Chongan Zhang | Computer Science | Best Researcher Award

Mr. Chongan Zhang | Computer Science | Best Researcher Award

Researcher from Zhejiang University, China

Chongan Zhang is an accomplished researcher in the field of Biomedical Engineering with nearly a decade of hands-on experience in the research and development of advanced medical devices. Based at Zhejiang University, he has served as a core team member on numerous high-impact projects at national, provincial, and enterprise levels. His research has focused on the development and translational application of high-end medical endoscopes, surgical navigation systems, and digital processing systems used in endoscopic surgical robots. Chongan’s innovative contributions have led to the publication of 10 academic papers indexed in SCI and EI, covering significant topics such as endoscopy and surgical navigation. He holds one national invention patent, which reflects his ability to bridge the gap between academic research and real-world clinical applications. His interdisciplinary approach combines engineering, computer science, and medicine to address key challenges in minimally invasive surgery. Committed to improving surgical precision and patient outcomes, his work in the development of high-speed digital processing and core navigation components has gained recognition in both academic and industrial domains. With a clear focus on translational research, Chongan continues to strive toward excellence in biomedical device innovation, aligning scientific progress with societal healthcare needs.

Professional Profile

Education

Chongan Zhang pursued his academic journey in the field of Biomedical Engineering at Zhejiang University, one of China’s most prestigious institutions for engineering and medical sciences. His formal education provided him with a strong foundation in engineering principles, biological sciences, and clinical applications relevant to medical device development. During his academic tenure, he focused on courses related to medical instrumentation, imaging systems, embedded systems, and biomechanics, all of which shaped his research direction toward minimally invasive technologies and robotic systems. His graduate research work revolved around designing and optimizing surgical navigation systems and high-resolution endoscopic imaging techniques. This training equipped him with both theoretical knowledge and practical skills in device prototyping, data acquisition, digital signal processing, and interdisciplinary integration. The academic environment at Zhejiang University encouraged collaborative and innovation-driven learning, enabling Chongan to take part in cutting-edge projects and cross-disciplinary research. His thesis and project work often involved real-time system simulation, system control algorithms, and micro-electromechanical system (MEMS)-based designs for surgical applications. Overall, his education has been pivotal in preparing him for a research career at the intersection of biomedical engineering, computer science, and clinical technology, shaping his capacity for innovation and translational application in the healthcare sector.

Professional Experience

Chongan Zhang’s professional experience spans close to ten years in biomedical engineering, with a focus on the research, development, and translation of innovative medical devices. During his career, he has played a key role in multiple scientific and technological projects funded by national, provincial, ministerial, and enterprise-level agencies. At Zhejiang University, he has functioned as a central figure in research groups working on endoscopic surgical robots, minimally invasive surgical instrumentation, and high-speed digital processing systems. His primary responsibilities include system architecture design, component integration, algorithm development, and prototype validation. He has collaborated closely with clinicians, engineers, and industrial partners to ensure that the technologies under development meet real-world clinical needs. Notably, he has contributed significantly to the creation of next-generation medical endoscopes and surgical navigation platforms, ensuring they are both functionally advanced and ergonomically designed for clinical use. His experience also includes preparing documentation for regulatory approvals and technology transfer initiatives. By bridging research with industry, he has helped translate laboratory innovations into deployable healthcare solutions. His practical experience across diverse project scales and domains positions him as a well-rounded biomedical engineer with strong problem-solving skills and a commitment to healthcare advancement through engineering innovation.

Research Interests

Chongan Zhang’s research interests lie primarily in the design, development, and optimization of biomedical devices with a focus on endoscopic technologies and surgical navigation systems. He is particularly interested in the intersection of medical imaging, embedded systems, digital signal processing, and robotics, which collectively drive the innovation of next-generation surgical tools. His current research focuses on developing high-speed digital processing systems that enable real-time data handling during endoscopic procedures. Another key area of his interest is the advancement of surgical navigation systems to enhance accuracy and safety in minimally invasive surgeries. This involves both hardware design and the development of real-time localization and tracking algorithms. Chongan is also keen on translating academic research into clinically deployable technologies and is involved in designing core navigation components for robotic-assisted surgical systems. Furthermore, he is exploring the integration of AI-assisted guidance in endoscopic navigation, aiming to improve decision-making during surgeries. His long-term interest includes the development of patient-specific devices and systems that can adapt to diverse surgical environments. By bridging engineering and medicine, he seeks to contribute to the evolution of smart surgical environments and better patient outcomes through technical excellence and user-centered design.

Research Skills

Chongan Zhang possesses a comprehensive skill set that supports his research in biomedical device development and surgical system innovation. He is proficient in the design and fabrication of medical devices, particularly high-performance endoscopes and surgical navigation platforms. His technical capabilities include embedded system programming, high-speed digital signal processing, sensor integration, and real-time data acquisition, all of which are critical for surgical applications. He is also skilled in system modeling, simulation, and validation, enabling him to iterate quickly and efficiently through the research and development cycle. His experience with CAD tools, hardware prototyping, and microcontroller-based system design strengthens his ability to create customized solutions for complex clinical challenges. Chongan is adept in image processing techniques used in endoscopy and navigation, and he frequently applies machine learning methods for optimizing navigation accuracy. Additionally, he has strong competencies in managing interdisciplinary research projects and collaborating with cross-functional teams, including surgeons, regulatory specialists, and industrial engineers. His skill in writing academic papers and securing intellectual property rights through patent applications also reflects his well-rounded research acumen. With a firm grasp of both software and hardware aspects, Chongan is well-equipped to innovate in the highly demanding field of medical device engineering.

Awards and Honors

Throughout his career, Chongan Zhang has earned recognition for his contributions to the biomedical engineering field, particularly in surgical technology innovation. While early in his career relative to more senior researchers, he has already secured a national invention patent, which highlights the originality and practical impact of his research. His participation in multiple government-funded and enterprise-sponsored research projects reflects institutional trust and professional esteem in his capabilities. Furthermore, his ten SCI and EI-indexed academic publications demonstrate that his work meets rigorous scientific standards and contributes to global knowledge in endoscopy and surgical navigation. Though not yet decorated with widely known individual research awards, his track record of successful project execution, research output, and innovation places him on a trajectory for future recognition at national and international levels. His involvement in interdisciplinary teams and industry partnerships has also brought praise for his ability to effectively bridge academic research with real-world application. As his portfolio continues to grow, he is likely to be a strong candidate for awards recognizing innovation, translational research, and medical technology advancement. His achievements to date serve as a foundation for even greater impact and recognition in the biomedical and engineering communities.

Conclusion

Chongan Zhang is a highly competent and innovative researcher whose work in biomedical engineering—especially in the development of surgical navigation systems and endoscopic technologies—demonstrates both depth and practical relevance. With nearly a decade of experience and active involvement in multi-tiered research projects, he exemplifies the qualities of a forward-thinking biomedical engineer. His research is driven by the need for high-precision, minimally invasive surgical tools that can transform clinical practice and improve patient outcomes. He combines strong technical skills with a clear vision for translational research, evidenced by his publications, patent, and collaborative project roles. While still building an international reputation, his consistent academic contributions and technical innovations already place him among the promising researchers in his field. His ability to work across disciplines and his focus on both hardware and software elements of surgical systems make him uniquely equipped to contribute to the future of intelligent surgical environments. With continued support and expanded visibility, he has the potential to become a leading figure in biomedical device innovation. Based on his experience, output, and innovation potential, he is a worthy nominee for the Best Researcher Award and an asset to the global biomedical research community.

Publications Top Notes

📘 Registration, Path Planning and Shape Reconstruction for Soft Tools in Robot-Assisted Intraluminal Procedures: A Review

  • Authors: Chongan Zhang, Xiaoyue Liu, Zuoming Fu, Guoqing Ding, Liping Qin, Peng Wang, Hong Zhang, Xuesong Ye

  • Publication Year: 2025

Alireza Akoushideh | Computer Science | Best Researcher Award

Assist. Prof. Dr. Alireza Akoushideh | Computer Science | Best Researcher Award

Electrical and Computer Department from Iran’s National University of Skill, Iran

Dr. Alireza Akoushideh is an Assistant Professor in Electronics Engineering with a specialization in image processing, parallel processing, and microcontroller-based systems. With over two decades of experience in academia and research, he has made significant contributions to digital electronics, focusing on industrial applications. His expertise extends to supervising research projects, authoring academic books, and securing multiple patents. Dr. Akoushideh has been an active participant in national and international collaborations, including a visiting research position at the University of Twente in the Netherlands and participation in the Erasmus+ program in Romania. In addition to his academic contributions, he has played a vital role in fostering technological innovations as the former manager of the Growth Centre at Guilan Science and Technology Park. His work emphasizes bridging the gap between academia and industry, particularly in the development of applied research projects and commercialization of new technologies. Recognized for his research excellence, he has received multiple awards, including the Best Researcher title at Guilan Technical and Vocational University. With a strong background in electronics and computer engineering, Dr. Akoushideh continues to contribute to advancements in artificial intelligence, IoT, and digital systems, making him a distinguished researcher in his field.

Professional Profile

Education

Dr. Akoushideh has a strong academic foundation in electrical and electronics engineering. He earned his Ph.D. in Electrical Engineering with a specialization in Electronics from Shahid Beheshti University, where his research focused on developing noise-resistant feature extraction operators for texture classification. His doctoral work contributed significantly to the fields of image processing and pattern recognition. Prior to that, he completed his Master’s degree at Amirkabir University of Technology (Tehran Polytechnic), specializing in electronics. His master’s thesis revolved around designing a pacemaker system based on the detection of cardiac arrests, demonstrating his early interest in biomedical applications of electronics. Dr. Akoushideh obtained his Bachelor’s degree from the University of Guilan, where he specialized in electronics engineering. His undergraduate research involved the development of a computer-based microcontroller trainer, highlighting his inclination towards microcontroller-based system design. Throughout his academic journey, he has consistently focused on applying electronics engineering principles to real-world challenges, which is evident in his later research projects and technological innovations. His education, spanning three prestigious Iranian institutions, has provided him with the necessary expertise to excel in both theoretical and applied aspects of electronics, further enriching his contributions to academia, research, and industry.

Professional Experience

Dr. Akoushideh has had an extensive career in academia, research, and industry. He is currently an Assistant Professor at the Technical and Vocational University in Iran, where he teaches courses in image processing, computer architecture, microcontrollers, and digital systems. His role extends beyond teaching, as he actively supervises undergraduate and graduate research projects, guiding students in developing innovative solutions for industrial and technological challenges. He has also served as a visiting researcher at the University of Twente in the Netherlands, where he collaborated on biometrics and pattern recognition research. Additionally, he participated in the Erasmus+ program at Pitesti University in Romania, contributing to international discussions on vocational education and training. Dr. Akoushideh has held managerial roles, including serving as the Growth Centre Manager at Guilan Science and Technology Park, where he played a key role in supporting technology startups and commercializing academic research. His industry experience includes co-founding Rayaneh Gostar Moein Co., where he worked on network design, industrial automation, and electronic content production. His diverse professional background reflects his ability to integrate academic research with industrial applications, making significant contributions to both education and technology-driven initiatives.

Research Interests

Dr. Akoushideh’s research interests lie in the intersection of digital electronics, image processing, artificial intelligence, and microcontroller-based systems. His work primarily focuses on developing advanced image processing techniques for applications such as biometrics, video surveillance, and medical diagnostics. He has also contributed to research in pattern recognition, deep learning, and IoT-based automation systems. His interest in parallel processing has led him to explore hardware acceleration techniques for computationally intensive tasks, improving the efficiency of embedded systems. In addition to theoretical advancements, Dr. Akoushideh is deeply involved in applied research, particularly in developing smart electronic devices and automation systems for industrial and consumer applications. His projects include intelligent power management systems, real-time video analytics, and embedded system design for IoT applications. He is also keen on integrating artificial intelligence into embedded systems, exploring new methods for enhancing efficiency and performance in real-time processing environments. With a strong background in both academic and practical research, his work contributes to the advancement of smart technologies, automation, and digital signal processing, positioning him as a leading researcher in electronics and computer engineering.

Research Skills

Dr. Akoushideh possesses a diverse range of research skills spanning hardware and software domains. He has expertise in digital image processing, machine learning, and deep learning techniques, applying them to areas such as biometrics, video analysis, and industrial automation. His programming proficiency includes MATLAB, Python, C++, and hardware description languages like VHDL, allowing him to develop and implement complex algorithms for embedded systems. His hands-on experience with microcontrollers such as AVR, ARM, and PIC enables him to design and prototype advanced electronic devices. Additionally, he is skilled in PCB design using Altium Designer and FPGA-based system development using Xilinx ISE and Synopsys tools. His research capabilities extend to IoT and smart systems, where he has worked on projects involving sensor networks, remote monitoring, and intelligent control systems. Dr. Akoushideh is also experienced in conducting experimental research, statistical data analysis, and scientific writing, which are essential for publishing in high-impact journals. His interdisciplinary approach, combining hardware and software expertise, makes him highly proficient in designing, developing, and optimizing electronic and computational systems for various applications.

Awards and Honors

Dr. Akoushideh has been recognized multiple times for his contributions to research and technology. He was awarded the Best Researcher title at Guilan Technical and Vocational University in 2022 and previously in 2018 and 2019. In 2021, he received the first award at the Technical and Vocational University of Iran, a national-level recognition of his excellence in research and academia. He was also acknowledged by the Guilan Science and Technology Park for his contributions as an innovator and technologist, winning awards such as “Encouraging Thinkers, Technologists, and Innovators” in 2019. Additionally, he won a provincial award in the Young Idea Supporters category the same year. His entrepreneurial spirit was recognized in 2007 when he was named the Best Entrepreneur in Information Technology by the Ministry of Labor and Social Affairs. His academic achievements include ranking second in his graduating class in electronic engineering at Guilan University in 1997. These awards highlight his dedication to advancing research, education, and innovation, further solidifying his reputation as a leading researcher in his field.

Conclusion

Dr. Alireza Akoushideh is a distinguished researcher with extensive expertise in electronics engineering, particularly in image processing, embedded systems, and IoT applications. His academic journey, spanning Iran’s top universities, has provided him with a strong foundation in both theoretical and applied research. His professional experience as a university professor, visiting researcher, and technology leader has allowed him to make significant contributions to academia and industry. With numerous research projects, patents, and international collaborations, he has established himself as a key figure in his field. His research interests in artificial intelligence, parallel processing, and industrial automation align with current technological advancements, making his work highly relevant. His technical skills in programming, hardware design, and system optimization further enhance his ability to develop innovative solutions. Recognized with multiple awards for research excellence, teaching, and entrepreneurship, he has consistently demonstrated his commitment to knowledge creation and dissemination. Dr. Akoushideh’s career reflects a balance between academic research and practical applications, positioning him as a thought leader in digital electronics and embedded systems. His contributions continue to drive technological innovation, benefiting both academia and industry.

Publications Top Notes

  • Title: Motion-based vehicle speed measurement for intelligent transportation systems
    Authors: A. Tourani, A. Shahbahrami, A. Akoushideh, S. Khazaee, C.Y. Suen
    Year: 2019
    Citations: 33

  • Title: A robust vehicle detection approach based on faster R-CNN algorithm
    Authors: A. Tourani, S. Soroori, A. Shahbahrami, S. Khazaee, A. Akoushideh
    Year: 2019
    Citations: 25

  • Title: Facial expression recognition using a combination of enhanced local binary pattern and pyramid histogram of oriented gradients features extraction
    Authors: M. Sharifnejad, A. Shahbahrami, A. Akoushideh, R.Z. Hassanpour
    Year: 2020
    Citations: 19

  • Title: Iranis: A large-scale dataset of Iranian vehicles license plate characters
    Authors: A. Tourani, S. Soroori, A. Shahbahrami, A. Akoushideh
    Year: 2021
    Citations: 16

  • Title: Iranian license plate recognition using deep learning
    Authors: A.R. Rashtehroudi, A. Shahbahrami, A. Akoushideh
    Year: 2020
    Citations: 15

  • Title: High performance implementation of texture features extraction algorithms using FPGA architecture
    Authors: A.R. Akoushideh, A. Shahbahrami, B.M.N. Maybodi
    Year: 2014
    Citations: 13

  • Title: Copy-move forgery detection using convolutional neural network and K-mean clustering
    Authors: A. Pourkashani, A. Shahbahrami, A. Akoushideh
    Year: 2021
    Citations: 12

  • Title: Accelerating texture features extraction algorithms using FPGA architecture
    Authors: A.R. Akoushideh, A. Shahbahrami
    Year: 2010
    Citations: 12

  • Title: Parallel Implementation of a Video-based Vehicle Speed Measurement System for Municipal Roadways
    Authors: A.J. Afshany, A. Tourani, A. Shahbahrami, S. Khazaee, A. Akoushideh
    Year: 2019
    Citations: 10

  • Title: Challenges of Video-Based Vehicle Detection and Tracking in Intelligent Transportation Systems
    Authors: A. Tourani, A. Shahbahrami, A. Akoushideh
    Year: 2017
    Citations: 9

 

Mini Han Wang | Artificial Intelligence | Young Scientist Award

Dr. Mini Han Wang | Artificial Intelligence | Young Scientist Award

Chinese University of Hong Kong, Hong Kong

Dr. Mini Han Wang is a distinguished senior researcher specializing in ophthalmology, artificial intelligence (AI) in medical imaging, and biomolecular pathways in ocular diseases. She holds dual Ph.D.s in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong and Data Science from the City University of Macau, demonstrating her expertise in integrating medical research with AI-driven analytical techniques. Dr. Wang has made significant contributions to age-related macular degeneration (AMD) research, AI-based disease diagnostics, and precision medicine. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with the Beijing Institute of Technology and Jinan University, and Director of the Frontier Science Computing Center at the Chinese Academy of Sciences. Beyond research, she is an experienced lecturer, delivering courses on intelligent data mining, evidence-based medicine, and AI applications in healthcare. Her work is widely published in peer-reviewed journals, and she actively collaborates with leading academic and medical institutions. With a commitment to advancing medical AI technologies and personalized healthcare solutions, Dr. Wang stands out as a leading expert at the intersection of medicine and data science.

Professional Profile

Education

Dr. Mini Han Wang has pursued a multidisciplinary academic journey, combining medical sciences, engineering, and data science. She earned a Ph.D. in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong (2022-2025), where her research focuses on AI-driven diagnostics and molecular mechanisms of retinal diseases. In parallel, she completed a Ph.D. in Data Science at the Institute of Data Science, City University of Macau (2020-2023), further enhancing her ability to develop AI-integrated solutions for medical applications. Before her doctoral studies, Dr. Wang completed an M.Sc. in Management (2016-2018) at City University of Macau, gaining insights into research administration and healthcare management. She also holds dual bachelor’s degrees from Jiangxi Science & Technology Normal University (2012-2016) in Internet of Things (IoT) Engineering and English Literature, showcasing her strong foundation in technology and global scientific communication. As an Outstanding Graduate Representative, her diverse educational background enables her to bridge the gap between medical research, AI innovation, and healthcare management, making her a pioneering figure in modern ophthalmic research.

Professional Experience

Dr. Wang’s professional journey is marked by leadership in research, teaching, and AI-driven medical advancements. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with Beijing Institute of Technology and Jinan University, where she leads projects on AI-based ophthalmic disease diagnosis and retinal molecular research. Additionally, she holds the position of Director of the Frontier Science Computing Center at the Chinese Academy of Sciences, overseeing cutting-edge AI applications in medicine and multi-omics data integration. Since 2018, Dr. Wang has collaborated with Shenzhen Institute of Advanced Technology and Zhuhai Institute of Advanced Technology, conducting research on medical imaging, knowledge graphs, and AI-driven predictive modeling. Her academic contributions include guest lectures at Beijing Institute of Technology, Jinan University, and Zhuhai Science & Technology Institute, focusing on intelligent data mining, evidence-based medicine, and AI in disease diagnosis. With her interdisciplinary expertise, Dr. Wang has played a key role in bridging fundamental research with clinical applications, contributing significantly to medical AI advancements and personalized treatment strategies.

Research Interest

Dr. Wang’s research revolves around three core areas: ophthalmology, AI in medical imaging, and biomolecular pathways in ocular diseases. Her primary focus is age-related macular degeneration (AMD) and retinal diseases, where she investigates molecular mechanisms, genetic variations, and metabolic dysregulation. She is also deeply involved in AI-driven predictive modeling to enhance early disease detection and precision therapeutics. In the field of medical imaging, she integrates multi-modal imaging techniques (OCT, UWF Fundus) with AI algorithms to improve retinal disease diagnostics and prognosis. Furthermore, her research extends to biomolecular analysis, where she studies oxidative stress, mitochondrial dysfunction, and complement system activation in ocular diseases. By combining multi-omics data, AI-driven drug discovery, and knowledge graph-driven ophthalmic AI systems, Dr. Wang aims to revolutionize personalized medicine and enhance treatment strategies for degenerative eye diseases.

Research Skills

Dr. Wang possesses a diverse and advanced skill set, allowing her to lead high-impact research in medical AI and ophthalmology. She specializes in AI-based predictive modeling, machine learning for medical imaging, and deep learning for disease classification. Her expertise in biomolecular analysis includes multi-omics data integration, pathway analysis, and molecular crosstalk identification for precision medicine applications. Dr. Wang is also proficient in data mining, statistical modeling, and computational biology, which are essential for her research on retinal diseases and AI-driven diagnostics. Additionally, she has hands-on experience with multi-modal imaging techniques (OCT, UWF, fundus photography) and their integration with AI-based disease detection frameworks. She is well-versed in academic writing, research methodology, and project management, with an extensive record of peer-reviewed publications and collaborative research projects. With these skills, Dr. Wang is able to bridge the gap between clinical research and AI-powered healthcare solutions, making her a leading figure in medical innovation.

Awards and Honors

Dr. Wang has received multiple recognitions for her outstanding research contributions and academic achievements. As an Outstanding Graduate Representative, she was acknowledged for her exceptional performance in data science and medical research. She has been the recipient of research grants and funding awards for her work in ophthalmic AI, biomolecular studies, and precision medicine. Her research on AMD and AI-driven diagnostics has earned recognition from international conferences and peer-reviewed journals. She has been invited as a keynote speaker and panelist at various scientific conferences, where she has shared insights on AI applications in medicine, multi-omics integration, and retinal disease research. Additionally, her collaborations with leading universities and medical institutions have led to numerous institutional awards for excellence in research and innovation. With a strong academic and professional track record, Dr. Wang continues to be recognized as a pioneering researcher at the forefront of AI-driven medical advancements.

Conclusion

Dr. Mini Han Wang is a leading researcher at the intersection of ophthalmology, AI, and biomolecular analysis, making groundbreaking contributions to AMD research, AI-driven diagnostics, and precision medicine. Her multidisciplinary expertise in medical science, data analytics, and computational biology allows her to develop innovative solutions for early disease detection and personalized treatment strategies. As a senior researcher, director, and academic lecturer, she has demonstrated leadership in both research and education, mentoring young scientists and collaborating with top-tier institutions. Her work in AI-integrated ophthalmology and molecular disease modeling is shaping the future of medical research and healthcare technology. While further global collaborations, large-scale clinical applications, and expanded research beyond AMD

Publications Top Notes

  • Title: Place attachment to pseudo establishments: An application of the stimulus-organism-response paradigm to themed hotels
    Authors: J. Sun, P.J. Chen, L. Ren, E.H.W. Shih, C. Ma, H. Wang, N.H. Ha
    Year: 2021
    Citations: 86

  • Title: The effect of online investor sentiment on stock movements: an LSTM approach
    Authors: G. Wang, G. Yu, X. Shen
    Year: 2020
    Citations: 43

  • Title: Big data and predictive analytics for business intelligence: A bibliographic study (2000–2021)
    Authors: Y. Chen, C. Li, H. Wang
    Year: 2022
    Citations: 33

  • Title: AI-based advanced approaches and dry eye disease detection based on multi-source evidence: Cases, applications, issues, and future directions
    Authors: M.H. Wang, L. Xing, Y. Pan, F. Gu, J. Fang, X. Yu, C.P. Pang, K.K.L. Chong
    Year: 2024
    Citations: 32

  • Title: Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey
    Authors: J. Yang, S. Fong, H. Wang, Q. Hu, C. Lin, S. Huang, J. Shi, K. Lan, R. Tang
    Year: 2021
    Citations: 29

  • Title: Research on data security in big data cloud computing environment
    Authors: F. Wang, H. Wang, L. Xue
    Year: 2021
    Citations: 27

  • Title: An explainable artificial intelligence-based robustness optimization approach for age-related macular degeneration detection based on medical IoT systems
    Authors: M.H. Wang, K.K. Chong, Z. Lin, X. Yu, Y. Pan
    Year: 2023
    Citations: 26

  • Title: Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: A case study based on CNN, attention, and CAM mechanism
    Authors: M. Wang, Z. Lin, J. Zhou, L. Xing, P. Zeng
    Year: 2023
    Citations: 13

  • Title: Metamaterials design method based on deep learning database
    Authors: X. Zhou, Q. Xiao, H. Wang
    Year: 2022
    Citations: 10

  • Title: A YOLO-based method for improper behavior predictions
    Authors: M. Wang, Y. Zhao, Q. Wu, G. Chen
    Year: 2023
    Citations: 9