum Imbibition Length during the Hydraulic Fracturing”
    • Authors: Wu, Z.; Li, X.; Cui, C.; Wang, Y.; Trivedi, J.J.
    • Year: 2024
    • Journal: International Journal of Energy Research
    • Article: 8371615
    • Citations: 1
  8. “Shale Pore-Scale Numerical Simulation of Oil-Water Two-Phase Flow”
    • Authors: Qian, Y.; Cui, C.-Z.; Wu, Z.-W.; Sui, Y.-F.; Lu, S.-Q.-S.
    • Year: 2024
    • Book: Springer Series in Geomechanics and Geoengineering
    • Pages: 905–914
  9. “Optimization of cushion gas types and injection production parameters for underground hydrogen storage in aquifers”
    • Authors: Hao, Y.; Ren, K.; Cui, C.; Wu, Z.
    • Year: 2023
    • Journal: Energy Storage Science and Technology
    • Volume/Issue: 12(9), pp. 2881–2887
    • Citations: 1
  10. “An improved Eulerian scheme for calculating proppant transport in a field-scale fracture for slickwater treatment”
    • Authors: Sun, L.; Cui, C.; Wu, Z.; Trivedi, J.J.; Guevara, J.
    • Year: 2023
    • Journal: Geoenergy Science and Engineering
    • Volume: 227, Article 211866
    • Citations: 3